Microwave remote sensing of soil moisture, above ground biomass and freeze-thaw dynamic: Modeling and empirical approaches

Authors

DOI:

https://doi.org/10.64700/mmm.54

Keywords:

Microwave remote sensing, essential climate variables, probabilistic cellular automata, neural network operators, Bayesian inversion

Abstract

Human actions have accelerated changes in global temperature, precipitation patterns, and other critical Earth systems. Key markers of these changes can be linked to the dynamic of Essential Climate Variables (ECVs) and related measures, such as Soil Moisture (SM), Above Ground Biomass (AGB), and Freeze-Thaw (FT) Dynamics. ECVs are crucial for understanding global climate changes, including hydrological and carbon cycles. Moreover, monitoring ECVs helps to validate climate models and inform policy decisions. Monitoring activities can be carried out at a global scale by using technologies like microwave remote sensing. However, other than proper technological developments, the study of ECVs requires suitable theoretical retrieval tools, which leads to the solutions of inverse problems. In this survey, we analyze and summarize the main retrieval techniques available in the literature for SM, AGB, and FT, performed on data collected with microwave remote sensing sensors. Furthermore, we present the project RETINA (REmote sensing daTa INversion with multivariate functional modeling for essential climAte variables characterization), recently funded by the European Union under the Italian National Recovery and Resilience Plan of NextGenerationEU, under the Italian Ministry of University and Research. The main goal of RETINA, is to create innovative techniques for analyzing data generated by the interaction of electromagnetic waves with the Earth’s surface, applying theoretical insights to address real-world challenges.

References

U. Abel, A. M. Acu, M. Heilmann and I. Ra¸sa: On some Cauchy problems and positive linear operators, Mediterr. J. Math., 22 (1) (2024), 1–19.

A. M. Acu, M. Heilmann, I. Ra¸sa and A. Seserman: Poisson approximation to the binomial distribution: extensions to the convergence of positive operators, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math., 117 (4) (2023), 1–13.

A. M. Acu, I. Ra¸sa and A. Seserman: Positive linear operators and exponential functions, Math. Found. Comput., 6 (3) (2024), 313–319.

A. M. Acu, I. Rasa and F. Sofonea: Composition of some positive linear integral operators, Demonstr. Math., 57 (1) (2024), Article ID: 20240018.

G. Alefeld, G. Mayer: Interval analysis: theory and applications, J. Comput. Appl. Math., 121 (1-2) (2000), 421–464.

I. Ali, F. Greifeneder, J. Stamenkovic, M. Neumann and C. Notarnicola: Review of machine learning approaches for biomass and soil moisture retrievals from remote sensing data, Remote Sens., 7 (12) (2015), 16398–16421.

M. M. Al-Khaldi, J. T. Johnson, A. J. O’Brien, A. Balenzano and F. Mattia: Time-Series Retrieval of Soil Moisture Using CYGNSS, IEEE Trans. Geosci. Remote Sensing, 57 (7) (2019), 4322–4331.

J. Askne, P. Dammert, L. M. H. Ulander and G. Smith: C-band repeat-pass interferometric SAR observations of the forest, IEEE Trans. Geosci. Remote Sensing, 35 (1997), 25–35.

N. Baghdadi, C. King, A. Chanzy and J. P. Wigneron: An empirical calibration of the integral equation model based on SAR data, soil moisture, and surface roughness measurement over bare soils, Int. J. Remote Sens., 23 (20) (2002), 4325–4340.

E. B’eriaux, F. Waldner, F. Collienne, P. Bogaert and P. Defourny: Maize leaf area index retrieval from synthetic quad pol sar time series using the water cloud model, Remote Sens., 7 (12) (2015), 16204–16225.

M. Burgin, D. Clewley, R. M. Lucas and M. Moghaddam: A generalized radar backscattering model based on wave theory for multilayer multispecies vegetation, IEEE Trans. Geosc. Remote Sens., 49 (12) (2011), 4832–4845.

