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acarozlem@ymail.com

Editorial Board

Costanza Conti
DIEF University of Florence, Italy

Danilo Costarelli
University of Perugia, Italy

Hendrik Van Maldeghem
Ghent University, Belgium

Francisco Marcellán
University Carlos III de Madrid, Spain

Stefano De Marchi
University of Padova, Italy

Alain Miranville
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Research Article

On branched continued fraction expansions of hypergeometric
functions FM and their ratios

IVAN NYZHNYK , ROMAN DMYTRYSHYN* , AND TAMARA ANTONOVA

ABSTRACT. The paper investigates the problem of constructing branched continued fraction expansions of hyper-
geometric functions FM (a1, a2, b1, b2; a1, c2; z) and their ratios. Recurrence relations of the hypergeometric function
FM are established, which provide the construction of formal branched continued fractions with simple structures,
the elements of which are polynomials in the variables z1, z2, z3. To construct the expansions, a method of based on
the so-called complete group of ratios of hypergeometric functions was used, which is a generalization of the classical
Gauss method.

Keywords: Hypergeometric function, recurrence relation, branched continued fraction, approximation by rational
functions.

2020 Mathematics Subject Classification: 33C65, 30B99, 41A20.

1. INTRODUCTION

Recently, there has been increased interest in studying of the Lauricella-Saran family of hy-
pergeometric functions [6, 9, 15, 21]. This is certainly due to the development of existing and
new progressive methods of studying them. On the other hand, the diversity and importance
of the practical applications of these functions in various fields of science and engineering have
great importance [13, 19, 23, 25, 26].

The paper considers the hypergeometric function FM , defined as follows [24]:

FM (a1, a2, b1, b2; c1, c2; z) =

+∞∑
p,q,r=0

(a1)p(a2)q+r(b1)p+r(b2)q
(c1)p(c2)q+r

zp1z
q
2z

r
3

p!q!r!
,

where a1, a2, b1, b2, c1, c2 ∈ C herewith c1, c2 ̸∈ {0,−1,−2, . . .}, z = (z1, z2, z3) ∈ C3, (·)k is the
Pochhammer symbol.

It is shown that representations of special functions in the form of branched continued frac-
tions are their efficient rational approximations [7, 8, 10, 11, 12, 16, 17, 18].

The main goal of the paper is to construct formal branched continued fractional expansions
of the hypergeometric functions FM and their relations in the case when a1 = c1. Here we
develop a method for constructing expansions using the so-called complete group of ratios of
hypergeometric functions [1, 2, 22], which is a generalization of the classical Gauss method [14].
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2. RECURRENCE RELATIONS OF HYPERGEOMETRIC FUNCTION FM

We begin by establishing recurrence relations of hypergeometric function

FM (a1, a2, b1, b2; a1, c2; z) =

∞∑
p,q,r=0

(a1)p(a2)q+r(b1)p+r(b2)q
(a1)p(c2)q+r

zp1z
q
2z

r
3

p!q!r!

=

∞∑
p,q,r=0

(a2)q+r(b1)p+r(b2)q
(c2)q+r

zp1z
q
2z

r
3

p!q!r!
,

where a1, a2, b1, b2, c2 ∈ C herewith a1, c2 ̸∈ {0,−1,−2, . . .}, that would provide the construc-
tion of formal branched continued fractions with the simplest structures and whose elements
would be polynomials in the variables z1, z2, z3. The following lemma is true.

Lemma 2.1. The following recurrence relations are true:

FM (a1, a2, b1, b2; a1, c2; z) = FM (a1, a2 + 1, b1, b2; a1, c2; z)

− b2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

− b1
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z),(2.1)

FM (a1, a2, b1, b2; a1, c2; z) = (1− z1)FM (a1, a2, b1 + 1, b2; a1, c2; z)

− a2
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z),(2.2)

FM (a1, a2, b1, b2; a1, c2; z) = FM (a1, a2, b1, b2 + 1; a1, c2; z)

− a2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z),(2.3)

FM (a1, a2, b1, b2; a1, c2; z) = FM (a1, a2, b1, b2; a1, c2 + 1; z)

+
a2b2

c2(c2 + 1)
z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 2; z)

+
a2b1

c2(c2 + 1)
z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 2; z),(2.4)

where a1, a2, b1, b2, c2 ∈ C herewith a1, c2 ̸∈ {0,−1,−2, . . .}.

Proof. Let us show the validity of the relation (2.1). We have

FM (a1, a2, b1, b2; a1, c2; z)− FM (a1, a2 + 1, b1, b2; a1, c2; z)

=

∞∑
p,q,r=0

(b1)p+r(b2)q
(c2)q+r

((a2)q+r − (a2 + 1)q+r)
zp1z

q
2z

r
3

p!q!r!

=
∑

p≥0,q≥1,r=0

(b1)p+r(a2 + 1)q+r−1(b2)q
(c2)q+r

(a2 − a2 − q)
zp1z

q
2z

r
3

p!q!r!

+
∑

p≥0,q=0,r≥1

(b1)p+r(a2 + 1)q+r−1(b2)q
(c2)q+r

(a2 − a2 − r)
zp1z

q
2z

r
3

p!q!r!

+
∑

p≥0,q≥1,r≥1

(b1)p+r(a2 + 1)q+r−1(b2)q
(c2)q+r

(a2 − a2 − q − r)
zp1z

q
2z

r
3

p!q!r!
.
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Then,

FM (a1, a2, b1, b2; a1, c2; z)− FM (a1, a2 + 1, b1, b2; a1, c2; z)

=−
∑

p≥0,q≥1,r≥0

(b1)p+r(a2 + 1)q+r−1(b2)q
(c2)q+r

zp1z
q
2z

r
3

p!(q − 1)!r!

−
∑

p≥0,q≥0,r≥1

(b1)p+r(a2 + 1)q+r−1(b2 + 1)q−1

(c2)q+r−1

zp1z
q
2z

r
3

p!q!(r − 1)!

=− b2
c2

z2
∑

p≥0,q≥1,r≥0

(b1)p+r(a2 + 1)q+r−1(b2 + 1)q−1

(c2 + 1)q+r−1

zp1z
q−1
2 zr3

p!(q − 1)!r!

−b1
c2

z3
∑

p≥0,q≥0,r≥1

(b1 + 1)p+r−1(a2 + 1)q+r−1(b2)q
(c2 + 1)q+r−1

zp1z
q
2z

r−1
3

p!q!(r − 1)!

=− b2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

−b1
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z).

The recurrence relation (2.1) has been proved. Similarly, we prove the relation (2.2). Indeed,
we receive

FM (a1, a2, b1, b2; a1, c2; z)− FM (a1, a2, b1 + 1, b2; a1, c2; z)

=

∞∑
p,q,r=0

(a2)q+r(b2)q
(c2)q+r

((b1)p+r − (b1 + 1)p+r)
zp1z

q
2z

r
3

p!q!r!

=
∑

q≥0,p≥1,r=0

(a2)q+r(b1 + 1)p+r−1(b2)q
(c2)q+r

(b1 − b1 − p)
zp1z

q
2z

r
3

p!q!r!

+
∑

q≥0,p=0,r≥1

(a2)q+r(b1 + 1)p+r−1(b2)q
(c2)q+r

(b1 − b1 − r)
zp1z

q
2z

r
3

p!q!r!

+
∑

q≥0,p≥1,r≥1

(a2)q+r(b1 + 1)p+r−1(b2)q
(c2)q+r

(b1 − b1 − p− r)
zp1z

q
2z

r
3

p!q!r!

=−
∑

q≥0,p≥1,r≥0

(a2)q+r(b1)p+r−1(b2)q
(c2)q+r

zp1z
q
2z

r
3

(p− 1)!q!r!

−
∑

q≥0,p≥0,r≥1

(a2)q+r(b1)p+r−1(b2)q
(c2)q+r−1

zp1z
q
2z

r
3

p!q!(r − 1)!

=− z1
∑

q≥0,p≥1,r≥0

(b1 + 1)p+r−1(a2)q+r(b2)q
(c2)q+r

zp−1
1 zq2z

r
3

(p− 1)!q!r!

−a2
c2

z3
∑

p≥0,q≥0,r≥1

(b1)p+r−1(a2 + 1)q+r−1(b2)q
(c2 + 1)q+r−1

zp1z
q
2z

r−1
3

p!q!(r − 1)!

