Approximation of bounded functions by positive linear operators

Authors

Keywords:

Positive linear operators, power series, rate of convergence

Abstract

A general family of positive linear operators associated with a power expansion is studied. An upper estimate of the rate of convergence is obtained for bounded continuous functions in \([0,\infty)\) that has limit when \(x\to \infty\). Applications are included.

References

T. Acar, A. Aral and I. Ra¸sa: Positive linear operators preserving τ and τ2, Constr. Math. Anal., 2 (3) (2019), 98–102.

F. Altomare, M. Campiti: Korovkin-type approximation theory and its applications, de Gruyter Series Studies in Mathematics, Walter de Gruyter, New York (1994).

J. Bustamante, L. Morales de la Cruz: Korovkin type theorems for weighted approximation, Int. J. Math. Anal., 1 (26) (2007), 1273–1283.

J. Bustamante, L. Morales de la Cruz: Positive linear operators and continuous functions on unbounded intervals, Jaen J. Approx., 1 (2) (2009), 145–173.

M Dhamija, R. Pratap and N. Deo: Approximation by Kantorovich form of modified Szász-Mirakyan operators, Appl. Math. Comput., 317 (15) (2018), 109–120.

N. K. Govil, V. Gupta and D. Soyba¸s: Certain new classes of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195–203.

V. Gupta, G. Tachev and A. Acu: Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (1) (2019), 125–149.

A. Holho¸s: Uniform approximation by positive linear operators on noncompact intervals, Automat. Comput. Appl. Math., 18 (1) (2009), 121–132.

P. P. Korovkin: Linear operators and approximation theory, Delhi (1960). [10] D. Micl˘aus, O. T. Pop: The Voronovskaja theorem for some linear positive operators defined by infinite sum, Creat. Math. Inform., 20 (1) (2011), 55–61.

D. Micl˘aus, O. T. Pop: The generalization of certain results for Szász-Mirakjan-Schurer operators, Creat. Math. Inform., 21 (1) (2012), 79–85.

V. Mihe¸san: Gamma approximating operators, Creat. Math. Inform., 17 (2008), 466–472.

G. M. Mirakyan: Approximation des fonctions continues au moyen de polynómes de la forme $e^{-nx}sum_{k=0}^{m_{n}} C_{n,k}x^{k}$, Comptes Rendus Acad. Scien. URSS (in French), 31 (1941), 201–205.

R. P˘alt˘anea: Modified Szász-Mirakjan operators of integral form, Carpathian J. Math., 24 (3) (2008), 378–385.

F. Schurer: On linear positive operators in approximation theory, Thesis Delft, (1965).

P. C. Sikkema: Über die Schurerschen linearen positiven operatoren I, Indag. Math., 78 (3) (1975), 230–242.

O. Szász: Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Nat. Bur. Standards, 45 (1950), 239–245.

Downloads

Published

04-12-2024

How to Cite

Bustamante, J. (2024). Approximation of bounded functions by positive linear operators. Modern Mathematical Methods, 2(3), 117–131. Retrieved from https://modernmathmeth.com/index.php/pub/article/view/30

Issue

Section

Articles