A survey on the distance functions
DOI:
https://doi.org/10.64700/mmm.79Keywords:
Abstract metric space, fixed point, metric spaces, perturbed metric spaces, self-mappingsAbstract
This survey aims to express different distance functions and consider their relationships, if any. Indeed, in the literature, numerous different and interesting distance functions with distinct properties have been introduced. Presenting and discussing distance functions with their original motivations can open a new window for researchers working in various disciplines. The distance functions mentioned here and the corresponding abstract spaces may offer alternative solutions for the existing problems.
References
M. Abbas, B. Ali and Y. I. Suleiman: Generalized coupled common fixed point results in partially ordered A-metric spaces, Fixed Point Theory Appl., 2015 (2015), Article ID: 64.
T. Abdeljawad, E. Karapınar and K. Ta¸s: Existence and uniqueness of common fixed point on partial metric spaces, Appl. Math. Lett., 24 (11) (2011), 1900–1904.
T. Abdeljawad, E. Karapinar: A gap in the paper ”A note on cone metric fixed point theory and its equivalence” [Nonlinear Anal. 72(5), (2010), 2259-2261], Gazi Univ. J. Sci., 24 (2) (2011), 233–234.
A. E-S. Ahmed, A. Asad and S. Omran: Fixed point theorems in quaternion-valued metric spaces, Abstr. Appl. Anal., 2014 (2014), Article ID: 258985.
R. P. Agarwal, H. Alsulami, E.Karapınar and F.Khojasteh: Remarks on some recent fixed point results in quaternionvalued metric spaces, Abstr. Appl. Anal., 2014 (2014), Article ID: 171624.
R. P. Agarwal, E. Karapinar and A. Roldan: Fixed point theorems in quasi-metric spaces and applications to multidimensional fixed point theorems on G-metric spaces, J. Nonlinear Convex Anal., 16 (9) (2015), 1787–1816.
H. H. Alsulami, E. Karapınar and H. Piri: Fixed points of modified F-contractive mappings in complete metric-like spaces, J. Funct. Spaces, 2014 (2014), Article ID: 270971.
H. H. Alsulami, S. Almezel, E. Karapınar and F. Khojasteh: A note on fixed point results in complex valued metric spaces, J. Inequal. Appl., 2015 (2015), Article ID: 33.
H. H. Alsulami, E. Karapınar and H. Piri: Fixed points of generalized F−Suzuki type contraction in complete metric-like spaces, Discrete Dyn. Nat. Soc., 2015 (2015) Article ID: 969726.
H. H. Alsulami, E. Karapinar, R. P. Agarwal and F. Khojasteh: A short note on C∗-valued contraction mappings, J. Inequal. Appl., 2016 2016: Article ID: 50.
A. Amini-Harandi, M. Fakhar: Fixed point theory in cone metric spaces obtained via the scalarization method, Comput. Math. Appl., 59 (2010), 3529–3534.
A. Azam, B. Fisher and M. Khan: Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (3) (2011), 243–253.
I. Bakhtin: The contraction mapping principle in quasi metric spaces, Func. An. Gos. Ped. Inst. Unianowsk, 30 (1989), 26–37.
A. E. Bashirov, E. M. Kurpınar and A. Ozyapici: Multiplicative calculus and its applications, J. Math. Anal. Appl., 337 (2008), 36–48.
V. Berinde: Generalized contractions in quasimetric spaces, Semin. Fixed Point Theory Cluj-Napoca, 1993 (1993), 3–9.
V. Berinde, M. Choban: Generalized distances and their associated metrics: Impact on fixed point theory, Creat. Math. Inform., 22 (1) (2013), 23–32.
M. Berzig: First results in suprametric spaces with applications, Mediterr. J. Math., 19 (2022), 1–18.
M. Berzig: Fixed point results in generalized suprametric spaces, Topol. Algebra Appl., 11 (2023), Article ID: 20230105.
M. Berzig: New classes of control functions for nonlinear contractions and applications, Adv. Theory Nonlinear Anal. Appl., 7 (2023), 29–40.
A. Branciari: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces, Publ. Math. Debrecen, 57 (2000), 31–37.
M. Bukatin, R. Kopperman, S. Matthews and H. Pajoohesh: Partial metric spaces, Amer. Math. Monthly, 116 (8) (2009), 708–718.
K. P. Chi, E. Karapinar and T. D. Thanh: A generalized contraction principle in partial metric spaces, Math. Comput. Modelling, 55 (5-6) (2012), 1673–1681.
K. P. Chi, E. Karapınar and T. D. Thanh: On the fixed point theorems for generalized weakly contractive mappings on partial metric spaces, Bull. Iranian Math. Soc., 39 (2) (2013), 369–381.
V. V. Chistyakov: Modular metric spaces, I: Basic concepts, Nonlinear Anal., 72 (2010), 1–14.
S. Cobza¸s, S. Czerwik: The completion of generalized b-metric spaces and fixed points, Fixed Point Theory, 21 (2020), 133–150.