=− z1FM (a1, a2, b1 + 1, b2; a1, c2; z)

−a2
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z).
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Next, we obtain

FM (a1, a2, b1, b2; a1, c2; z)− FM (a1, a2, b1, b2 + 1; a1, c2; z)

=

∞∑
p,q,r=0

(a2)q+r(b1)p+r

(c2)q+r
((b2)q − (b2 + 1)q)

zp1z
q
2z

r
3

p!q!r!

=
∑

p≥0,q≥1,r≥0

(a2)q+r(b1)p+r(b2 + 1)q−1

(c2)q+r
(b2 − b2 − q)

zp1z
q
2z

r
3

p!q!r!

FM (a1, a2, b1, b2; a1, c2; z)− FM (a1, a2, b1, b2 + 1; a1, c2; z)

=− a2
c2

z2
∑

p≥0,q≥1,r≥0

(a2 + 1)q+r−1(b1)p+r(b2 + 1)q−1

(c2 + 1)q+r−1

zp1z
q−1
2 zr3

p!(q − 1)!r!

=− a2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z).

The relation (2.3) has been proved. Finally, we have

FM (a1, a2, b1, b2; a1, c2; z)− FM (a1, a2, b1, b2; a1, c2 + 1; z)

=
∑

p≥0,q≥1,r=0

(a2)q+r(b1)p+r(b2)q
(c+ 1)q+r−1

(
1

c2
− 1

c2 + q

)
zp1z

q
2z

r
3

p!q!r!

+
∑

p≥0,q=0,r≥1

(a2)q+r(b1)p+r(b2)q
(c+ 1)q+r−1

(
1

c2
− 1

c2 + r

)
zp1z

q
2z

r
3

p!q!r!

+
∑

p≥0,q≥1,r≥1

(a2)q+r(b1)p+r(b2)q
(c+ 1)q+r−1

(
1

c2
− 1

c2 + q + r

)
zp1z

q
2z

r
3

p!q!r!

=
∑

p≥0,q≥1,r=0

(a2)q+r(b1)p+r(b2)q
c2(c2 + 1)q+r

zp1z
q
2z

r
3

p!(q − 1)!r!

+
∑

p≥0,q=0,r≥1

(a2)q+r(b1)p+r(b2)q
c2(c2 + 1)q+r

zp1z
q
2z

r
3

p!q!(r − 1)!

+
∑

p≥0,q≥1,r≥1

(a2)q+r(b1)p+r(b2)q
c2(c2 + 1)q+r

zp1z
q
2z

r
3

p!(q − 1)!r!

+
∑

p≥0,q≥1,r≥1

(a2)q+r(b1)p+r(b2)q
c2(c2 + 1)q+r

zp1z
q
2z

r
3

p!q!(r − 1)!

=
a2b2

c2(c2 + 1)
z2

∑
p≥0,q≥1,r≥0

(a2 + 1)q+r−1(b1)p+r(b2 + 1)q−1

(c2 + 2)q+r−1

zp1z
q−1
2 zr3

p!(q − 1)!r!

+
a2b1

c2(c2 + 1)
z3

∑
p≥0,q≥0,r≥1

(a2 + 1)q+r−1(b1 + 1)p+r−1(b2)q
(c2 + 2)q+r−1

zp1z
q
2z

r−1
3

p!q!(r − 1)!

=
a2b2

c2(c2 + 1)
z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 2; z)

+
a2b1

c2(c2 + 1)
z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 2; z)

that had to be proved. □
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Lemma 2.2. The following four-term recurrence relations are true:

FM (a1, a2, b1, b2; a1, c2; z)

=

(
(1− z1)

(
1− b2

c2
z2

)
− a2 + b1 + 1

c2
z3

)
FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

+
(a2 + 1)(b1 + 1)

c2(c2 + 1)
(1− z1 − z3)z3FM (a1, a2 + 2, b1 + 2, b2; a1, c2 + 2; z)

+
(a2 + 1)b2
c2(c2 + 1)

(1− z1)z2(1− z2)FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)(2.5)

and for z1 ̸= 1,

(1− z1)FM (a1, a2, b1, b2; a1, c2; z)

=

(
(1− z1)

(
1− a2 + b2 + 1

c2
z2

)
− b1

c2
z3

)
FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

+
(a2 + 1)(b2 + 1)

c2(c2 + 1)
(1− z1)z2(1− z2)FM (a1, a2 + 2, b1, b2 + 2; a1, c2 + 2; z)

+
(a2 + 1)b1
c2(c2 + 1)

(1− z1 − z3)z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z),(2.6)

where a1, a2, b1, b2, c2 ∈ C herewith a1, c2 ̸∈ {0,−1,−2, . . .}.

Proof. Using the relation (2.1), (2.2), and (2.4), we have

FM (a1, a2, b1, b2; a1, c2; z) = FM (a1, a2 + 1, b1, b2; a1, c2; z)

−b2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)− b1
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

=(1− z1)FM (a1, a2 + 1, b1 + 1, b2; a1, c2; z)

−a2 + 1

c2
z3FM (a1, a2 + 2, b1 + 1, b2; a1, c2 + 1; z)

−b2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)− b1
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

=(1− z1)FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

+
(a2 + 1)(b1 + 1)

c2(c2 + 1)
(1− z1)z3FM (a1, a2 + 2, b1 + 2, b2; a1, c2 + 2; z)

+
(a2 + 1)b2
c2(c2 + 1)

(1− z1)z2FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

−a2 + 1

c2
z3FM (a1, a2 + 2, b1 + 1, b2; a1, c2 + 1; z)

−b2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)− b1
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z).
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Next, applying (2.1)–(2.3), we obtain

FM (a1, a2, b1, b2; a1, c2; z) =

(
1− z1 −

b1
c2

z3

)
FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

+
(a2 + 1)(b1 + 1)

c2(c2 + 1)
(1− z1)z3FM (a1, a2 + 2, b1 + 2, b2; a1, c2 + 2; z)

+
(a2 + 1)b2
c2(c2 + 1)

(1− z1)z2FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

−a2 + 1

c2
z3

(
FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

+
b1 + 1

c2 + 1
z3FM (a1, a2 + 2, b1 + 2, b2; a1, c2 + 2; z)

+
b2

c2 + 1
z2FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

)
−b2
c2

z2

(
(1− z1)FM (a1, a2 + 1, b1 + 1, b2 + 1; a1, c2 + 1; z)

−a2 + 1

c2 + 1
z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

)
=

(
1− z1 −

a2 + b1 + 1

c2
z3

)
FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

+
(a2 + 1)(b1 + 1)

c2(c2 + 1)
(1− z1)z3FM (a1, a2 + 2, b1 + 2, b2; a1, c2 + 2; z)

+
(a2 + 1)b2
c2(c2 + 1)

(1− z1)z2FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

− (a2 + 1)(b1 + 1)

c2(c2 + 1)
z23FM (a1, a2 + 2, b1 + 2, b2; a1, c2 + 2; z)

− (a2 + 1)b2
c2(c2 + 1)

z2z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

−b2
c2

z2(1− z1)FM (a1, a2 + 1, b1 + 1, b2 + 1; a1, c2 + 1; z)

+
(a2 + 1)b2
c2(c2 + 1)

z2z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

=

(
1− z1 −

a2 + b1 + 1

c2
z3

)
FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

+
(a2 + 1)(b1 + 1)

c2(c2 + 1)
(1− z1 − z3)z3FM (a1, a2 + 2, b1 + 2, b2; a1, c2 + 2; z)

+
(a2 + 1)b2
c2(c1 + 1)

(1− z1)z2FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

−b2
c2

z2(1− z1)

(
FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

+
a2 + 1

c2 + 1
z2FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

)
.
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Continuing the transformation, we have

FM (a1, a2, b1, b2; a1, c2; z)

=

(
1− z1 −

b2
c2

z2(1− z1)−
a2 + b1 + 1

c2
z3

)
FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

+
(a2 + 1)(b1 + 1)

c2(c2 + 1)
(1− z1 − z3)z3FM (a1, a2 + 2, b1 + 2, b2; a1, c2 + 2; z)

+
(a2 + 1)b2
c2(c1 + 1)

(1− z1)z2FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

− (a2 + 1)b2
c2(c2 + 1)

(1− z1)z
2
2FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

=

(
(1− z1)

(
1− b2

c2
z2

)
− a2 + b1 + 1

c2
z3

)
FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 2; z)

+
(a2 + 1)(b1 + 1)

c2(c2 + 1)
(1− z1 − z3)z3FM (a1, a2 + 2, b1 + 2, b2; a1, c2 + 2; z)

+
(a2 + 1)b2
c2(c2 + 1)

(1− z1)z2(1− z2)FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z).