R. Carminati, J. C. Schotland: Principles of Scattering and Transport of Light, Cambridge University Press, (2021).

H. Carreno-Luengo, G. Luzi and M. Crosetto: Sensitivity of CyGNSS Bistatic Reflectivity and SMAP Microwave Radiometry Brightness Temperature to Geophysical Parameters Over Land Surfaces, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 12 (1) (2019), 107–122.

S. Chandrasekhar: Radiative Transfer, Dover Books on Physics, Dover Publications, New York (2013).

K. Chen, S. Tan: A Multiple-Scattering Microwave Radiative Transfer Model for Land Emission with Vertically Heterogeneous Vegetation Coverage, IEEE Trans. Geosc. Remote Sens., 62 (2024), 1–14.

L. Coroianu, D. Costarelli, M. Natale and A. Pantis: The approximation capabilities of Durrmeyer-type neural network operators, J. Appl. Math. Comput., 70 (2024), 4581–4599.

D. Costarelli: Density results by deep neural network operators with integer weights, Math. Modell. Anal., 27 (2022), 547–560.

D. Costarelli, M. Piconi: Asymptotic analysis for neural network operators employing the Hardy-Littlewood maximal inequality, Mediterr. J. Math., 21 (2024), Article ID: 199.

D. Costarelli, R. Spigler: Multivariate neural network operators with sigmoidal activation functions, Neural Networks, 48 (2013), 72–77.

G. Cybenko: Approximation by superpositions of a sigmoidal function, Math. Control Signals Systems, 2 (1989), 303–314.

P. Dai Pra, B. Scoppola and E. Scoppola: Sampling from a Gibbs measure with pair interaction by means of PCA, J. Stat. Phys., 149 (2012), 722–737.

A. Das, R. Kumar and P. Rosen: NISAR mission overview and updates on ISRO science plan, IEEE Inter. India Geosc. Remote Sens. Symposium (InGARSS), (2021), 269–272.

C. Derksen, X. Xu, R. S. Dunbar, A. Colliander, Y. Kim, J. S. Kimball, T. A. Black, E. Euskirchen, A. Langlois, M. M. Loranty, P. Marsh, K. Rautiainen, A. Roy, A. Royer and J. Stephens: Retrieving landscape freeze/thaw state from Soil Moisture Active Passive (SMAP) radar and radiometer measurements, Remote Sens. Environ., 194 (2017), 48–62.

P. C. Dubois, J. van Zyl and T. Engman: Measuring soil moisture with imaging radars, IEEE Trans. Geosc. Remote Sens., 33 (4) (1995), 915–926.

D. Entekhabi, E. G. Njoku, P. E. O’Neill, K. H. Kellogg, W. T. Crow, W. N. Edelstein, J. K. Entin, S. D. Goodman, T. J. Jackson, J. Johnson et al.: The soil moisture active passive (SMAP) mission, Proc. IEEE, 98 (5) (2010), 704–716.

A. K. Fung, Z. Li and K. S. Chen: Backscattering from a randomly rough dielectric surface, IEEE Trans. Geosc. Remote Sens., 30 (2) (1992), 356–369.

L. Giustarini, R. Hostache, P. Matgen, G. J. P. Schumann, P. D. Bates and D. C. Mason: A change detection approach to flood mapping in urban areas using TerraSAR-X, IEEE Trans. Geosc. Remote Sens., 51 (4) (2012), 2417–2430.

S. Goldstein, R. Kuik, J. L. Lebowitz and C. Maes: From PCA’s to equilibrium systems and back, Comm. Math. Phys., 125 (1) (1989), 71–79.

M. Goulden, S. Wofsy, J. Harden, S. Trumbore, P. Crill, S. Gower, T. Fries, B. Daube, S.-M. Fan, D. J. Sutton, A. Bazzaz and J. Munger: Sensitivity of Boreal forest carbon balance to soil thaw, Science, 279 (1998), 214–217.

