Approximation of bounded functions by positive linear operators
Keywords:
Positive linear operators, power series, rate of convergenceAbstract
A general family of positive linear operators associated with a power expansion is studied. An upper estimate of the rate of convergence is obtained for bounded continuous functions in \([0,\infty)\) that has limit when \(x\to \infty\). Applications are included.
References
T. Acar, A. Aral and I. Ra¸sa: Positive linear operators preserving τ and τ2, Constr. Math. Anal., 2 (3) (2019), 98–102.
F. Altomare, M. Campiti: Korovkin-type approximation theory and its applications, de Gruyter Series Studies in Mathematics, Walter de Gruyter, New York (1994).
J. Bustamante, L. Morales de la Cruz: Korovkin type theorems for weighted approximation, Int. J. Math. Anal., 1 (26) (2007), 1273–1283.
J. Bustamante, L. Morales de la Cruz: Positive linear operators and continuous functions on unbounded intervals, Jaen J. Approx., 1 (2) (2009), 145–173.
M Dhamija, R. Pratap and N. Deo: Approximation by Kantorovich form of modified Szász-Mirakyan operators, Appl. Math. Comput., 317 (15) (2018), 109–120.
N. K. Govil, V. Gupta and D. Soyba¸s: Certain new classes of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195–203.
V. Gupta, G. Tachev and A. Acu: Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (1) (2019), 125–149.
A. Holho¸s: Uniform approximation by positive linear operators on noncompact intervals, Automat. Comput. Appl. Math., 18 (1) (2009), 121–132.
P. P. Korovkin: Linear operators and approximation theory, Delhi (1960). [10] D. Micl˘aus, O. T. Pop: The Voronovskaja theorem for some linear positive operators defined by infinite sum, Creat. Math. Inform., 20 (1) (2011), 55–61.
D. Micl˘aus, O. T. Pop: The generalization of certain results for Szász-Mirakjan-Schurer operators, Creat. Math. Inform., 21 (1) (2012), 79–85.
V. Mihe¸san: Gamma approximating operators, Creat. Math. Inform., 17 (2008), 466–472.
G. M. Mirakyan: Approximation des fonctions continues au moyen de polynómes de la forme $e^{-nx}sum_{k=0}^{m_{n}} C_{n,k}x^{k}$, Comptes Rendus Acad. Scien. URSS (in French), 31 (1941), 201–205.
R. P˘alt˘anea: Modified Szász-Mirakjan operators of integral form, Carpathian J. Math., 24 (3) (2008), 378–385.
F. Schurer: On linear positive operators in approximation theory, Thesis Delft, (1965).
P. C. Sikkema: Über die Schurerschen linearen positiven operatoren I, Indag. Math., 78 (3) (1975), 230–242.
O. Szász: Generalization of S. Bernstein’s polynomials to the infinite interval, J. Res. Nat. Bur. Standards, 45 (1950), 239–245.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Jorge Bustamante
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.