M. Cvetkovic, E. Karapinar: On the metrizability of suprametric space, An. ¸St. Univ. Ovidius Constanta Ser. Mat., 33 (1) (2025), 201–213.
S. Czerwik: Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1), (1993), 5–11.
K. Deimling: Nonlinear functional analysis, Springer, Berlin (1985).
B. C. Dhage: Generalized metric space and mapping with fixed point, Bull. Calcutta Math. Soc., 84 (1) (1992), 329–336.
B. C. Dhage: On generalized metric spaces and topological structure II, Pure. Appl. Math. Sci, 40 (1994), 37–41.
B. C. Dhage: On continuity of mappings in D–metric spaces, Bull. Cal. Math. Soc., 86 (1994), 503–508.
B. C. Dhage: On Kanan type maps In D-metric spaces, Journal of Natural & Physical Sciences, 11 (1997), 21–38.
B. C. Dhage: Generalized D–metric spaces and multi–valued contraction mappings, An. ¸stiin¸t. Univ. Al.I. Cuza Ia¸si. Mat. (N.S), 44 (1998), 179–200.
T. Dosenovic, M. Postolache and S. Radenovic: On multiplicative metric spaces: Survey, Fixed Point Theory Appl., 2016 (2016), Article ID: 92.
W.-S. Du: A note on cone metric fixed point theory and its equivalence, Nonlinear Anal., 72 (2010), 2259–2261.
Y. Feng andW. Mao: The equivalence of cone metric spaces and metric spaces Fixed Point Theory, 11 (2) (2010), 259–264.
M. Fréchet: La notion décart et le calcul fonctionnel, C. R. Acad. Sci. Paris, 140 (1905), 772–774.
M. Fréchet: Sur quelques points du calcul fonctionnel, Thése, Paris, (1905), Rend. Circ. Mat. Palermo, 22 (1906), 1–74.
S. Gahler: 2-metriche raume und ihre topologische strukture, Math. Nachr., 26 (1963), 115–148.
S. Gahler: Zur geometric 2-metriche raume, Reevue Roumaine de Math.Pures et Appl., XI (1966), 664–669.
K. S. Ha, Y. J. Cho, S. S. Kim and M. S. Khan: Strictly convex and 2-convex 2-normed spaces, Math. Japonica, 33 (3) (1988), 375–384.
R. H. Haghi, Sh. Rezapour and N. Shahzad: Be careful on partial metric fixed point results, Topology Appl., 160 (3) (2013), 450–454.
H. Huang, S. Xu: Fixed point theorems of contractive mappings in cone b-metric spaces and applications, Fixed Point Theory Appl., 2013 (2013), Article ID: 112.
L.-G. Huang, Z. Xian: Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2) (2007), 1468–1476.
D Ili´c, V. Pavlovi´c and V. Rakocevi´c: Some new extensions of Banach’s contraction principle to partial metric space, Appl. Math. Lett., 24 (8) (2011), 1326–1330.
S. Jankovic, S. Kadelburg and S. Radenovic: On cone metric spaces, A survey, Nonlinear Anal., 74 (2011), 2591–2601.
M. Jleli, B. Samet: Remarks on G-metric spaces and fixed point theorems, Fixed Point Theory Appl., 2012 (2012), Article ID: 210.
M. Jleli, B. Samet: On Banach’s fixed-point theorem in perturbed metric spaces, J. Appl. Anal. Comput., 15 (2) (2025), 993–1001.
Z. Kadelburg, S. Radenovic and V. Rakocevic: A note on the equivalence of some metric and cone metric fixed point results, Appl. Math. Lett., 24 (3) (2011), 370–374.
E. Karapınar: Generalizations of Caristi Kirk’s theorem on partial metric spaces, Fixed Point Theory Appl., 2011 (2011), Article ID: 4.
E. Karapınar: Weak φ-contraction on partial metric spaces, J. Comput. Anal. Appl., 14 (2012), 206–210.
E. Karapınar, W.-S. Du: A note on b-cone metric and its related results: "Generalizations or equivalence?", Fixed Point Theory Appl., 2013 (2013), Article ID: 210.
E. Karapınar, F. Khojasteh: Super metric spaces, Filomat, (2022), 36 (10), 3545–3549.
E. Karapınar: An open discussion: Interpolative metric spaces, Adv. Theory Nonlinear Anal. Appl., 7 (2023), 24–27.
E.Karapinar: Recent advances on metric fixed point theory: A review, Applied and Computational Mathematics an International Journal, 22 (1) (2023), 3–30.
