Viscosity approximation involving generalized cocoercive mapping in Hadamard space

Authors

DOI:

https://doi.org/10.64700/mmm.46

Keywords:

Viscosity approximation, Generalized demimetric, Generalized cocoercive

Abstract

In this paper, we introduce a new type of mapping which we term generalized cocoercive mapping in a \(CAT(0)\) space, we prove some properties of the new mapping, we also construct implicit viscosity type algorithm for approximating common solution of fixed point of \((f, g)\)-generalized \(\kappa\)-strictly pseudononspreading mapping, quasinonexpansive mapping, family of \(\theta_i\)-generalized demimetric mapping, mixed equilibrium problem and variational inequality problem involving the new mapping. Strong convergence is obtained under some mild conditions and without considering cases as in many results in the literature. Our results improved and generalized many results in the literature and our technique of proof is new and of independent interest.

References

B. Ali, A. B. Nuhu: Iterative algorithms involving generalized inverse strongly monotone mapping, Ann. Univ. Ferrara, 71 (2025), Article ID: 20.

S. Alizadeh, H. Dehghan and F.Moradlou: Δ-convergence theorem for inverse strongly monotone mappings in CAT(0) spaces, Fixed Point Theory, 19 (1) (2018), 45–56.

K. O. Aremu, C. Izuchukwu, G. C. Ugwunnadi and O. T. Mewomo: On the proximal point algorithm and demimetric mapping in CAT(0) spaces, Demonstr. Math., 51 (1) (2018), 277–294.

I. D. Berg, I. G. Nicolaev: Quasilinearization and curvature of Alexandrov spaces, Geom. Dedicata, 133 (2008), 195–218.

M. Bianchi, S. Schaible: Generalized monotone bifunctions and equilibrium problems, J. Optim. Theory Appl., 90 (1996), 31–43.

C. E. Chidume, A. U. Bello and P. Ndambonwe: Strong and Δ-convergence theorems for common fixed points of a finite family of multivalued demicontractive mappings in CAT(0) spaces, Abstr. Appl. Anal., 2014 (2014), Article ID: 805168.

H. Dehghan, J. Rooin: A characterization of metric projection in CAT(0) spaces, International Conference on Functional Equation. Geometric Functions and Applications (ICFGA 2012), Tabriz (Iran) (2012) 41–43.

S. Dhompongsa, W. A. Kirk and B. Panyanak: Nonexpansive set-valued mappings in metric and Banach spaces, J. Nonlinear Convex Anal., 8 (2007), 35–45.

S. Dhompongsa, B. Panyanak: On Δ-convergence theorems in CAT(0) spaces, Comput. Math. Appl., 56 (2008), 2572–2579.

K. Goebel, S. Reich: Uniform convexity, hyperbolic geometry and nonexpansive mappings, Marcel Dekker, New York (1984).

M. Gromov: Metric structures for Riemannian and non-Riemannian spaces, Birkhauser, Boston (1999).

C. Izuchukwu, K. O. Aremu, A. A. Mebawondu and O. T. Mewomo: A viscosity iterative technique for equilibrium and fixed point problems in a Hadamard space, Appl. Gen Topol., 20 (1) (2019), 193–210.

C. Izuchukwu, K. O. Aremu, O. K. Oyewole, O. T. Mewomo and S. H. Khan: On mixed equilibrium problems in Hadamard spaces, J. Math., 2019 (2019), Article ID: 3210649.

S. Jain, L. B. Jain: On Banach contraction principle in a cone metric space, J. Nonlinear Sci. Appl., 5 (2012), 252–258.

B. A. Kakavandi, M. Amini: Duality and subdifferential for convex functions on complete CAT(0) metric spaces, Nonlinear Anal., 73 (2010),3450–3455, 141 (3) (2013), 1029–1039.

T. Kawasaki, W. Takahashi: A strong convergence theorem for countable families of nonlinear nonself mappings in a Hilbert spaces with applications, J. Nonlinear Convex Anal., 19 (2018), 543–560.

K. S. Kim: Some convergence theorems for contractive type mappings in CAT(0) spaces, Abstr. Appl. Anal., 2013 (2013), Article ID: 381715.

W. A. Kirk: Geometry and fixed point theory II, International Conference on Fixed Point Theory and Applications, Yokohama Publishers, Yokohama (2004), 113–142.

W. A. Kirk, B. Panyanak: A concept of convergence in geodesic spaces, Nonlinear Anal., 68 (2008), 3689–3696.

H. Komiya, W. Takahashi: Strong convergence theorem for an infinite family of demimetric mapping in a Hilbert space, J. Convex Anal., 24 (4) (2017), 1357–1373.

T. C. Lim: Remarks on some fixed point theorems, Proc. Amer. Math. Soc., 60 (1976) 179–182.

J. Merryfield: Generalization of the Banach contraction principle, J. Math. Anal. Appl., 273 (2002), 112–120.

G. N. Ogwo, C. Izuchukwu, K. O. Aremu and O. T. Mewomo: On generalized demimetric mappings and monotone operators in Hadamard spaces, Demonstr. Math., 53 (2020), 95–111.

U. A. Osisiogu, F. L. Adum and T. E. Efor: Strong convergence results for variational inequality problem in CAT(0) spaces, Adv. Nonlinear Var. Inequalities, 23 (1) (2020), 84–101.

R. S. Palais: A simple proof of the Banach contraction principle, J. Fixed Point Theory Appl., 2 (2007), 221–223.

S. Reich, I. Shafrir: Nonexpansive iterations in hyperbolic spaces, Nonlinear Anal., 15 (1990), 537–558.

A. Signorini: Topics in nonlinear and semi-linear elasticity, Rend. Mat. Appl., V. Ser., 18 (1959), 95–139.

G. Stampacchia: Variational inequalities in: Theory and application of monotone operators, Proceedings of the NATO Advanced Study Institute, Venice (Italy) (1968), 102–192.

J. Tang: Viscosity approximation methods for a family of nonexpansive mappings in CAT(0) spaces, Abstr. Appl. Anal., 2014 (2014), Article ID: 389804.

W. Takahashi: The split common fixed point problem and the shrinking projection in Banach spaces, J. Convex Anal., 24 (3) (2017), 1015–1028.

W. Takahashi: Strong convergence theorem for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, J. Indust. Appl. Math., 34 (1) (2017), 41–57.

W. Takahashi, C. F. Wen and J. C. Yao: The shrinking projection method for a finite family of demimetric mappings with variational inequality problems in a Hilbert space, Fixed Point Theory, 19 (1) (2017), 407–419.

W. Takahashi: The split common fixed point problem for generalized demimetric mappings in two Banach spaces, Optim., 68 (1) (2019), 411–427.

G. C. Ugwunnadi, C. Izuchukwu and O. T. Mewomo: On nonspreading-type mappings in Hadamard spaces, Bol. Soc. Paran. Mat, 39 (5) (2021), 175–197.

G. C. Ugwunnadi, C. C. Okeke, A. R. Khan and L. O. Jolaoso: Strong convergence results for variational Inequality and equilibrium problem in Hadamard spaces, Kragujevac J. Maths., 47 (6) (2023), 825–845.

H. K. Xu: Iterative algorithms for nonlinear operators, J. London Math. Soc., 66 (2002), 240–256.

Downloads

Published

13-12-2025

How to Cite

Ali, B., & Nuhu, A. B. (2025). Viscosity approximation involving generalized cocoercive mapping in Hadamard space. Modern Mathematical Methods, 3(3), 185–205. https://doi.org/10.64700/mmm.46

Issue

Section

Articles