A short survey on interpolative contractions

Authors

Keywords:

fixed point, Interpolative contractions, metric space

Abstract

The aim of this manuscript is to collect recent publications that deal with the interpolative contractions in the fixed point theory. This short survey also aims to indicate the observed results to bring mind the possible other directions to enrich the literature of fixed point theory and its applications. This paper can be considered as a continuation, completion and extension of [54].

Author Biography

Cristina Pacurar, Transilvania University of Bra¸sov

 

Faculty of Mathematics and Computer Science, Transilvania University of Bra¸ sov, 50 Iuliu Maniu Blvd.,
Bra¸ sov, Romania; E-mail address: 

 

References

M. Abbas, R. Anjum and S. Riasat: Fixed point results of enriched interpolative Kannan type operators with applications, Appl. Gen. Topol., 23 (2) (2022), 391–404.

M. U. Ali, H. Aydi and M. Alansari: New generalizations of set valued interpolative Hardy-Rogers type contractions in b-metric spaces, J. Funct. Spaces, 2021 (2021), Article ID: 6641342.

B. Alqahtani, H. Aydi, E. Karapınar and V. Rakocevi´c: A solution for Volterra fractional integral equations by hybrid contractions, Mathematics, 7 (8) (2019), Article ID: 694.

S. S. Alzaid, A. Fulga and F. S. Alshammari: Discussion on Geraghty type hybrid contractions, J. Funct. Spaces, 2020 (2020), Article ID: 6614291.

A. E. Amri, Y. E. Foutayeni and L. E. M Marhrani: On some results on interpolative Kannan-type and CRR-type contractions, Moroc. J. Pure Appl. Anal., 8 (1) (2022), 54–66.

R. Anjum, M. Abbas and H. I¸sık: Completeness problem via fixed point theory, Complex Anal. Oper. Theory, 17 (2023), 1–11.

R. Anjum, A. Fulga and M. W. Akram: Applications to solving variational inequality problems via MR-Kannan type interpolative contractions, Mathematics, 11 (2023), Article ID: 4694.

M. Abbas, R. Anjum and S. Riasat: Solution of integral equation involving interpolative enriched cyclic Kannan contraction mappings, Bangmod Int. J. Math & Com. Sci., 9 (2023), 1–9.

H. Argoubi, B. Samet and C. Vetro: Nonlinear contractions involving simulation functions in a metric space with a partial order, J. Nonlinear Sci. Appl., 8 (2015), 1082–1094.

M. Asadi, E. Karapınar and P. Salimi: New extension of p-metric spaces with some fixed-point results on M-metric spaces, J. Inequal. Appl., 1 (2014), 1–9.

H. Aydi, E. Karapınar and A. F. Roldán López de Hierro: ω-interpolative C´ iric´-Reich-Rus-type contractions, Mathematics, 7 (1) (2019), Article ID: 57.

H. Aydi, C. M. Chen and E. Karapınar: Interpolative Ciric-Reich-Rus type contractions via the Branciari distance Mathematics, 7 (1) (2019), Article ID: 84.

S. Banach: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundamenta Mathematicae, 3 (1922), 133–181.

S. Bilazeroglu, C. Yalcin: A fixed point theorem for C´ iric´ type contraction on interpolative metric spaces, J. Nonlinear Convex Anal., 25 (7) (2024), 1717–1723.

S. H. Bonab, V. Parvaneh, Z. Bagheri and R. J. Shahkoohi: Extended interpolative Hardy–Rogers–Geraghty–Wardowski contractions and an application, Advances in Number Theory and Applied Analysis, World Scientific Publishing, (2023), 261–277.

S. Chatterjea: Fixed-point theorems, C.R. Acad. Bulgare Sci., 25 (1972), 727–730.

I. C. Chifu, E. Karapınar: Admissible hybrid Z-contractions in b-metric spaces, Axioms, 9 (1) (2020), 1–17.

L. B. C´ iric´: Fixed point theory: Contraction mapping principle, C-print, Faculty ofMechanical Engineering, University of Belgrade, Beograd (2003).

P. Debnath, S. Radenovic´ and Z. D. Mitrovic´: Interpolative Hardy-Rogers and Reich-Rus-C´ iric´ type contractions in rectangular b-metric space and b-metric spaces, Mat, Vesnik., 72 (4) (2020), 368–374.