E. Karapinar, R. P. Agarwal: Fixed point theory in generalized metric spaces, Springer, Switzerland (2023).
E. Karapınar: On interpolative metric spaces, Filomat, 38 (22) (2024), 7729–7734.
E. Karapinar: Further discussion on the interpolative contractions, Lett. Nonlinear Anal. Appl., 2 (1) (2024), 1–8.
E. Karapinar, M.Cvetkovi´c: An inevitable note on bipolar metric spaces, AIMS Mathematics, 9 (2) (2024), 3320–3331.
E. Karapınar, R. P. Agarwal: Some fixed-point results on interpolative metric spaces, Nonlinear Anal. RealWorld Appl., 82, (2025), Article ID: 104244.
M. A. Khamsi: Remarks on cone metric spaces and fixed point theorems of contractive mappings, Fixed Point Theory Appl., 2010 (2010), Article ID: 315398.
M. A. Khamsi: Generalized metric spaces: A survey, J. Fixed Point Theory Appl., 17 (2015), 455–475.
W. Kirk, N. Shahzad: Fixed point theory in distance spaces, Springer, Switzerland (2014).
H. P. A. Künzi: Nonsymmetric distances and their associated topologies: About the origins of basic ideas in the area of asymmetric topology, Handbook of the History of General Topology, Springer, Dordrecht (2001), 853–968.
S. G. Matthews: Partial metric topology, Gen. Topol. Appl., 728 (1994), 183–197.
Z. Mustafa, B. Sims: A new approach to generalized metric spaces, J. Nonlinear Convex Anal., 7 (2006), 289–297.
S. Romaguera, M. Schellekens: Quasi-metric properties of complexity spaces, Topol. Appl., 98 (1999), 311–322.
S. Romaguera, M. Schellekens: Partial metric monoids and semivaluation spaces, Topology Appl., 153 (2005), 948–962.
S. Romaguera, O. Valero: A quantitative computational model for complete partial metric spaces via formal balls, Math. Struct. Comp. Sci., 19 (2009), 541–563.
S. Romaguera: A Kirk type characterization of completeness for partial metric spaces, Fixed Point Theory Appl., 2010 (2010), Article ID: 493298.
S. Romaguera: On the correlation between Banach contraction principle and Caristi’s fixed point theorem in b-metric spaces, Mathematics, 10 (2022), Article ID: 136.
S. Romaguera: Generalized C´ iric´’s contraction in quasi-metric spaces, Lett. Nonlinear Anal. Appl., 1 (1) (2023), 30–38.
S. Romaguera: More about basic contractions of Suzuki type on quasi-metric spaces, Lett. Nonlinear Anal. Appl., 2 (1) (2024), 9–15.
S. Romaguera, T. Pedro: The property of presymmetry for w-distances on quasi-metric spaces, Filomat, 38 (25) (2024), 8937–8945.
S.Romaguera: On protected quasi-metrics, Axioms, 13 (2024), Article ID: 158.
S. Romaguera: The relationship between modular metrics and fuzzy metrics revisited, Constr. Math. Anal., 7 (3) (2024), 90–97.
S. Romaguera: A theorem of Caristi–Kirk type for b-metric spaces, Fixed Point Theory, 25 (1) (2024), 371–378.
A. Roldan, J. Martinez-Moreno, C. Roldan and E. Karapınar: Some remarks on multidimensional fixed point theorems, Fixed Point Theory, 15 (2) (2014), 545–558.
S. Oltra, O. Valero: Banach’s fixed point theorem for partial metric spaces, Rend. Istit. Mat. Univ. Trieste, 36 (1-2) (2004), 17–26.
W. Orlicz: A note on modular spaces, I. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astron. Phys., 9 (1961), 157–162.
B. Samet, E. Karapınar, H. Aydi and V. Rajic: Discussion on some coupled fixed point theorems, Fixed Point Theory Appl., 2013 (2013), Article ID:50.
B. Samet, C. Vetro and F. Vetro: Remarks on G-metric spaces, Int. J. Anal., 2013 (2013), Article ID: 917158.
A. K. Seda: Quasi-metrics and the semantics of logic programs, Fund. Inf., 29 (1997), 97–117.
S. Sedghi, N. Shobe and A. Aliouche: A generalization of fixed point theorem in S-metric spaces, Mat. Vesnik, 64 (2012), 258–266.
S. Sedghi , N. V. Dung: Fixed point theorems on S-metric spaces, Mat. Vesnik, 66 (2014), 113–124.
S. Sedghi, M. M. Rezae, T. Dosenovic and S. Radenovi´c: Common fixed point theorems for contractive mappings satisfying Phi-maps in S-metric spaces, Acta Univ. Sapientiae, Math., 8 (2) (2016), 298-311 .
A. K. Sharma: A note on fixed points in 2-metric spaces, Indian J. Pure Appl. Math., 11 (2) (1980), 1580–1583.
O. Valero: On Banach fixed point theorems for partial metric spaces, Appl. Gen. Topol., 6 (2) (2005), 229–240.
D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces, Fixed Point Theory Appl., 2012 (2012), Article ID: 94.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Erdal Karapınar, Ravi P. Agarwal

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.