Next, we prove the relation (2.6). From (2.1), we have

FM (a1, a2, b1, b2; a1, c2; z) = FM (a1, a2 + 1, b1, b2; a1, c2; z)

−b2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

−b1
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

=FM (a1, a2 + 1, b1, b2 + 1; a1, c2; z)−
a2 + 1

c2
z2FM (a1, a2 + 2, b1, b2 + 1; a1, c2 + 1; z)

−b2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)− b1
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

=FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

+
(a2 + 1)(b2 + 1)

c2(c2 + 1)
z2FM (a1, a2 + 2, b1, b2 + 2; a1, c2 + 2; z)

+
(a2 + 1)b1
c2(c2 + 1)

z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z

−a2 + 1

c2
z2

(
FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

+
b2 + 1

c2 + 1
z2FM (a1, a2 + 2, b1, b2 + 2; a1, c2 + 2; z)

+
b1

c2 + 1
z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

)
−b2
c2

z2FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

−b1
c2

z3FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z).
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Then,

FM (a1, a2, b1, b2; a1, c2; z)

=

(
1− a2 + b2 + 1

c2
z2

)
FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

+
(a2 + 1)(b2 + 1)

c2(c2 + 1)
z2FM (a1, a2 + 2, b1, b2 + 2; a1, c2 + 2; z)

+
(a2 + 1)b1
c2(c2 + 1)

z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

− (a2 + 1)(b2 + 1)

c2(c2 + 1)
z22FM (a1, a2 + 2, b1, b2 + 2; a1, c2 + 2; z)

− (a2 + 1)b1
c2(c2 + 1)

z2z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

−b1
c2

z3

(
FM (a1, a2 + 1, b1 + 1, b2 + 1; a1, c2 + 1; z)

−a2 + 1

c2 + 1
z2FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

)
=

(
1− a2 + b2 + 1

c2
z2

)
FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

+
(a2 + 1)(b2 + 1)

c2(c2 + 1)
z2(1− z2)FM (a1, a2 + 2, b1, b2 + 2; a1, c2 + 2; z)

+
(a2 + 1)b1
c2(c2 + 1)

z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

−b1
c2

z3FM (a1, a2 + 1, b1 + 1, b2 + 1; a1, c2 + 1; z).

From (2.2), we obtain

(1− z1)FM (a1, a2 + 1, b1 + 1, b2 + 1; a1, c2 + 1; z)

=FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

+
a2 + 1

c2 + 1
z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z).

Then, finally, we have

(1− z1)FM (a1, a2, b1, b2; a1, c2; z)

=

(
(1− z1)

(
1− a2 + b2 + 1

c2
z2

)
− b1

c2
z3

)
FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z)

+
(a2 + 1)(b2 + 1)

c2(c2 + 1)
(1− z1)z2(1− z2)FM (a1, a2 + 2, b1, b2 + 2; a1, c2 + 2; z)

+
(a2 + 1)b1
c2(c2 + 1)

(1− z1 − z3)z3FM (a1, a2 + 2, b1 + 1, b2 + 1; a1, c2 + 2; z)

that had to be proved. □
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3. CONSTRUCTION BRANCHED CONTINUED FRACTIONS

Let I = {1, 2}. For each i0 ∈ I, we set

R
(i0)
M (a1, a2, b1, b2; a1, c2; z) =

(1− δ2i0z1)FM (a1, a2, b1, b2; a1, c2; z)

FM (a1, a2 + 1, b1 + δ1i0 , b2 + δ2i0 ; a1, c2 + 1; z)
,(3.7)

where δji is the Kronecker delta. In addition, let for k ≥ 1

Ik = {i(k) = (i0, i1, i2, . . . , ik) : ir ∈ I, 0 ≤ r ≤ k}.

Then, we have the following result.

Theorem 3.1. For each i0 ∈ I and z1 ̸= 1 the ratio (3.7), where a1, a2, b1, b2, c2 ∈ C herewith
a1, c2 ̸∈ {0,−1,−2, . . .}, has a formal branched continued fraction

vi0(z) +

2∑
i1=1

ui(1)(z)

vi(1)(z) +

2∑
i2=1

ui(2)(z)

vi(2)(z)+ . . .

,(3.8)

where

vi0(z) = 1− z1 −
a2 + bi0 + 1

c2
(1− δ2i0z1)z4−i0 −

b3−i0

c2
(1− δ1i0z1)z1+i0(3.9)

and for i(k) ∈ Ik and k ≥ 1,

ui(k)(z) =

(a2 + k)

(
bik +

k−1∑
r=0

δikir

)
(c2 + k − 1)(c2 + k)

(1− δ2ikz1)
2z4−ik(1− δ1ikz1 − z4−ik),(3.10)

vi(k)(z) = 1− z1 −
a2 + bik + k + 1 +

k−1∑
r=0

δikir

c2 + k
(1− δ2ikz1)z4−ik

−
b3−ik +

k−1∑
r=0

δ3−ik
ir

c2 + k
(1− δ1ikz1)z1+ik .(3.11)

Proof. Let us divide (2.5) and (2.6) by

FM (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z) and FM (a1, a2 + 1, b1, b2 + 1; a1, c2 + 1; z),

respectively. Then, in view of (3.7), we get

R
(1)
M (a1, a2, b1, b2; a1, c2; z)

=(1− z1)

(
1− b2

c2
z2

)
− a2 + b1 + 1

c2
z3

+

(a2 + 1)(b1 + 1)

c2(c2 + 1)
(1− z1 − z3)z3

R
(1)
M (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)

+

(a2 + 1)b2
c2(c2 + 1)

(1− z1)
2z2(1− z2)

R
(2)
M (a1, a2 + 1, b1 + 1, b2; a1, c2 + 1; z)
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and

R
(2)
M (a1, a2, b1, b2; a1, c2; z)

=(1− z1)

(
1− a2 + b2 + 1

c2
z2

)
− b1

c2
z3

+

(a2 + 1)b1
c2(c2 + 1)

(1− z1 − z3)z3

R
(1)
M (a1, a2 + 1, b1, b2 + 1; a1, c2 + 2; z)

+

(a2 + 1)(b2 + 1)

c2(c2 + 1)
(1− z1)

2z2(1− z2)

R
(2)
M (a1, a2 + 1, b1, b2 + 1; a1, c2 + 2; z)

.

Let i0 be an arbitrary index in I. We write these relations as follows

R
(i0)
M (a1, a2, b1, b2; a1, c2; z)

=1− z1 −
a2 + bi0 + 1

c2
(1− δ2i0z1)z4−i0 −

b3−i0

c2
(1− δ1i0z1)z1+i0

+

2∑
i1=1

(a2 + 1)(bi1 + δi0i1 )

c2(c2 + 1)
(1− δ2i1z1)

2z4−i1(1− δ1i1z1 − z4−i1)

R
(i1)
M (a1, a2 + 1, b1 + δ1i0 , b2 + δ2i0 ; a1, c2 + 1; z)

,(3.12)

and this is the first step of constructing a formal branched continued fraction expansion. From
(3.12) it is clear that for i1 ∈ I

R
(i1)
M (a1, a2 + 1, b1 + δ1i0 , b2 + δ2i0 ; a1, c2 + 1; z)

=1− z1 −
a2 + bi1 + 2 + δi1i0

c2 + 1
(1− δ2i1z1)z4−i1 −

b3−i1 + δ3−i1
i0

c2 + 1
(1− δ1i1z1)z1+i1

+

2∑
i2=1

(a2 + 2)(bi2 + δi2i0 + δi2i1 )

(c2 + 1)(c2 + 2)
(1− δ2i2z1)

2z4−i2(1− δ1i2z1 − z4−i2)

R
(i2)
M (a1, a2 + 2, b1 + δ1i0 + δ1i1 , b2 + δ2i0 + δ2i1 ; a1, c2 + 2; z)

,(3.13)

and, thus, for ik ∈ I and k ≥ 2

R
(ik)
M

(
a1, a2 + k, b1 +

k−1∑
r=0

δ1ir , b2 +

k−1∑
r=0

δ2ir ; a1, c2 + k; z

)

=1− z1 −
a2 + bik + k + 1 +

k−1∑
r=0

δikir

c2 + k
(1− δ2ikz1)z4−ik −

b3−ik +

k−1∑
r=0

δ3−ik
ir

c2 + 1
(1− δ1ikz1)z1+ik

+

2∑
ik+1=1

(a2 + k + 1)

(
bik+1

+

k∑
r=0

δ
ik+1

ir

)
(c2 + k)(c2 + k + 1)

(1− δ2ik+1
z1)

2z4−ik+1
(1− δ1ik+1

z1 − z4−ik+1
)

R
(ik+1)
M

(
a1, a2 + k + 1, b1 +

k∑
r=0

δ1ir , b2 +

k∑
r=0

δ2ir ; a1, c2 + k + 1; z

) .