M. Dhanraj, A. J. Gnanaprakasam and S. Kumar: Solving integral equations via orthogonal hybrid interpolative RI-type contractions, Fixed Point Theory Algorithms Sci. Eng., 2024 (2024), Article ID: 3.

M. Edraoui, A. El’koufi and S. Semami: Fixed points results for various types of interpolative cyclic contraction, Appl. Gen. Topol., 24 (2) (2023) 247–252.

M. Edraoui, M. Aamri: Common fixed point of interpolative Hardy-Rogers pair contraction, Filomat 38 (17) (2024), 6169–6175.

M. Edraoui, A. El’koufi and M. Aamri: On interpolative Hardy-Rogers type cyclic contractions, Appl. Gen. Topol., 25 (1) (2024), 117–124.

M. Edraoui, S. Semami, A. El’koufi and M. Aamri: On cyclic interpolative Kannan-Meir-Keeler type contraction in metric spaces, J. Sib. Fed. Univ. Math. Phys., 17 (3) (2024), 448–454.

Y. Errai, E. M. Marhrani and M. Aamri: Some new results of interpolative Hardy-Rogers and Ciric-Reich-Rus type contraction, J. Math., 2021 (2021), Article ID: 9992783.

Y. Errai, E. M. Marhrani and M. Aamri: Fixed points of g-interpolative Ciric–Reich–Rus-type contractions in b-metric spaces, Axioms, 9 (2020), Article ID: 132.

Y. Errai, E. M. Marhrani and M. Aamri: Some remarks on fixed point theorems for interpolative Kannan contraction, J. Funct. Spaces, 2020 (2020), Article ID: 2075920.

Y. U. Gaba, E. Karapınar: A new approach to the interpolative contractions, Axioms, 8 (4) (2019), Article ID: 110.

Y. U. Gaba, M. Aphane and H. Aydi: Interpolative Kannan contractions in T0-quasi-metric spaces, J. Math., 2021 (2021), Article ID: 6685638.

P. Gautam, V. N. Mishra, R. Ali and S. Verma: Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partialmetric space, AIMS Mathematics, 6 (2) (2021), 1727–1742.

P. Gautam, S. Verma, M. De La Sen and S. Sundriyal: Fixed point results for ω-interpolative Chatterjea type contraction in quasi-partial b-metric space, Int. J. Anal. Appl., 19 (2) (2021), 280–287.

P. Gautam, L. M. Sánchez Ruiz and S. Verma: Fixed point of interpolative Rus–Reich–Ciric Contraction Mapping on Rectangular quasi-partial b-metric space, Symmetry, 13 (2021), Article ID: 32.

P. Gautam, V. N. Mishra, S. Verma and R. Parija: ω-interpolative Hardy-Rogers type contractions on quasi-partial bmetric space, Fixed Point Theory and its Applications to Real World Problems, Nova Science Publishers (2021), 349–363.

P. Gautam, S. Singh, S. Kumar and S. Verma: On nonunique fixed point theorems via interpolative Chatterjea type Suzuki contraction in quasi-partial b-metric space, J. Math., 2022 (2022), Article ID: 2347294.

P. Gautam, C. Kaur: Fixed points of interpolative Matkowski type contraction and its application in solving non-linear matrix equations, Rend. Circ. Mat. Palermo, II. Ser., 72 (2023), 2085–2102.

M. A. Geraghty: On contractive mappings, Proc. Amer. Math. Soc., 40 (2) (1973), 604–608.

H. A. Hammad, H. Aydi and D. A. Kattan: Hybrid interpolative mappings for solving fractional Navier–Stokes and functional differential equations, Bound. Value Probl., 2023 (2023), Article ID: 2023:116.

G. E. Hardy, T. D. Rogers: A generalization of a fixed point theorem of Reich, Can. Math. Bull., 16 (1973), 201–206.

A. Hussain: Applications of the Fredholm integral equation by means of interpolative dynamic contractions, J. Nonlinear Convex Anal., 25 (7) (2024), 1599–1618.

S. Jain, V. Stojiljkovic and S. Radenovic: Interpolative generalized Meir-Keeler contraction, Vojnoteh. Glas., 70 (4) (2022), 818–835.

