A Browder-Petryshyn coincidence point theorem
DOI:
https://doi.org/10.64700/mmm.64Keywords:
Coincidence point, matrix equation, integral equationAbstract
Let $C$ be a subset of a Hilbert space, and let $f$ and $g$ be self-maps on $C$ such that the range of $f$ is a convex, closed, and bounded subset of the range of $g$. If $f$ does not increase distances more than $g$, we demonstrate that $f$ and $g$ have coincidence points. This result generalizes a fixed point theorem of Browder-Petryshyn. As applications, we establish the existence of solutions to both matrix and integral equations.
References
R. P. Agarwal, R. K. Bisht and N. Shahzad: A comparison of various noncommuting conditions in metric fixed point theory and their applications, Fixed Point Theory and App., 2014 (2014), 1–33.
M.A. Al-Thagafi, N. Shahzad: Noncommuting selfmaps and invariant approximations, Nonlinear Anal., 64 (2006), 2778–2786.
N. Aronszajn, P. Panitchpakdi: Extensions of uniformly continuous transformations and hyperconvex metric spaces, Pacif. J. Math., 6 (1956), 405–439.
S. Banach: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales, Fundam. Math., 3 (1922), 133–181.
M. Berzig: Coincidence of relatively expansive maps, Filomat, 38 (2024), 9633–9641.
M. R. Bridson, A. Haefliger: Metric spaces of nonpositive curvature, Springer, Heidelberg (2013).
F. E. Browder, W. V. Petryshyn: Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20 (1967), 197–228.
F. E. Browder: Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci., 54 (1965), 1041–1044.
P. L. Combettes, C. V. B˘ang: Variable metric forward–backward splitting with applications to monotone inclusions in duality, Optimization, 63 (2012), 1289–1318.
D. Göhde: Zum prinzip der kontraktiven abbildung, Math. Nachr., 30 (1965), 251–258.
M. Iqbal, A. Batool, A. Hussain and H. Al-Sulami: A faster iterative scheme for common fixed points of G-nonexpansive mappings via directed graphs: application in split feasibility problems, AIMS Math., 9 (2024), 11941–11957.
G. Jungck: Commuting mappings and fixed points, Amer. Math. Monthly, 83 (1976), 261–263.
W. A. Kirk: A fixed point theorem for mappings which do not increase distances, Amer. Math. Monthly, 72 (1965), 1004–1006.
Y. E. Nesterov, M. J. Todd: Self-scaled barriers and interior-point methods for convex programming, Math. Oper. Res., 22 (1997), 1–42.
M. Owais, C. Ankush: Intricacies of a new non-expansive mapping with an application to delay differential equations with finite constant delays, J. Anal., 33 (2025), 2389–2412.
P. Pinto: Nonexpansive maps in nonlinear smooth spaces, Trans. Amer. Math. Soc., 377 (2024), 6379–6426.
Z. Shang, K. Huo, W. Liu, Y. Sun and Y. Wang: Knowledge-aided covariance estimate via geometric mean for adaptive detection, Digit. Signal Process., 97 (2020), Article ID:102616.
N. Zhang, L. Zhang, T. Liu and H. Liu: Uniqueness solution and stability results for singular fractional Riemann-Stieltjes integral boundary problems, Bull. Sci. Math., 195 (2024), Article ID:103487.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Maher Berzig

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.