(3.14)
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Substituting (3.13) into (3.11) and taking into account (3.9)–(3.11), in the second step of con-
structing the expansion we obtain

R
(i0)
M (a1, a2, b1, b2; a1, c2; z)

=vi0(z) +

2∑
i1=1

ui(1)(z)

vi(1)(z) +

2∑
i2=1

ui(2)(z)

R
(i2)
M (a1, a2 + 2, b1 + δ1i0 + δ1i1 , b2 + δ2i0 + δ2i1 ; a1, c2 + 2; z)

.

Further, thanks to (3.14), at the kth step we have

R
(i0)
M (a1, a2, b1, b2; a1, c2; z)

=vi0(z) +

2∑
i1=1

ui(1)(z)

vi(1)(z) + . . . +
2∑

ik=1

ui(k)(z)

R
(ik)
M

(
a1, a2 + k, b1 +

k−1∑
r=0

δ1ir , b2 +

k−1∑
r=0

δ2ir ; a1, c2 + k; z

)
,

where vi0(z), vi(r)(z), i(r) ∈ Ir, 1 ≤ r ≤ k, and ui(r)(z), i(r) ∈ Ir, 1 ≤ r ≤ k − 1, are defined
by (3.9), (3.10), and (3.11), respectively. Finally, continuing the process of constructing the ex-
pansion, we obtain the formal branched continued fraction expansion (3.8) for the ratio (3.7)
for each i0 ∈ I. □

Setting a2 = b1 = 0 and replacing c2 by c2 − 1 in Theorem 3.1, we have the following:

Corollary 3.1. For i0 = 1 and z1 ̸= 1 the hypergeometric function

FM (a1, 1, 1, b2; a1, c2; z),

where a1, b2, c2 ∈ C herewith a1 ̸∈ {0,−1,−2, . . .} and c2 ̸∈ {1, 0,−1,−2, . . .}, has a formal branched
continued fraction

1

vi0(z) +

2∑
i1=1

ui(1)(z)

vi(1)(z) +

2∑
i2=1

ui(2)(z)

vi(2)(z)+ . . .

,

where

vi0(z) = 1− z1 −
bi0 + 1

c2 − 1
(1− δ2i0z1)z4−i0 −

b3−i0

c2 − 1
(1− δ1i0z1)z1+i0

and for i(k) ∈ Ik and k ≥ 1

ui(k)(z) =

k

(
bik +

k−1∑
r=0

δikir

)
(c2 + k − 2)(c2 + k − 1)

(1− δ2ikz1)
2z4−ik(1− δ1ikz1 − z4−ik),

vi(k)(z) = 1− z1 −
bik + k + 1 +

k−1∑
r=0

δikir

c2 + k − 1
(1− δ2ikz1)z4−ik −

b3−ik +

k−1∑
r=0

δ3−ik
ir

c2 + k − 1
(1− δ1ikz1)z1+ik .

Finally, let us give the following example:
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Example 3.1. From [20, Formula (2.4.1)], [27, Formulas (5.7) and (5.18)], and Corollary 3.1 it
follows

ln
1− z1 − z3

(1− z1)(1− z2)

=((1− z1)z2 − z3)FM (1, 1, 1, 1; 1, 2; z)

=
(1− z1)z2 − z3

(1− z1)(1− z2)− z3 +

1

2
z3(1− z1 − z3)

(1− z1)

(
1− 1

2
z2

)
− 3

2
z3+ . . .

+

1

2
(1− z1)

2z2(1− z2)

(1− z1)

(
1− 3

2
z2

)
− 1

2
z3+ . . .

.

Note that in Example 3.1 this is a formal representation of a special function as a branched
continued fraction. Some convergence problem of branched continued fractions can be found
in [3, 4, 5].

4. CONCLUSIONS AND OPEN PROBLEMS

The paper constructs branched continued fraction expansions for hypergeometric functions
FM (a1, a2, b1, b2; c1, c2; z) and their relations in the case when a1 = c1. In the general case,
the problem of constructing such expansions remains open. Another problem is to prove that
the branched continued fraction converges to the function whose expansion is. An equally
important problem is to establish the domains of convergence of the constructed expansions,
which, in turn, will be the domains of analytical continuation of the corresponding functions.
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ABSTRACT. Here, we study both analytically and numerically, an integral Z(σ, r) related to the mean value of a
generalized moment of Riemann’s Zeta function. Analytically, we predict finite, but discontinuous values and ver-
ify the prediction numerically, employing a modified form of Cesàro summation. Further, it is proven and verified
numerically that for certain values of σ, the derivative function Z′(σ, n) equates to one generalized tine of the Dirac
comb function without recourse to the use of limits, test functions or distributions. A surprising outcome of the nu-
merical study arises from the observation that the proper integral form of the derivative function is quasi-periodic,
which in turn suggests a periodicity of the integrand. This possibility is also explored and it is found experimentally
that Zeta function values offset (shifted) over certain segments of the imaginary complex number line are moderately
auto-correlated.
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tion.
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1. INTRODUCTION

1.1. Background. In a previous work [12], relationships between different parametric instances
of inverse Mellin transform integrals of the form

(1.1) Z(σ, r) ≡
∫ ∞

−∞

ζ(σ ± it)rσ±it

(σ ± it)
dt = −i

∫ σ+i∞

σ−i∞
ζ (v) rv−1dv, σ > 1

were studied by the use of an extended form of Glasser’s Master Theorem [6] for special values
of the real variables σ and r. In a second previous work [11], similar integrals were studied by
generalizing r to become a complex variable r → r exp(iϕ), where it was found, with n ∈ N
and r ∈ ℜ (positive integers and reals respectively), that for certain values of r = n, the value
of the derivative function

(1.2) Z ′(σ, r) ≡ ∂

∂ r
Z(σ, r)

was indeterminate, depending on how the point r = n was approached as a function of ϕ. In
particular, it was found that if the point r = n was approached from certain directions in the
complex r plane, the function Z ′(σ, n) yielded a completely consistent family of finite integrals.
Approached from a different direction, the function Z ′(σ, n) diverged (i.e., was singular). Here,
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we reconsider and resolve that issue by first considering Z(σ, r) as a function of r and show
that it is discontinuous, that is

Z(σ, r)|σ>1
=

∫ ∞

−∞

ζ(σ + it) rσ+i t

σ + i t
dt = 2π⌊r⌋, σ > 1, r ̸= n,

= π(2n− 1), σ > 1, r = n.

By differentiating the above with respect to r, it is clear that

(1.3) Z ′(σ, r ̸= n)|σ>1
≡ ∂

∂ r
Z(σ, r) =

1

r

∫ ∞

−∞
ζ(σ + i t) rσ+itdt = 0, σ > 1, r ̸= n

and, by studying numerical approximations to the derivative function Z ′(σ, r = n)|σ>1
at the

discontinuity, we find that

(1.4) Z ′(σ, n)|σ>1
=

∫ ∞

−∞
ζ(σ + i t)nσ+i tdt = ∞, σ > 1 .

