Inequalities for the normalized determinant of positive operators in Hilbert spaces via Tominaga and Furuichi results
Keywords:
Positive operators, normalized determinants, inequalitiesAbstract
For positive invertible operators \(A\) on a Hilbert space \(H\) and a fixed unit vector \(x\in H,\) define the normalized determinant by \(\Delta_{x}(A):=\exp \left\langle \ln Ax,x\right\rangle\). In this paper, we prove among others that, if \(0<mI\leq A\leq MI,\) then
\begin{aligned}1&\leq \exp \left\langle \ln S\left( \left( \frac{M}{m}\right) ^{\frac{1}{2} I-\frac{1}{M-m}\left\vert A-\frac{1}{2}\left( m+M\right) I\right\vert }\right) x,x\right\rangle \\ &\leq \frac{\Delta _{x}(A)}{m^{\frac{M-\left\langle Ax,x\right\rangle }{M-m}
}M^{\frac{\left\langle Ax,x\right\rangle -m}{M-m}}}\leq S\left( \frac{M}{m} \right)\end{aligned}
for \(x\in H,\) \(\left\Vert x\right\Vert =1,\) where \(S\left( \cdot \right)\) is Specht's ratio.
References
S. S. Dragomir: Inequalities for synchronous functions and applications, Constr. Math. Anal., 2 (3) (2019), 109–123.
S. S. Dragomir: Ostrowski’s Type Inequalities for the Complex Integral on Paths, Constr. Math. Anal., 3 (4) (2020), 125–138.
J. I. Fujii, Y. Seo: Determinant for positive operators, Sci. Math., 1 (1998), 153–156.
J. I. Fujii, S. Izumino and Y. Seo: Determinant for positive operators and Specht’s Theorem, Sci. Math., 1 (1998), 307–310.
S. Furuichi: Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc., 20 (2012), 46–49.
S. Hiramatsu, Y. Seo: Determinant for positive operators and Oppenheim’s inequality, J. Math. Inequal., 15 (4) (2021), 1637–1645.
J. Pecaric, T. Furuta, J. Micic-Hot and Y. Seo: Mond-Pecaric Method in Operator Inequalities, Monographs in Inequalities 1, Element, Zagreb (2005).
W. Specht: Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98.
M. Tominaga: Specht’s ratio in the Young inequality, Sci. Math. Jpn., 55 (2002), 583–588.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Modern Mathematical Methods
This work is licensed under a Creative Commons Attribution 4.0 International License.