On a problem inspired by Descartes' rule of signs
Keywords:
real polynomial in one variable, hyperbolic polynomial, sign pattern, Descartes' rule of signsAbstract
We study real univariate polynomials with non-zero coefficients and with all roots real, out of which exactly two positive. The sequence of coefficients of such a polynomial begins with \(m\) positive coefficients followed by \(n\) negative followed by \(q\) positive coefficients. We consider the sequence of moduli of their roots on the positive real half-axis; all moduli are supposed distinct. We mark in this sequence the positions of the moduli of the two positive roots. For \(m=n=2\), \(n=q=2\) and \(m=q=2\), we give the exhaustive answer to the question which the positions of the two moduli of positive roots can be.
References
F. Cajori: A history of the arithmetical methods of approximation to the roots of numerical equations of one unknown quantity, Colo. Coll. Publ. Sci. Ser., 12 (7) (1910), 171–215.
D.R. Curtiss: Recent extensions of Descartes’ rule of signs, Ann. of Math., 19 (4) (1918), 251–278.
J. P. de Gua de Malves: Démonstrations de la Règle de Descartes, Pour connoître le nombre des Racines positives & négatives dans les Équations qui n’ont point de Racines imaginaires, Memoires de Mathématique et de Physique tirés des registres de l’Académie Royale des Sciences, (1741), 72–96.
R. Descartes: The Geometry of René Descartes with a facsimile of the first edition, Dover Publications, New York (1954).
J. Forsgård, V. P. Kostov and B. Shapiro: Could René Descartes have known this?, Exp. Math., 24 (4) (2015), 438–448.
J. Fourier: Sur l’usage du théorème de Descartes dans la recherche des limites des racines, Bulletin des sciences par la Société philomatique de Paris (1820) 156–165, 181–187; oeuvres 2, 291–309, Gauthier-Villars, (1890).
Y. Gati, V. P. Kostov and M. C. Tarchi, Degree 6 hyperbolic polynomials and orders of moduli, Math. Commun., to appear.
C. F. Gauss: Beweis eines algebraischen Lehrsatzes, J. Reine Angew. Math., 3 (1828), 1–4; Werke 3, 67–70, Göttingen, (1866).
J. L. W. Jensen: Recherches sur la théorie des équations, Acta Math., 36 (1913), 181–195.
V. P. Kostov: Polynomials, sign patterns and Descartes’ rule of signs, Math. Bohem. 144 (1) (2019), 39–67.
V. P. Kostov: Descartes’ rule of signs and moduli of roots, Publ. Math. Debrecen, 96 (1-2) (2020), 161–184.
V. P. Kostov: Hyperbolic polynomials and canonical sign patterns, Serdica Math. J., 46 (2020), 135–150.
V. P. Kostov: Which Sign Patterns are Canonical? Results Math., 77 (6) (2022), 1–12.
V. P. Kostov: Hyperbolic polynomials and rigid moduli orders, Publ. Math. Debrecen, 100 (1-2) (2022), 119–128.
V. P. Kostov: Moduli of roots of hyperbolic polynomials and Descartes’ rule of signs, Constructive Theory of Functions, Sozopol (2019) (Prof. Marin Drinov Academic Publishing House), Sofia (2020), 131–146.
V. P. Kostov: Univariate polynomials and the contractibility of certain sets, God. Sofii. Univ. “Sv. Kliment Okhridski.” Fac. Mat. Inform., 107 (2020), 11–35.
V. P. Kostov: On Descartes’ rule of signs for hyperbolic polynomials, Serdica Math. J., 49 (2023), 251–268.
E. Laguerre: Sur la théorie des équations numériques, Journal de Mathématiques pures et appliquées, s. 3, t. 9, 99–146 (1883); oeuvres 1, Paris (1898), Chelsea, New-York (1972), 3–47.
B. E. Meserve: Fundamental Concepts of Algebra, Dover Publications, New York (1982).
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Vladimir Kostov
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.