Combining (1.3) and (1.4) identifies, for any positive integer n,

(1.5) Z ′(σ, r) ≡
∫ ∞

−∞
ζ(σ + it) rσ+i tdt = 2π r δ(r − n), σ > 1

as one tine of the Dirac comb function when considered only as a function of the variable r.*

Remark 1.1. For a proof of (1.5), see Section 3.1.

Since the main interest in such integrals focusses on the range 0 < σ < 1, in this work we
consider that region by applying analytic continuation from the region σ > 1. Because ζ(σ+ it)
varies in sign throughout its range and |ζ(σ + it)|/ log(t) is bounded when σ > 1, t > 2, [5,
Corollary 1, page 184], it is reasonable to expect integrals of the form (1.1) to be numerically
convergent when σ > 1. However, representations with σ < 1, which are not expected to
always converge numerically, are traditionally defined and given meaning by analytic contin-
uation.

First, we study the special case σ = 3/2 and then employ straightforward translation of
contour integrals (or the Master Theorem equivalent) to obtain identities valid for σ = 1/2.
This will be found in Section 2. In Section 3, we then examine cases with general values of σ
following the same methods. Acknowledging that we are dealing with functions on the very
edge of tractability both in a numerical and analytic sense, the following Section 4 applies the
Cesàro regularization technique (see Appendix A) to ascertain if the analytic results are con-
sistent with numerical approximation. Surprisingly, they are in excellent accord, given that
the functions are discontinuous (see Remark 2.4). Therefore we are reasonably confident that
our analytic results are valid - the numbers do not lie. An unexpected digression arises when
the various Cesàro approximations are viewed graphically, since they suggest that proper in-
tegrals associated with (1.5) are periodic, as are the integrands themselves. This observation is
studied in a further series of numerical experiments, showing in Section 5, that the integrand
function |ζ(σ+ it)| is moderately auto-correlated . Finally, our discoveries are summarized and
discussed along with suggested generalizations and applications.

1.2. Notation and Lemmas.

*The Dirac comb function is the set of Dirac delta functions of unit separation.
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1.2.1. Notation. Throughout the following, 0 < r ∈ ℜ, n,m = 1, 2, 3, · · · always and := means
symbolic replacement. Other symbols are real (ℜ) except if specified. We employ ⌊· · · ⌋ and
⌈· · · ⌉ to represent the floor and ceiling functions respectively and δ(·) is the Dirac delta func-
tion. The mth derivative of ζ(s) is written ζ(m)(s). Both computer programs Maple [9] and
Mathematica [17] were used throughout and are individually cited where necessary. Subscripts
R and/or I refer to the real and/or imaginary part of whatever they are attached to.

Remark 1.2. It is important to emphasize that, if x ∈ ℜ, here we define floor and ceiling functions such
that

⌊x⌋ means the greatest integer less than but not equal to x,

and
⌈x⌉ means the smallest integer greater than but not equal to x,

as opposed to the common (e.g., Maple, Mathematica) usage ⌊n⌋ = n and ⌈n⌉ = n. In other words,
the floor and ceiling functions are open at their respective ends. This means that the limit endpoints of
⌊x⌋ and ⌈x⌉ are undefined and any identity containing these functions requires that the values of that
identity must be carefully specified when x = n if the identity is to be complete (e.g. [14, Eqs. II.1(3),
Eqs. II.1(4) and II.5(16)]. This is a consequence of, and flows naturally from, the forthcoming analysis,
where we independently obtain the value of a function at a point of discontinuity, but not necessarily
as the mean of the limit of its values as the discontinuity is approached from above and below, although
usually, but not always, this turns out to be the case.

1.2.2. Lemmas - Specific to σ = 3/2. From [7, Eqs. 3.723(2) and 3.723(4)] with r ∈ ℜ and j ∈ N,
we have ∫ ∞

−∞

sin
(
t ln
(
j
r

))
t

t2 + 9
4

dt = π

(
j

r

)− 3
2

, if j > r;

= −π

(
j

r

) 3
2

, if j < r;

= 0, if j = r, r = n(1.6)

and ∫ ∞

−∞

cos
(
t ln

(
j
r

))
t2 + 9

4

dt =
2

3
π

(
j

r

)− 3
2

, if j > r;

=
2

3
π

(
j

r

) 3
2

, if j < r;

=
2

3
π, if j = r, r ∈ N.(1.7)

1.2.3. Lemmas - the General Form. From the same source, more general forms of the same listed
identities are

(1.8)
∫ ∞

−∞

t sin(a t)

σ2 + t2
dt = π e−a σ, a > 0

and

(1.9)
∫ ∞

−∞

cos(a t)

σ2 + t2
dt =

π

σ
e−a σ, a > 0.
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2. THE SPECIAL CASES σ = 3/2 AND σ = 1/2

2.1. The Master Theorem. Consider the function F (t) defined, for r > 0, r ∈ ℜ, by

F (t) ≡
ζ
(
1
2 + i t

)
r

1
2+i t

1
2 + i t

−
ζ
(
3
2 − i t

)
r

3
2−i t

3
2 − i t

.

It is easy to show that F (t) + F (−i− t) = 0. Hence, from Glasser’s Master theorem [6]

(2.10)
∫ ∞

−∞

(
ζ
(
1
2 + i t

)
r

1
2+i t

1
2 + i t

−
ζ
(
3
2 − i t

)
r

3
2−i t

3
2 − i t

)
dt = −2πr

because only the residue at the point t = −i/2 contributes.

2.2. Evaluation: σ = 3/2. We begin by considering the convergent integral

Z(3/2, r) ≡
∫ ∞

−∞

ζ
(
3
2 − i t

)
r

3
2−i t

3
2 − i t

dt

=

∞∑
j=1

(
j

r

)− 3
2
∫ ∞

−∞
ei t ln( j

r )
(

3

2 t2 + 9
2

+
i t

t2 + 9
4

)
dt

by writing

ζ(3/2− i t) =

∞∑
j=1

1

j
3
2−i t

and noting that the summation and integration can be transposed because both are convergent.
When decomposed into its real and imaginary parts, we arrive at∫ ∞

−∞
eit ln(j/r)

(
3

2 t2 + 9
2

+
it

t2 + 9
4

)
dt =

∫ ∞

−∞

((
3

2

)
cos
(
t ln
(
j
r

))
t2 + 9

4

−
t sin

(
t ln
(
j
r

))
t2 + 9

4

)
dt(2.11)

noting that the imaginary parts of the integral vanish by anti-symmetry over the integration
range.

2.2.1. Case: r = n. In the case that r is a positive integer r = n, we employ (1.6) and (1.7) to
find

Z(3/2, n) =

∫ ∞

−∞

ζ
(
3
2 − i t

)
n

3
2−i t

3
2 − i t

dt

= π

n−1∑
j=1

(
j

n

)− 3
2

((
j

n

) 3
2

+

(
j

n

) 3
2

)
+

n∑
j=n

n3 π

j3
+ π

∞∑
j=n+1

(
j
n

)− 3
2 −

(
j
n

)− 3
2(

j
n

) 3
2

= π

n−1∑
j=1

2 + π + 0

= π (2n− 1) .(2.12)
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2.2.2. Case: r ̸= n. In the case that r > 0 is not a positive integer, that is r ̸= n, we again
employ (1.6) and (1.7) to find

Z(3/2, r) =

∫ ∞

−∞

ζ
(
3
2 − i t

)
r

3
2−i t

3
2 − i t

dt

= π

⌊ r ⌋∑
j=1

(
j

r

)− 3
2

((
j

r

) 3
2

+

(
j

r

) 3
2

)
+ π

∞∑
j=⌈ r ⌉

(
j
r

)− 3
2 −

(
j
r

)− 3
2(

j
r

) 3
2

= π

⌊ r ⌋∑
j=1

2 + 0

= 2π ⌊ r ⌋ .(2.13)

Figure 1 shows both the analytic results obtained above, as well as a few evaluations of Z(3/2,r)
scattered over different values of r obtained by (difficult) numerical integration, demonstrating
substantial agreement.