M. C. Hansen, P. V. Potapov, R. Moore, M. Hancher, S. A. Turubanova, A. Tyukavina, D. Thau, S. V. Stehman, S. J. Goetz, T. R. Loveland, A. Kommareddy, A. Egorov, L. Chini, C. O. Justice and J. R. G. Townshend: High-resolution global maps of 21st-century forest cover change, Science, 342 (6160) (2013), 850–853.

W. K. Hastings: Monte Carlo sampling methods using Markov chains and their applications, Biometrika, 57 (1) (1970), 97–109.

E. Hegazi, L. Yang and J. Huang: A convolutional neural network algorithm for soil moisture prediction from Sentinel-1 SAR images, Remote Sens., 13 (24) (2021), Article ID: 4964.

P. Howlett, K. Avrachenkov, C. Pearce and V. Ejov: Inversion of analytically perturbed linear operators that are singular at the origin, J. Math. Anal. Appl., 353 (1) (2009), 68–84.

M. Isopi, B. Scoppola and A. Troiani: On some features of quadratic unconstrained binary optimization with random coefficients, Boll. Unione Mat. Ital., 18 (2024), 615–635.

Y. H. Kerr, P. Waldteufel, J.-P. Wigneron, S. Delwart, F. Cabot, J. Boutin, M.-J. Escorihuela, J. Font, N. Reul, C. Gruhier, S. E. Juglea, M. R. Drinkwater, A. Hahne, M. Martín-Neira and S. Mecklenburg: The SMOS mission: New tool for monitoring key elements of the global water cycle, Proc. IEEE, 98 (5) (2010), 666–687.

L. Karthikeyan, M. Pan, N. Wanders, D. N. Kumar and E. F. Wood: Four decades of microwave satellite soil moisture observations: Part 1. A review of retrieval algorithms, Adv. Water Resour., 109 (2017), 106–120.

J. S. Kimball, K. C. McDonald, S. Frolking and S. W. Running: Radar remote sensing of the spring thaw transition across a boreal landscape, Remote Sens. Environ., 89 (2) (2004), 163–175.

M. Kurum, R. H. Lang, P. E. O’Neill, A. T. Joseph, T. J. Jackson and M. H. Cosh: A first-order radiative transfer model for microwave radiometry of forest canopies at L-Band, IEEE Trans. Geosci. Remote Sens., 49 (9) (2011), 3167–3179.

L. Kurvonen, J. Pulliainen and M. Hallikainen: Retrieval of biomass in boreal forests from multitemporal ERS-1 and JERS-1 SAR images, IEEE Trans. Geosci. Remote Sens., 37 (1) (1999), 198–205.

R. H. Lang: Electromagnetic backscattering from a sparse distribution of lossy dielectric scatterers, Radio Sci., 16 (1) (1981), 15–30.

R. H. Lang, A. Sharma and M. Cosh: Scattering from a layer of vegetation: Enhancement effects, 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, (2017), 1419–1421.

J. Li, S. Wang: Using SAR-derived vegetation descriptors in a water cloud model to improve soil moisture retrieval, Remote Sens., 10 (9) (2018), Article ID: 1370.

J. Liang, D. Liu: A local thresholding approach to flood water delineation using Sentinel-1 SAR imagery, ISPRS J. Photogrammetry and Remote Sens., 159 (2020), 53–62.

J. Lemmetyinen, J. Pulliainen, A. Rees, A. Kontu, Y. Qiu and C. Derksen: Multiple-Layer Adaptation of HUT Snow Emission Model: Comparison With Experimental Data, IEEE Trans. Geosci. Remote Sens., 48 (7) (2010), 2781–2794.

D. Long, F. Ulaby: Microwave radar and radiometric remote sensing, Artech House, (2015).

R. M. Lucas, N. Cronin, A. Lee, M. Moghaddam, C. Witte and P. Tickle: Empirical relationships between AIRSAR backscatter and LiDAR-derived forest biomass, Queensland, Australia, Remote Sens. Environ., 100 (3) (2006), 407–425.

G. S. Nijaguna, D. R. Manjunath, M. Abouhawwash, S. S. Askar, D. K. Basha and J. Sengupta: Deep learning-based improved WCM technique for soil moisture retrieval with satellite images, Remote Sens., 15 (8) (2023).