D. S. Jaggi: Some unique fixed point theorems, Indian J. Pure Appl. Math., 2 (8) (1977), 223–230.

J. Jiddah, M. Shagari, M. Noorwali, A. Aloqaily and N. Mlaiki: Hybrid fixed point theorems of graphic contractions with applications, Heliyon, 10 (10) (2024), Article ID: e31269.

R. Kannan: Some results on fixed points-II, Amer. Math. Monthly, 76 (1969), 405–408.

E. Karapınar, P. Kumam and P. Salimi: On a α-ψ-Meir–Keeler contractive mappings, Fixed Point Theory Appl., 94 (2013), Article ID: 2013:94.

E. Karapınar: Revisiting the Kannan type contractions via interpolation, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 85–87.

E. Karapınar, R. Agarwal and H. Aydi: Interpolative Reich–Rus–Ciric type contractions on partial metric spaces, Mathematics, 6 (2018), Article ID: 256.

E. Karapınar, A. Fulga: A hybrid contraction that involves Jaggi type, Symmetry, 11 (5) (2019), Article ID: 715.

E. Karapınar, A. Fulga: New hybrid contractions on b-metric spaces, Mathematics, 7 (7) (2019), Article ID: 578.

E. Karapınar, O. Alqahtani and H. Aydi: On interpolative Hardy-Rogers type contractions, Symmetry, 11 (2019), Article ID: 8.

E. Karapınar: Revisiting simulation functions via interpolative contractions, Appl. Anal. Discrete Math., 13 (2019), 859–870.

E. Karapınar, R. P. Agarwal: Interpolative Rus-Reich-Ciric type contractions via simulation functions, An. St. Univ. Ovidius Constanta Ser. Mat., 27 (3) (2019), 137–152.

E. Karapınar, A. Fulga: An admissible Hybrid contraction with an Ulam type stability, Demonstr. Math., 52 (1) (2019), 428–436.

E. Karapınar, A. Petru¸sel and G. Petru¸sel: On admissible hybrid Geraghty contractions, Carpathian J. Math., 36 (3) (2020), 433–442.

E. Karapınar: A Survey on interpolative and hybrid contractions, In Mathematical Analysis in Interdisciplinary Research; Springer: Cham, Switzerland, (2021), 431–475.

E. Karapınar, A. Fulga and A. F. Roldán López de Hierro: Fixed point theory in the setting of (α, β, ψ, ϕ)-interpolative contractions, Adv. Differ. Equ., 2021 (2021), Article ID: 2021:339, 1–16.

E. Karapınar: Interpolative Kannan-Meir-Keeler type contraction, Adv. Theory Nonlinear Anal. Appl., 5 (4) (2021), 611–614.

E. Karapınar, A. Fulga and S. S. Yesilkaya: New results on Perov-interpolative contractions of Suzuki type mappings, J. Funct. Spaces, 2021 (2021), Article ID: 9587604.

E. Karapınar, A. Fulga and S. S. Ye¸silkaya: Interpolative Meir–Keeler mappings in modular metric spaces, Mathematics, 10 (2022), Article ID: 2986.

E. Karapınar, A. Alid, A. Hussain and H. Aydi: On interpolative Hardy-Rogers type multivalued contractions via a simulation function, Filomat, 36 (8) (2022), 2847–2856.

E. Karapınar, A. Fulga: Discussion on the hybrid Jaggi-Meir-Keeler type contractions, J. AIMS Mathematics, 7 (7) (2022), 12702–12717.

E. Karapınar, R. Agarwal, S. Ye¸silkaya and C. Wang: Fixed-point results for Meir–Keeler type contractions in partial metric spaces: A survey, Mathematics, 10 (17) (2022), Article ID: 3109.

E. Karapınar: An open discussion: Interpolative metric spaces, Adv. Theory Nonlinear Anal. Appl., 7 (5) (2023), 24–27.

E. Karapınar: A new proposal: Interpolative metric spaces, Filomat, 8 (22) (2024), 7729–7734.

E. Karapınar, R. P. Agarwal: Some fixed point results on interpolative metric spaces, Nonlinear Anal. Real World Appl., 82 (2025), Article ID: 104244.

