New fixed point theorems for \( (\phi, F) \)-Gregus contraction in b-rectangular metric spaces

Authors

Keywords:

Fixed point, b-metric space, b-rectangular metric spaces, (ϕ, F)-Gregus contraction, (ϕ, F)-Gregus type quadratic contraction

Abstract

In this paper, we introduce the notion of \( (\phi, F) \)-Gregus contraction and \( (\phi, F) \)-Gregus type quadratic contraction in b-rectangular metric spaces. Further, we study the existence and uniqueness of fixed point for these mappings in this spaces. Our results are legitimately validated by illustrative examples.

References

S. Banach: Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundam. Math., 3 (1922), 133–181.

I. A. Bakhtin: The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.

F. E. Browder: On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad.Wetensch. Proc. Ser. A Indag. Math., 30 (1968), 27–35.

S. Czerwik: Contraction mapping in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11.

R. George, S. Radenovic, K. P. Reshm and S. Shukla: Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013.

R. Kannan: Some results on fixed points-II, Amer. Math. Mon., 76 (1969), 405–408.

A. Kari, M. Rossafi, E. Marhrani and M. Aamri: Fixed point theorems for (θ − ϕ)-contraction on complete b-metric spaces, Int. J. Math. Sci., 2020 (2020), 1–9.

A. Kari, M. Rossafi, E. Marhrani and M. Aamri: New fixed point theorems for (θ−ϕ)-contraction on complete rectangular b-metric spaces, Abst. Appl. Anal., 2020 (2020), Article ID: 8833214,.

A. Kari, M. Rossafi, E. Marhrani and M. Aamri: Fixed-point theorem for nonlinear F-contraction via w− Distance, Adv. Math. Phys., 2020 (2020), Article ID: 6617517.

A. Kari, M. Rossafi: New fixed point theorems for (Φ, F)-contraction on rectangular b-metric spaces, Afr. Mat., 34 (2023), 1–26.

E. Karapinar, A. Fulga and R. P. Agarwal: A survey: F-contractions with related fixed point results, J. Fixed Point Theory Appl., 22 (2020), 22–69.

H. Piri, P. Kumam: Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 210–215.

H. Piri, P. Kumam: Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory Appl., 2016 (2016), 1–12.

S. Reich: Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124.

T. Suzuki: Fixed point theorems for single- and set-valued F-contractions in b-metric spaces, J. Fixed Point Theory Appl., 20 (35) (2018), 1–12.

D.Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces, J. Fixed Point Theory Appl., 2012 (2012) 94–100.

D. Wardowski, N. Van Dung: Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math., 47 (2014), 146–155.

D. Wardowski: Solving existence problems via F-contractions, Proc. Am. Math. Soc., 146 (2018), 1585–1598.

Downloads

Published

15-04-2025

How to Cite

Tiwari, R., Sharma, N., & Turkoglu, D. (2025). New fixed point theorems for \( (\phi, F) \)-Gregus contraction in b-rectangular metric spaces . Modern Mathematical Methods, 3(1), 42–56. Retrieved from https://modernmathmeth.com/index.php/pub/article/view/45

Issue

Section

Articles