On branched continued fraction expansions of hypergeometric functions \(F_M\) and their ratios
Keywords:
hypergeometric function, recurrence relation, branched continued fraction, approximation by rational functionsAbstract
The paper investigates the problem of constructing branched continued fraction expansions of hypergeometric functions \(F_M(a_1,a_2,b_1,b_2;a_1,c_2;\mathbf{z})\) and their ratios. Recurrence relations of the hypergeometric function \(F_M\) are established, which provide the construction of formal branched continued fractions with simple structures, the elements of which are polynomials in the variables \(z_1, z_2, z_3.\) To construct the expansions, a method of based on the so-called complete group of ratios of hypergeometric functions was used, which is a generalization of the classical Gauss method.
References
T. Antonova, R. Dmytryshyn and V. Goran: On the analytic continuation of Lauricella-Saran hypergeometric function (F_K(a_1,a_2,b_1,b_2;a_1,b_2,c_3;mathbf{z})), Mathematics, 11 (2023), Article ID: 4487.
T. Antonova, R. Dmytryshyn and S. Sharyn: Branched continued fraction representations of ratios of Horn’s confluent function (mathrm{H}_6), Constr. Math. Anal., 6 (1) (2023), 22–37.
I. B. Bilanyk, D. I. Bodnar and O. G. Vozniak: Convergence criteria of branched continued fractions, Res. Math., 32 (2) (2024), 53–69.
D. I. Bodnar, O. S. Bodnar and I. B. Bilanyk: A truncation error bound for branched continued fractions of the special form on subsets of angular domains, Carpathian Math. Publ., 15 (2) (2023), 437–448.
D. I. Bodnar, O. S. Bodnar, M. V. Dmytryshyn, M. M. Popov, M. V. Martsinkiv and O. B. Salamakha: Research on the convergence of some types of functional branched continued fractions, Carpathian Math. Publ., 16 (2) (2024), 448–460.
J. Choi: Recent advances in special functions and their applications, Symmetry, 15 (2023), Article ID: 2159.
R. Dmytryshyn, T. Antonova and M. Dmytryshyn: On the analytic extension of the Horn’s confluent function (mathrm{H}_6) on domain in the space (mathbb{C}^2), Constr. Math. Anal., 7 SI AT&A (2024), 11–26.
R. Dmytryshyn, T. Antonova and S. Hladun: On analytical continuation of the Horn’s hypergeometric functions (H_3) and their ratios, Axioms, 14 (2025), Article ID: 67.
R. Dmytryshyn, V. Goran: On the analytic extension of Lauricella-Saran’s hypergeometric function (F_K) to symmetric domains, Symmetry, 16 (2024), Article ID: 220.
R. Dmytryshyn, I.-A. Lutsiv and M. Dmytryshyn: On the analytic extension of the Horn’s hypergeometric function (H_4), Carpathian Math. Publ., 16 (1) (2024), 32–39.
R. Dmytryshyn, V. Oleksyn: On analytical extension of generalized hypergeometric function (_3F_2), Axioms, 13 (2024), Article ID: 759.
R. Dmytryshyn, S. Sharyn: Representation of special functions by multidimensional A- and J-fractions with independent variables, Fractal Fract., 9 (2025), Article ID: 89.
H. Exton: Multiple hypergeometric functions and applications, Halsted Press, Chichester (1976).
C. F. Gauss: Disquisitiones generales circa seriem infinitam (1+frac{alphabeta}{1cdotgamma}x+frac{alpha(alpha+1)beta(beta+1)}{1cdot2cdotgamma(gamma+1)}xx+frac{alpha(alpha+1)(alpha+2)beta(beta+1)(beta+2)}{1cdot2cdot3cdotgamma(gamma+1)(gamma+3)}x^3+etc), In Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores; Classis Mathematicae, (1812), H. Dieterich, Gottingae (1813), 2, 3–46.
P.-Ch. Hang, M.-J. Luo: Asymptotics of Saran’s hypergeometric function (F_K), J. Math. Anal. Appl., 541 (2) (2025), Article ID: 128707.
V. R. Hladun, M. V. Dmytryshyn, V. V. Kravtsiv and R. S. Rusyn: Numerical stability of the branched continued fraction expansions of the ratios of Horn’s confluent hypergeometric functions (H_6), Math. Model. Comput., 11 (4) (2024), 1152–1166.
V. Hladun, V. Kravtsiv, M. Dmytryshyn and R. Rusyn: On numerical stability of continued fractions, Mat. Studii, 62 (2) (2024), 168–183.
V. Hladun, R. Rusyn and M. Dmytryshyn: On the analytic extension of three ratios of Horn’s confluent hypergeometric function H7, Res. Math., 32 (1) (2024), 60–70.
B. Kol, R. Shir: The propagator seagull: general evaluation of a two loop diagram, J. High Energy Phys., 2019 (2019), Article ID: 83.
L. Lorentzen, H. Waadeland: Continued fractions, Atlantis Press, Paris (2008).
M.-J. Luo, M.-H. Xu and R. K. Raina: On certain integrals related to Saran’s hypergeometric function FK, Fractal Fract., 6 (2022), Article ID: 155.
Y. Lutsiv, T. Antonova, R. Dmytryshyn and M. Dmytryshyn: On the branched continued fraction expansions of the complete group of ratios of the generalized hypergeometric function 4F3, Res. Math., 32 (2) (2024), 115–132.
G. Milovanovic, M. Rassias: Analytic number theory, approximation theory, and special functions, Springer, New York (2014).
S. Saran: Hypergeometric functions of three variables, Ganita, 5 (1954), 77–91.
J. B. Seaborn: Hypergeometric functions and their applications, Springer, New York (1991).
H. M. Srivastava, P. W. Karlsson: Multiple Gaussian hypergeometric series, Halsted Press, New York (1985).
H. M. Srivastava: On transformations of certain hypergeometric functions of three variables, Publ. Math. Debr., 12 (1965), 65–74.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Ivan Nyzhnyk, Roman Dmytryshyn, Tamara Antonova

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.