Q. Kiran, M. Azhar, H. Aydi and Y. U. Gaba: Admissible hybrid mathematical equation-contractions in extended b-metric spaces, Adv. Math. Phys., 2021 (2021), Article ID: 5579577, 1–12.

M. S. Khan, Y. M. Singh and E. Karapınar: On the interpolative (ϕ, ψ)-type-contraction, U.P.B. Sci. Bull., Series A, 83 (2) (2021), 25–38.

S. H. Khan, A. Raza: Interpolative Contractive Results for m-Metric Spaces, Adv. Theory Nonlinear Anal. Appl., 7 (2) (2023), 336–347.

F. Khojasteh, S. Shukla and S. Radenovi´c: A new approach to the study of fixed point theorems via simulation functions, Filomat, 29 (6) (2015), 1189–1194.

N. Konwar, R. Srivastava, P. Debnath and H. M. Srivastava: Some new results for a class of multivalued interpolative Kannan-type contractions, Axioms, 11 (2) (2022), Article No: 76.

F. Lael, N. Saleem, I. Huseyin and M. de la Sen: C´ iric´-Reich-Rus type weakly contractive mappings and related fixed point results in modular-like spaces with application, J. AIMS Mathematics, 7 (9) (2022), 16422–16439.

S. G. Matthews:Partial metric topology, Annals of the New York Academy of Sciences 728. Proceedings of the 8th Summer Conference on General Topology and Applications (1994), 183–197.

A. Meir,E. Keeler: A theorem on contraction mappings, J. Math. Anal. Appl., 28 (1969), 326–329.

V. N. Mishra, L. M. Sánchez Ruiz, P. Gautam and S. Verma: Interpolative Reich-Rus-Ciric and Hardy-Rogers contraction on quasi-partial-metric space and related fixed point results, Mathematics, 8 (9) (2020), Article ID: 1598.

B. Mohammadi, V. Parvaneh, H. Aydi: On extended interpolative Ciric–Reich–Rus type F-contractions and an application, J. Inequal. Appl., 2019 (2019), Article No: 290.

R. Muhammad, M. S. Shagari and A. Azam: On interpolative fuzzy contractions with applications, Filomat, 37 (1) (2023), 207–219.

M. Noorwali, S. Ye¸silkaya: On Jaggi-Suzuki-Type hybrid contraction mappings, J. Funct. Spaces, 2021 (2021), Article ID: 6721296.

M. Nazam, T. Rasham and R. P. Agarwal: On orthogonal interpolative iterative mappings with applications in multiplicative calculus, Filomat, 38 (14) (2024), 5061–5082.

M. Noorwali: Revising the Hardy–Rogers–Suzuki-type Z-contractions, Adv. Differ. Equ., 2021 (2021), Article ID: 2021:413, 1–8.

A. Mutlu, U. Gürdal: Bipolar metric spaces and some fixed point theorems, J. Nonlinear Sci. Appl., 9 (9) (2016), 5362–5373.

A. I. Perov: The Cauchy problem for systems of ordinary differential equations, Priblizhen, Metody Reshen. Difer. Uravn., 2 (1964), 115–134.

A. I. Perov, A. V. Kibenko: On a certain general method for investigation of boundary value problems, Izv. Math., 30 (1966), 249–264.

O. Popescu: Some new fixed point theorems for α-Geraghty contractive type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), Article No: 190.

O. Popescu: Two generalizations of some fixed point theorems, Comput. Math. Appl., 62 (10) (2011), 3912–3919,

P. D. Proinov: Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), Article No: 21.

S. Rawat, A. Bartwal and R. C. Dimri: Approximation and existence of fixed points via interpolative enriched contractions, Filomat 37 (16) (2023), 5455–5467.

S. Reich: Fixed point of contractive functions, Boll. Un. mat. Ital., 4 (5) (1972), 26–42.

I. A. Rus: Principles and Applications of the Fixed Point Theory (in Romanian), Editura Dacia, Clui-Napoca (1979).

I. A. Rus: Generalized Contractions and Applications, Cluj University Press, Cluj-Napoca (2001).

A. F. Roldán López de Hierro, N. Shahzad: Ample spectrum contractions and related fixed point theorems, Mathematics, 7 (11) (2019), Article ID: 1033.