FIGURE 1. The staircase function Z( 32 , r) over a small range of r, compared
analytically and numerically. Note that the left and right limits of each of the
horizontal “treads“ are open and that the values at the midpoints of the “ris-
ers“ are obtained by both an analytic and a numerical evaluation of the inte-
gral, not by decree

Remark 2.3. Note that (2.13) does not reduce to (2.12) if r → n (see Remark 1.2) and therefore
Z(3/2, r) is discontinuous as a function of r at r = n. However, at r = n, the function Z(3/2, n)
does lie exactly at the midpoint of the discontinuity, both analytically and numerically, as expected [14,
Eq. II.1(page 8)].
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Remark 2.4. As alluded to previously, the derivations presented here deal with subtle issues of limits
and discontinuities. To emphasize this point, Appendix B presents homologous, but incorrect, identities
obtained by a false derivation. The resolution is left as a challenge for the reader.

2.3. Analytic Continuation to σ = 1/2. As noted in [12], by pairing integrals living inside the
critical strip 0 ≤ σ ≤ 1 with companions that are tractable and live outside, it becomes possible
to evaluate the companion integral Z(1/2, r) by applying either the Master Theorem or analytic
continuation and compare with previous results. From (2.10), (2.12) and (2.13), we find

Z(1/2, r) ≡
∫ ∞

−∞

ζ
(
1
2 + i t

)
r

1
2+i t

1
2 + i t

dt = 2π (⌊ r ⌋ − r) , r ̸= n,(2.14)

= −π, r = n.(2.15)

So that, when n = 2, we have ∫ ∞

−∞

ζ
(
1
2 + i t

)
2i t

1
2 + i t

dt = − π√
2

in agreement with [12, Eq. (4.13)]. Also, if n = 2, we find∫ ∞

−∞

ζ
(
3
2 − i t

)
2−i t

3
2 − i t

dt =
3π

√
2

4

in agreement with [12, Eq. (4.12)].

FIGURE 2. The function A(r) over a small range of r

2.4. The Derivative. For typographical clarity, define the function

A(r) = 2π(⌊r⌋ − r), r ̸= n,

= −π, r = n,

illustrated in Figure 2, demonstrating that A(r) is invariant if r → r + m and that it can be
characterized as a sawtooth function of period one and magnitude 2π where the special case
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r = n corresponds to the midpoint of the sawtooth discontinuity. We also note that the slope
of A(r) is continuous as r → n±, although the function itself is discontinuous, so it is relevant
to query the value of the derivative A′(r) at r = n. By one simple, and standard definition,

A′(n) ≡ A′(r)|r=n ≡ lim
r→n

d

d r
A(r) = lim

r→n
lim
h→0

A(r + h)−A(r)

h

= 2π lim
r→n

lim
h→0

⌊r + h⌋ − r − h− ⌊r⌋+ r

h

= 2π lim
r→n

lim
h→0

⌊r⌋ − h− ⌊r⌋
h

= −2π(2.16)

and similarly if h is replaced by −h, so the derivative A′(n) exists everywhere and is continuous
according to this definition. However, by a second simple and standard definition

A′(n) ≡ A′(r)|r=n = lim
h→0

A(n+ h)−A(n)

h

= 2π lim
h→0

⌊n+ h⌋ − n− h+ π/2

h

= 2π lim
h→0

⌊n⌋ − n− h+ π/2

h
= ∞(2.17)

and the derivative is indeterminate when r = n, irrespective of our requirement that ⌊n⌋ is
undefined.

The important point here is that A(r) represents the function Z(1/2, r) (see (2.15)) where
the r dependence only appears as an integrand term of the form r1/2+it on the left-hand side
for which the derivative is well-known, continuous and consistent, independently of which of
the two definitions are employed. Hence, we have uncovered a pathology where the left-hand
side of an identity always appears to be well-defined, and the right-hand side sometimes is
not. Similar indeterminacies have been observed elsewhere [11] in related integrals, where it
was speculated that there exists an associated, uncategorized, possibly essential, singularity at
r = n, when the integral is studied as a function of complex r.

2.5. Differentiating. Differentiating (2.15) with respect to r utilizing the definition (2.16), yields

(2.18)
∫ ∞

−∞
ζ(1/2 + i t) r i tdt = −2π

√
r , r ̸= n,

because

(2.19)
d

d r
⌊ r ⌋ = 0 , r ̸= n.

Including the condition, (2.18) agrees with [11, Eq. (5.28)], which was obtained by an inverse
Mellin transform, and reads

(2.20)
∫ ∞

0

ℜ
(
ζ(1/2 + i t) r i t

)
dt = −π

√
r , r ̸= n .

In the case that r = n, we also reproduce the indeterminacy alluded to above and first observed
in [11, Section (7.1)]. Utilizing (2.16) where A′(r) is continuous when r → n± and no condition
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exists, by rewriting (2.20) as

(2.21)
∫ ∞

0

(ζI(1/2 + i v) sin(v ln(r))− ζR(1/2 + i v) cos(v ln(r))) dv = π
√
r

we reproduce [11, Eq. (7.9)] when r = n; if we define the derivative d
drA(r) to be infinite at

the point r = n as in (2.17), then we reproduce the indefinite value obtained in [11, Eq. (7.10)]
for that same integral and the right-hand side of (2.21) becomes indefinite. We reiterate that in
this study we are considering a directed limit r → n± for real values of r, in contrast to [11]
where the limit r → n was a directional limit for complex values of r. In [11], it was shown
that the finite choice represented by (2.21) (and accordingly (2.16)), leads to a consistent set of
valuations for other integrals similar to (2.21). Finally if r = 1, (2.21) demonstrates that

(2.22)
∫ ∞

0

ζR(1/2 + i t) dt = −π

in agreement with [11, Eq. (5.26)], although it is unlikely that (2.22) is numerically convergent
and thereby it establishes one possible regularization of the integral among an infinite number
of possibilities.

3. THE GENERAL CASE

3.1. σ > 1. As before, we begin by considering the convergent representation

ζ(σ + i t) =

∞∑
j=1

1

jσ
e−i t ln(j), σ > 1

to be employed in the integrand of a convergent representation of Z(σ, r), and then, in Section
3.2, progress by analytic continuation to the region σ < 1, where both the integral and/or the
sum may not converge. Thus, with σ > 1,

Z(σ, r) ≡
∫ ∞

−∞

ζ(σ + i t) rσ+i t

σ + i t
dt = rσ

∞∑
j=1

1

jσ

∫ ∞

−∞

σ cos
(
t ln

(
r
j

))
σ2 + t2

+
sin
(
t ln

(
r
j

))
t

σ2 + t2

 dt

where the imaginary components vanish due to asymmetry. From (1.8) it follows that∫ ∞

−∞

sin(t ln (r/j))

σ2 + t2
tdt = π

(
r

j

)−σ

, j < r;

= −π

(
r

j

)σ

, j > r;

= 0, j = r.

Similarly, from (1.9)

σ

∫ ∞

−∞

cos
(
t ln
(

r
j

))
σ2 + t2

dt = π

(
r

j

)−σ

, j < r;

= π

(
r

j

)σ

, j > r;

= π, j = r.
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3.1.1. r ̸= n. If r ̸= n, we find, as before (see (2.13))

(3.23) Z(σ, r) =

∫ ∞

−∞

ζ(σ + i t) rσ+i t

σ + i t
dt = 2π⌊r⌋, σ > 1.

Since σ is now a continuous variable, we can consider differentiating (3.23) and (3.28) with
respect to both r and σ. First, differentiating with respect to σ (or integrating by parts), imme-
diately yields the identity

(3.24)
∫ ∞

−∞

ζ(1)(σ + i t) rσ+i t

σ + i t
dt =

∫ ∞

−∞

ζ(σ + i t) rσ+i t

(σ + i t)
2 dt− 2π ⌊r⌋ ln(r)

followed by differentiation with respect to r which informs us that

(3.25)
∫ ∞

−∞
ζ(1)(σ + i t) rσ+i tdt = 0

because d⌊r⌋
dr = 0 if r ̸= n. The generalization is obvious:

(3.26)
∫ ∞

−∞
ζ(m)(σ + i t) rσ+i tdt = 0

where m ∈ N. Furthermore, differentiating (3.23) with respect to r predicts that

(3.27)
1

r

∫ ∞

−∞
ζ(σ + i t) rσ+i tdt = 0 , σ > 1, r ̸= n

raising a question about the potential interpretation of (3.27) when r = n, where the definition
of “derivative“ is ambiguous. See Section 4 below.