B. Panneer Selvam, H. Laudon, F. Guillemette and M. Berggren: Influence of soil frost on the character and degradability of dissolved organic carbon in boreal forest soils, Journal of Geophysical Research: Biogeosciences, 121 (3) (2016), 829–840.

C. L. Parkinson: Aqua: An Earth-observing satellite mission to examine water and other climate variables, IEEE Trans. Geosci. Remote Sens., 41 (2) (2003), 173–183.

S. Quegan, T. Le Toan, J. Chave, J. Dall, J.-F. Exbrayat, D. H. T. Minh, M. Lomas, M. M. D’alessandro, P. Paillou, K. Papathanassiou et al.: The European Space Agency Biomass Mission: Measuring forest above-ground biomass from space, Remote Sens. Environ., 227 (2019), 44–60.

C. S. Ruf, C. Chew, T. Lang, M. G. Morris, K. Nave, A. Ridley and R. Balasubramaniam: A new paradigm in Earth environmental monitoring with the CYGNSS small satellite constellation, Sci. Rep., 8 (1) (2018), 1–13, Article ID: 8782.

N. Rodriguez-Alvarez, A. Camps, M. Vall-llossera, X. Bosch-Lluis, A. Monerris, I. Ramos-Perez, E. Valencia, J. F. Marchan-Hernandez, J. Martinez-Fernandez, G. Baroncini-Turricchia, C. Pérez-Gutiérrez and N. Sánchez: Land geophysical parameters retrieval using the interference pattern GNSS-R technique, IEEE Trans. Geosci. Remote Sens., 49 (1) (2010), 71–84.

M. Santoro, J. Askne, G. Smith and J. E. S. Fransson: Stem volume retrieval in boreal forests from ERS-1/2 interferometry, Remote Sens. Environ., 81 (1) (2002), 19–35.

Y. Oh, K. Sarabandi and F. T. Ulaby: An empirical model and an inversion technique for radar scattering from bare soil surfaces, IEEE Trans. Geosci. Remote Sens., 30 (2) (1992), 370–381.

S. I. Seneviratne, T. Corti, E. L. Davin, M. Hirschi, E. B. Jaeger, I. Lehner, B. Orlowsky and A. J. Teuling: Investigating soil moisture–climate interactions in a changing climate: A review, Earth-Sci. Rev., 99 (3) (2010), 125–161.

R. Torres, P. Snoeij, D. Geudtner, D. Bibby, M. Davidson, E. Attema, P. Potin, B. Rommen, N. Floury, M. Brown et al.: GMES Sentinel-1 Mission, Remote Sens. Environ., 120 (2012), 9–24.

F. T. Ulaby, K. Sarabandi, K. McDonald, M. W. Whitt and M. C. Dobson: Michigan microwave canopy scattering model, Int. J. Remote Sens., 11 (1990), 1223–1253.

M. J. Unwin, N. Pierdicca, E. Cardellach, K. Rautiainen, G. Foti, P. Blunt, L. Guerriero, E. Santi and M. Tossaint: An introduction to the HydroGNSS GNSS reflectometry remote sensing mission, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 14 (2021), 6987–6999.

J. R. Wang, B. J. Choudhury: Remote sensing of soil moisture content, over bare field at 1.4 GHz frequency, Journal of Geophysical Research: Oceans, 86 (C6) (1981), 5277–5282.

D. J. Wingham: CryoSat: A mission to determine the fluctuations in Earth’s land and marine ice fields, Adv. Space Research, 37 (4) (2006), 841–871.

Downloads

Published

29-07-2025

How to Cite

Angeloni, L., Bloisi, D. D., Burghignoli, P., Comite, D., Costarelli, D., Piconi, M., … Veneri, A. (2025). Microwave remote sensing of soil moisture, above ground biomass and freeze-thaw dynamic: Modeling and empirical approaches. Modern Mathematical Methods, 3(2), 57–71. https://doi.org/10.64700/mmm.54

Issue

Section

Articles