M. Ozturk, On interpolative contractions in modular spaces, J. Nonlinear Convex Anal., 23 (2022), 1495–1507.

A. Oztuk, On interpolative R-Meir-Keeler contractions of rational forms, Filomat, 37 (9) (2023), 2879–2885.

N. Saleem, H. Isik, S. Khaleeq and C. Park: Interpolative C´ iric´-Reich-Rus-type best proximity point results with applications, J. AIMS Mathematics, 7 (6) (2022), 9731–9747.

B. Samet, C. Vetro and P. Vetro: Fixed point theorems for α − ϕ-contractive type mappings, Nonlinear Anal., 75 (2012), 2154–2165.

D. R. Sahu, A. Chakraborty and R. P. Dubey: K-iterated function system, Fractals, 18 (2010), 139–144.

X. Shi, U. Ishtiaq, M. Din and M. Akram: Fractals of interpolative Kannan mappings, Fractal Fract., 8 (8) (2024), 493.

M. S. Shagari, T. Alotaibi, H. Aydi, A. Aloqaily and N. Mlaiki: New L-fuzzy fixed point techniques for studying integral inclusions, J. Inequal. Appl., 2024 (1) (2024), 1–17.

D. Singh, M. Ughade, A. Kumar and M. Kumar Shukla: Fixed points of Kannan and Reich interpolative contractions in controlled metric spaces, Adv. Fixed Point Theory, 14 (6) (2024), 1–10.

T. Suzuki: Some results on recent generalization of Banach contraction principle, Proc. of the 8th International Conference of Fixed Point Theory and its Applications, Chiang Mai (Thailand) (2007), 751–761.

T. Suzuki: A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136 (2008), 1861–1869.

N. Ta¸s: Interpolative KMK-type fixed-figure results, Math. Sci. Appl. E-Notes, 11 (3) (2023), 129–137.

K. N. V. V. Vara Prasad, V. Mishra, Z. D. Mitrovic, D. Santina and N. Mlaiki: Unified interpolative of a Reich-Rus- Ciric-type contraction in relational metric space with an application, J. Inequal. Appl., 2024 (2024), Article ID: 2024:95.

N. Van Dung, A. Petru¸sel: On iterated function systems consisting of Kannan maps, Reich maps, Chatterjea type maps, and related results, J. Fixed Point Theory Appl., 19 (2017), 2271–2285.

S. Yadav, U. Manoj, S. Manoj Kumar: Fixed-points of interpolative Kannan type contractions in bipolar metric spaces, Adv. Fixed Point Theory, 13 (2023), Article ID: 24.

S. Yahaya, M. S. Shagari: Multivalued fixed point theorem involving hybrid contraction of the Jaggi-Suzuki type, Korean J. Math., 32 (3) (2024), 507–520.

S. Yahaya, M. Shehu Shagari and T. Abba Al: Multivalued hybrid contraction that involves Jaggi and Pata-type inequalities, Math. Found. Comput., 8 (1) (2025), 128–141.

S. S. Ye¸silkaya: On interpolative Hardy-Rogers contractive of Suzuki type mappings, Topol. Algebra Appl., 9 (1) (2021), 13–19.

I. Yildirim: On extended interpolative single and multivalued F-contractions, Turkish J. Math., 46 (3) (2022), 688–698.

L. Wangwe, S. Kumar: Fixed point results for interpolative ψ-Hardy-Rogers type contraction mappings in quasi-partial b-metric space with an applications, J. Anal., 31 (2023), 387–404.

L.Wangwe, L. Rathour, L. N. Mishra and V. N. Mishra: Fixed point theorems for extended interpolative Kanann-Ciric-Reich-Rus non-self type mapping in hyperbolic complex-valued metric space, Adv. Studies: Euro-Tbilisi Math. J., 17 (2) (2024), 1–21.

D.Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), Article No: 94.

Downloads

Published

21-12-2024

How to Cite

Karapınar, E., & P\u{a}curar, C. M. (2024). A short survey on interpolative contractions. Modern Mathematical Methods, 2(3), 189–202. Retrieved from https://modernmathmeth.com/index.php/pub/article/view/51

Issue

Section

Articles