3.1.2. r = n. Exactly as in (2.12), we have

(3.28) Z(σ, n) =

∫ ∞

−∞

ζ(σ + i t)nσ+i t

σ + i t
dt = π (2n− 1) , σ > 1

and again, differentiating with respect to σ, gives

(3.29)
∫ ∞

−∞

ζ(1)(σ + i t)nσ+i t

σ + i t
dt =

∫ ∞

−∞

ζ(σ + i t)nσ+i t

(σ + i t)
2 dt− π (2n− 1) ln(n) .

Notice that the case n = 1 applied to (3.29) produces the identity

(3.30)
∫ ∞

−∞

ζ(1)(σ + i t)

σ + i t
dt =

∫ ∞

−∞

ζ(σ + i t)

(σ + i t)
2 dt, σ > 1.

If (3.30) is compared to (3.24), it suggests that the (questionable) limit r → 1 applied to (3.24),
is valid.
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3.1.3. A Proof of (1.5). When σ > 1, in Section 4, it will be shown that the integral (3.27) appears
to be (numerically) divergent only if r = n, and since it vanishes otherwise, we can justifiably
write

(3.31) Z ′(σ, r) ≡
∫ ∞

−∞
ζ(σ + i t) rσ+i tdt = 2π r δ(r − n) , σ > 1, n ̸= 0.

The question that then arises is: “Is 2π the appropriate normalization? “

Remark 3.5. It is important to understand that (3.31) differs from common invocations of the Dirac
delta function (for examples, see [14, Chapter V]) because it does not involve limits, test functions or
distributions. The approach to the limit r → n is continuous, open-ended and always vanishes. In
discontinuous fashion, only at the limit point r = n does the integral diverge, and this appears to be
numerically true.

Theorem 3.1. ∫ ∞

−∞
ζ(σ + i t) rσ+i tdt = 2π r δ(r − n), σ > 1, n ∈ N.

Proof. By a simple change of variables, we have, in more conventional notation,∫ ∞

−∞
ζ (σ + i t) rσ+i tdt = −i

∫ σ+i∞

σ−i∞
ζ (s) rsds

which we identify [14, Eq. II.4.(13b)] as a 2-sided Fourier transform of the form

(3.32) h (t) =
1

2π i

∫ σ+i∞

σ−i∞

es t f (s)

s
ds

where t = ln(r), h(ln(r)) = 2π r δ(r − n), and f(s) = 2π s ζ(s). The inverse transform of (3.32)
is [14, Eq. II.4.(13b)]

(3.33) f (s) = s

∫ ∞

−∞
e−sth (t) dt, ℜ(s) > 1,

so first apply the change of variables t = ln(r) to find [17]

(3.34) f (s) = s

∫ ∞

0

r−1−s h (ln (r)) dr

and then identify the various components of (3.32) to obtain (with n ̸= 0)

ζ (s) =

∫ ∞

0

r−s δ (n− r) dr(3.35)

=

∞∑
n=1

1/ns, ℜ(s) > 1(3.36)

the primary definition of ζ(s). □

3.2. The Case σ < 1. As suggested in [12], we now treat any of the above entities as a contour
integral over a line ℜ(v) = σ in the complex v-plane where v = σ + it by rewriting any of the
above in the more conventional form of the contour integral representation (see (1.1))

(3.37)
∫ ∞

−∞

ζ (σ + i t) rσ+i t

σ + i t
dt = −i

∫ σ+i∞

σ−i∞
ζ (v) rv−1dv
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and translate the contour (equivalent to invoking the Master Theorem) such that σ < 1 by
accounting for the residues of the integrand so transited. First, we encounter a pole at v = 1
with residue r; secondly a pole at v = 0 with residue −1/2 and consider various cases.

3.2.1. r ̸= n. From the above, we obtain∫ ∞

−∞

ζ(σ + it) rσ+it

σ + it
dt = 2π (⌊r⌋ − r) , 0 < σ < 1,(3.38)

= 2π (⌊r⌋ − r) + π, σ < 0.(3.39)

(3.38) being an exact analogue of (2.14) – there is no σ dependence on the right-hand side other
than the specification of the range of applicability, and it is invariant if r := r + m. In exact
analogy to subsection 3.1.1, differentiating first with respect to σ, then with respect to r in both
of (3.38) and (3.39) produces

(3.40)
∫ ∞

−∞
ζ(1)(σ + i t) rσ+i tdt = 2π r ln(r) , σ < 1 .

Again, as in (2.18), by differentiating (3.38) or (3.39) with respect to r we obtain

∫ ∞

−∞
ζ (σ + i t) rσ+itdt = −2πr, σ < 1, r ̸= n,

= −πr, σ = 1, r ̸= n(3.41)

in agreement with (2.20) by utilizing half the appropriate residue when σ = 1.

Remark 3.6. Since ζ(σ+ it) ≈ −i/t+O(t0) if σ = 1, the imaginary part of the integrand contains the
pole at t = 0 and the imaginary integral that contains this divergent term, vanishes by anti-symmetry,
leaving the finite result (3.41).

3.2.2. r = n. For the case r = n, from (3.28) plus the residues discussed above, we have

∫ ∞

−∞

ζ(σ + i t)nσ+i t

σ + i t
dt = π(2n− 1)− 2nπ

= −π 0 < σ < 1;

= 0 σ < 0,

consistent with [12, Eqs. (4.3), (4.4) and (4.7)], all of which correspond to the case n = 1.
Differentiating with respect to σ gives

∫ ∞

−∞

ζ(1)(σ + i t)nσ+i t

σ + i t
dt−

∫ ∞

−∞

ζ(σ + i t)nσ+i t

(σ + i t)
2 dt = π ln(n) , 0 < σ < 1,(3.42)

= 0, σ < 0.(3.43)

As in (3.30), setting n = 1 in (3.42) along with (3.43) gives the generalization

(3.44)
∫ ∞

−∞

ζ(1)(σ + i t)

σ + i t
dt =

∫ ∞

−∞

ζ(σ + i t)

(σ + i t)
2 dt, ∀σ.

Again, following Section 2, the value of (3.41) when r = n remains unclear, since the definition
of derivative at a point is indeterminate. These issues are studied numerically in the following
section.
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4. NUMERICAL TESTS

Each of the integrals studied here is inherently oscillatory and therefore difficult to evalu-
ate numerically, particularly since some of them may diverge. A simple way to explore the
properties of such entities is to transform each into a (infinite) summation by the elementary
act of subdividing the integration range into a large number of small, equal parts. By study-
ing the numerical convergence of the sum employing Cesàro summation (known to provide
a means of regularizing divergent – or difficult – sums), we obtain a means of verifying, or at
least increasing confidence, in the identities that have been developed here (see Appendix A).

(a) Cesàro approximation to the function
defined in (4.45) with σ = r = 4, suggest-
ing divergence of order T/2

(b) Cesàro approximation to the function
defined in (4.45) with σ = 4, r = 3.9, sug-
gesting convergence to zero

FIGURE 3. Numerical approximations to (4.45)

4.1. σ > 1. First, we consider the simple case σ ≫ 1, (where the (oscillatory) integral is ex-
pected to converge when r ̸= n and there are no issues associated with analytic continuation),
by setting σ = 4 and comparing the cases r = 4 and r = 3.9. According to (3.27), the integral

lim
T→∞

∫ T

0

ℜ
(
ζ(4 + i t) r4+i t

)
dt = 0 , r ̸= n,(4.45)

but could be either zero or infinite if r = n, depending on how the derivative is defined – see
Section 2.4. Figure (3a) is suggestive that (4.45) diverges to infinity of O(T 1), at least when
r = 4. Similarly, when r = 3.9, Figure (3b) is consistent with (4.45) and lends credibility to that
identity, which states that the approximation should converge to zero.
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(a) Cesàro approximation to the function
defined in (4.46) with σ = 1/2, r =
0.9, r = 1.1 and r = 2.1, suggesting con-
vergence to −πr as T increases

(b) Cesàro approximation to the function
defined in (4.46) with σ = 1/2, r = 1
and r = 2, revealing a reasonable indica-
tion of divergence. The two cases are nu-
merically indistinguishable within graph-
ical resolution

FIGURE 4. Numerical approximations to (4.46)

4.2. 0 < σ < 1. It is also of interest to calculate the similar case where σ < 1; that is, from (3.41)
we consider the identity

