Inequalities for the normalized determinant of positive operators in Hilbert spaces via Tominaga and Furuichi results

Authors

  • Silvestru Dragomir Victoria University, College of Engineering & Science, Melbourne City, MC 8001, Australia, University of the Witwatersrand, School of Computer Science & Applied Mathematics, Private Bag 3, Johannesburg 2050, South Africa https://orcid.org/0000-0003-2902-6805

DOI:

https://doi.org/10.64700/mmm.1

Keywords:

Positive operators, normalized determinants, inequalities

Abstract

For positive invertible operators \(A\) on a Hilbert space \(H\) and a fixed unit vector \(x\in H,\) define the normalized determinant by \(\Delta_{x}(A):=\exp \left\langle \ln Ax,x\right\rangle\). In this paper, we prove among others that, if \(0<mI\leq A\leq MI,\) then


\begin{aligned}1&\leq \exp \left\langle \ln S\left( \left( \frac{M}{m}\right) ^{\frac{1}{2} I-\frac{1}{M-m}\left\vert A-\frac{1}{2}\left( m+M\right) I\right\vert }\right) x,x\right\rangle \\ &\leq \frac{\Delta _{x}(A)}{m^{\frac{M-\left\langle Ax,x\right\rangle }{M-m}
}M^{\frac{\left\langle Ax,x\right\rangle -m}{M-m}}}\leq S\left( \frac{M}{m} \right)\end{aligned}

for \(x\in H,\) \(\left\Vert x\right\Vert =1,\) where \(S\left( \cdot \right)\) is Specht's ratio.

References

S. S. Dragomir: Inequalities for synchronous functions and applications, Constr. Math. Anal., 2 (3) (2019), 109–123.

S. S. Dragomir: Ostrowski’s Type Inequalities for the Complex Integral on Paths, Constr. Math. Anal., 3 (4) (2020), 125–138.

J. I. Fujii, Y. Seo: Determinant for positive operators, Sci. Math., 1 (1998), 153–156.

J. I. Fujii, S. Izumino and Y. Seo: Determinant for positive operators and Specht’s Theorem, Sci. Math., 1 (1998), 307–310.

S. Furuichi: Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc., 20 (2012), 46–49.

S. Hiramatsu, Y. Seo: Determinant for positive operators and Oppenheim’s inequality, J. Math. Inequal., 15 (4) (2021), 1637–1645.

J. Pecaric, T. Furuta, J. Micic-Hot and Y. Seo: Mond-Pecaric Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb (2005).

W. Specht: Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98.

M. Tominaga: Specht’s ratio in the Young inequality, Sci. Math. Jpn., 55 (2002), 583–588.

Downloads

Published

01-01-2024

How to Cite

Dragomir, S. (2024). Inequalities for the normalized determinant of positive operators in Hilbert spaces via Tominaga and Furuichi results. Modern Mathematical Methods, 2(1), 1–9. https://doi.org/10.64700/mmm.1

Issue

Section

Articles