On a generalized moment integral containing Riemann’s zeta function: Analysis and experiment
Keywords:
Cesàro summation, improper integrals, Riemann zeta function, discontinuous functions, Dirac comb functionAbstract
Here, we study both analytically and numerically, an integral $Z(\sigma,r)$ related to the mean value ofa generalized moment of Riemann's zeta function. Analytically, we predict finite, but discontinuous values
and verify the prediction numerically, employing a modified form of Cesàro summation. Further, it is proven
and verified numerically that for certain values of $\sigma$, the derivative function $Z^{\prime}(\sigma,n)$
equates to one generalized tine of the Dirac comb function without recourse to the use of limits, test functions
or distributions. A surprising outcome of the numerical study arises from the observation that
the proper integral form of the derivative function is quasi-periodic, which in turn suggests a periodicity
of the integrand. This possibility is also explored and it is found experimentally that zeta function values
offset (shifted) over certain segments of the imaginary complex number line are moderately auto-correlated.
References
S. A. C. Baluyot, D. A. Goldston, A. I. Suriajaya and C. L. Turnage-Butterbaugh: An unconditional Montgomery theorem for pair correlation of zeros of the Riemann zeta function, (2023), DOI: arXiv.2306.04799.
Cesàro Summation, March 2024. https://en.wikipedia.org/wiki/Cesaro_summation.
V. Chandee: On the correlation of shifted values of the Riemann zeta function, Q. J. Math., 62 (3) (2009), 545–572.
M. J. Curran: Correlations of the Riemann zeta function, (2023), DOI: arXiv.2303.10123.
H. M. Edwards: Riemann’s zeta function, Dover, New York (2001).
M. L. Glasser: A remarkable definite integral, (2013), DOI: arxiv.org/abs/1308.6361v2.
I. S. Gradshteyn, I. M. Ryzhik: Tables of integrals, series and products, corrected and enlarged edition, Academic Press, New York (1980).
https://stats.stackexchange.com/questions/233606/exact-meaning-of-correlation-coefficient.
Maplesoft: Maple, a division of Waterloo Maple Inc., version (2023).
M. Milgram: An integral equation for Riemann’s Zeta function and its approximate solution, Abstr. Appl. Anal., 2020 (2020), Article ID: 1832982.
M. Milgram: Determining the indeterminate: On the evaluation of integrals that connect Riemann’s, Hurwitz’ and Dirichlet’s zeta, eta and beta functions, (2021), DOI: arxiv.org/abs/2107.12559.
M. Milgram: An extension of Glasser’s master theorem and a collection of improper integrals many of which involve Riemann’s Zeta function, J. Class. Anal., 24 (1) (2024), 43–70.
N. Ng, Q. Shen and P.-J. Wong: Shifted moments of the Riemann zeta function, Canad. J. Math., 76 (5) (2024), 1556–1586.
B. Van Der Pol, H. Bremmer: Operational calculus based on the two-sided Laplace integral, Cambridge University Press, London (1959).
E. C. Titchmarsh, D. R Heath-Brown: The theory of the Riemann zeta-function, Oxford Science Publications, Oxford (1986).
I. I. Volkov: Cesàro summation methods, Encyclopedia of Mathematics, (2020), http://encyclopediaofmath.org/index.php?title=Ces%C3%A0ro_summation_methods&oldid=26199.
Wolfram Research: Mathematica, version 13.2, Champaign, Illinois (2023).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Michael Milgram, Roy Hughes

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.