Viscosity solutions to the ∞-Laplace equation in Grushin-type spaces
Keywords:
p-Laplace equation, ∞-Laplace equation, viscosity solution, Grushin-type spaces, sub-Riemannian geometryAbstract
In this paper, we prove the existence and uniqueness of viscosity solutions to the infinite Laplace equation in Grushin-type spaces whose tangent spaces consist of arbitrary triangular vector fields.
References
T. Bieske: On Infinite Harmonic Functions on the Heisenberg Group, Comm. in PDE, 27 (3 & 4) (2002), 727–762.
T. Bieske: Lipschitz Extensions on Generalized Grushin Spaces, Michigan Math. J., 53 (1) (2005), 3–31.
T. Bieske: Fundamental solutions to the p-Laplace equation in a class of Grushin vector fields, Electron. J. Diff. Equ., Vol. 2011 84 (2011), 1–10.
T. Bieske: A comparison principle for a class of subparabolic equations in Grushin-type spaces, Electron. J. Diff. Eqns., Vol. 2007 30 (2007), 1–9.
T. Bieske: Properties of Infinite Harmonic Functions on Grushin-Type Spaces, Rocky Mountain J. Math., 39 (3) (2009), 729–756.
T. Bieske: A sub-Riemannian maximum principle and its application to the p-Laplacian in Carnot groups, Ann. Acad. Sci. Fenn. Math., 37 (1) (2012), 119–134.
T. Bieske: The∞(x)-Equation in Grushin-Type Spaces, Electron. J. Diff. Eqns., Vol. 2016 125 (2016), 1–13.
T. Bieske, Z. Forrest: Existence and Uniqueness of Viscosity Solutions to the Infinity Laplacian Relative to a Class of Grushin-Type Vector Fields, Constr. Math. Anal., 6 (2) (2023), 77–89.
T. Bieske, J. Gong: The P-Laplace Equation on a Class of Grushin-Type Spaces, Proc. Amer. Math. Soc., 134 (12) (2006), 3585–3594.
A. Bellaïche: The Tangent Space in Sub-Riemannian Geometry, In Sub-Riemannian Geometry; Bellaïche, André., Risler, Jean-Jacques., Eds.; Progress in Mathematics; Birkhäuser: Basel, Switzerland. 144 (1996), 1–78.
L. Capogna, G. Giovannardi, A. Pinamonti and S. Verzellesi: The Asymptotic p-Poisson Equation as p → ∞ in Carnot-Carathéodory Spaces, Math. Ann., to appear.
M. Crandall, H. Ishii and P.-L. Lions: User’s Guide to Viscosity Solutions of Second Order Partial Differential Equations, Bull. Amer. Math. Soc., 27 (1) (1992), 1–67.
R. Jensen: Uniqueness of Lipschitz Extensions: Minimizing the Sup Norm of the Gradient, Arch. Rational. Mech. Anal., 123 (1993), 51–74.
P. Juutinen, P. Lindqvist and J. Manfredi: On the Equivalence of Viscosity Solutions and Weak Solutions for a Quasi-Linear Equation, SIAM J. Math. Anal., 33 (3) (2001), 699–717.
P. Juutinen: Minimization Problems for Lipschitz Functions via Viscosity Solutions, Ann. Acad. Sci. Fenn. Math. Diss., 115 (1998).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Modern Mathematical Methods
This work is licensed under a Creative Commons Attribution 4.0 International License.