∫ ∞

0

ℜ
(
ζ(σ + i t) rσ+i t

)
dt = −π r r ̸= n(4.46)

for several different values of r and σ. Before doing so, we rewrite the finite version of (4.46) in
several equivalent forms:

∫ T

0

ℜ
(
ζ (σ + i t) rσ+i t

)
dt =

rσ

2

∫ T

−T

ζ (σ − i t ) e−i t ln(r)dt(4.47)

=rσ
∫ T

0

cos (t ln (r)) ζR (σ + i t)− sin (t ln (r)) ζI (σ + i t) dt(4.48)

=

∫ T

0

|ζ (σ + i t) |2 cos (t ln (r) + arg (ζ (σ + i t))) dt(4.49)

and consider the above as T → ∞. Inspired by Figure 3b, we speculate that the integral itself,
as a function of T , reflects the periodic nature of the trigonometric terms of the integrand. That
this is more than speculation is illustrated in Figure 4a, showing a slow, but steady convergence
to −πr using several values of r ̸= n and σ = 1/2. In addition, the unexpected periodicity of
the integral reappears, to be studied in Section 4.4. In the case r = n, Figure 4b suggests that
(4.46) diverges of O(T 1).
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FIGURE 5. Cesàro approximations to the function defined in (4.46) with r =
2.1 and various 0 < σ ≤ 1, with σ = 1/3, σ = 3/4 and σ = 7/8 not shown
because they are numerically indistinguishable, within the resolution of the
figure, from the case σ = 1/2 selected. The arrows mark integral multiples of
a conjectured period ρ

When a similar calculation is performed for different values of 0 < σ ≤ 1 and constant r,
the Cesàro estimate also converges to the expected limit (4.46), which limit varies only if σ = 1
as expected (see Remark 3.6 and (3.41)). This is illustrated in Figure 5, which focusses on the
Cesàro estimates for several values of σ and constant r = 2.1. This figure shows only the cases
σ = 1/2 and σ = 1 because the others are indistinguishable from the case σ = 1/2 within
graphical resolution and again reveals a strong periodicity.

It is also of interest to question how (4.46) converges to its discontinuous limit. Figure 6
shows that the convergence for r = 1.01 and r = 1.001 exists but it takes longer to “turn over"
as r approaches unity. Significantly, once it does “turn over“, it will approach the finite limit
−πr, rather than diverging. Since we shall shortly see that the oscillations in the partial sum
appear to be influenced by a periodicity ρ = 2π/ ln(r), when r = 1 the curve will never turn
over, and (4.46) becomes infinite at r = 1. However, as Figure 6 shows, this does not lead to
any insight concerning the case r ≈ 2, or indeed any other integer – see Figures 3a and 4b.

In a final study of this case, Figure 7 presents a detailed view near a minimum, of the Cesàro
estimates with σ = 1/2, σ = 0 and σ = −1/2, all of which, according to (4.46), should converge
to the same limit; as observed in this figure they are effectively indistinguishable within graph-
ical resolution. We also note that the partial sum estimate for σ = −1/2 is far more varied than
is the same estimate for the integral corresponding to σ = 1/2 (shown below in Figure 11a of
Section 4.4), but it still intersects the asymptotic line −2.1π near the minimum of the Cesàro
estimates.
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FIGURE 6. Study with r close to n. Down pointing vertical arrows indicate
multiples of the solution points t where t ln(1.01) = nπ, n ≥ 1. Up pointing
arrow labels two cases when r ≈ n

FIGURE 7. This is a detailed comparison between the Cesàro estimates with
three values of σ at constant r = 2.1. It also shows that the partial sum for
σ = −1/2 crosses the asymptotic line in three places

4.3. Derivatives. To test the identities involving derivatives, consider Figure 8, a test of (3.40)
showing convergence to the expected limit. Mindful of the ambiguity discussed with respect
to (3.30), we next consider Figure 9 showing that the difference of the two integrals (when
σ > 1) is tending to zero as expected. Figure 10 shows that (3.24) and (3.29) also appear to be
approaching their respective limits as predicted.
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FIGURE 8. A test of (3.40)
with σ = 1/3, r = 3/2

FIGURE 9. This Figure shows the
partial sum of both the difference of
the two integrals (red jagged curve)
and the second integrand term it-
self (connected by the arrow), as
well as the Cesàro estimate (dashed
curve), all of which are tending to
zero

(a) Test of (3.24) (i.e., σ > 1 and r ̸= n),
calculated as a difference of two integrals

(b) Test of (3.29) (i.e., σ > 1 and r = n),
calculated as a difference of two integrals

FIGURE 10. This Figure tests (3.24) and (3.29), both valid for σ > 1
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4.4. Periodicity. The periodicity of the estimates (e.g. Figure 5), suggests the existence of a
relationship with the periodicity of the integrand trigonometric functions, with a period being
integral multiples of a quantity ρ that satisfies the identity 2mπ = ρ ln(2.1), that is, if m = 1,
ρ = 8.47 – see (4.48). The arrows in Figure 5 indicate an approximate observed periodicity of
the Cesàro estimate equal to 15ρ, with a small phase shift as T increases. At a higher multiple
of the initial period (∼ 180ρ) the minimum appears to be shifted slightly. This is examined in
more detail in Figure 11.

(a) The small down arrow marks the point
corresponding to the fifteenth harmonic of
the assumed period ρ. The two other ar-
rows indicate the minimum of the respec-
tive Cesàro approximation when σ = 1/2
and σ = 1. The partial sum corresponding
to the numerical integration is also shown
crossing the line (−2.1π) that marks the
asymptotic limit

(b) The small down arrows mark the
points at a multiple of the harmonic in
Figure 11a. The two other arrows indi-
cate the minimum of the respective Cesàro
approximation when σ = 1/2 and σ =
1. The partial sum corresponding to the
numerical integration up to the point T ,
is also shown crossing the lines (−1.05π)
and (−2.1π) that mark the asymptotic
limit for σ = 1 and σ = 1/2 respectively.
When σ = 1/2, this occurs at T = 1549.31

FIGURE 11. Focus on the Cesàro approximations to the function defined in
(4.46) with r = 2.1 and various 0 < σ ≤ 1. The tested cases σ = 1/3, 3/4 and
σ = 1/2 are indistinguishable within graphical resolution

Because the minimum of the Cesàro estimate also appears to numerically coincide with the
asymptotic (T → ∞) value of the integral (−2.1π = −6.597), Figure 11a isolates the region
T ≈ 15ρ where it is shown that the near coincidence with the asymptotic result −2.1π is close to,
but not exactly in phase with the suspected periodicity within the accuracy of the numerical es-
timates used. Encouraged to speculate further by these near coincidences, consider Figure 11b
where the same estimates are presented when T ≈ 183ρ. Here we find a very near-coincidence
between the points where the partial sum crosses the asymptotic line (−2.1π) and the location
of the “harmonic" 183ρ. For comparison, the location of the 182nd harmonic is indicated by
its own arrow and we note the the minimum of the Cesàro estimate is bounded by those two
points.



On a generalized moment integral containing Riemann’s zeta function: Analysis and experiment 31

Although the Cesàro estimate appears to coincide with the asymptotic line in all these Fig-
ures, in fact careful study shows that it always lies a small distance above that line and by
reasonable interpolation, it is possible to determine the point and distance of closest approach.
These points are marked by large down arrows in Figure 11 and presented quantitatively in
Figure 12 where we can see that the distance of closest approach decreases as T increases, as
expected of a converging approximation. Furthermore, by reasonable interpolation of the par-
tial sums as they cross the asymptotic line, it is possible to test the possibility that the integral
itself is periodic in integer multiples of the variable ρ; although the period between successive
intersections was found to be within a few percent of the integral ratio 1 : 2 : 3 : · · · , the values
were never close enough to perfect integers to validate such a hypothesis, and after examining
several variations with different values of r, it seems that any postulated universal multiplier
increases with r and does not appear to exist.

FIGURE 12. For each minimum marked in Figure 5 this shows the distance
between the Cesàro estimate and the asymptotic line −2.1π. See down arrows
in Figure 11.

5. CORRELATIONS

As has been seen, the finite version of the integral Z ′(σ, r) is oscillatory with a periodicity
that is approximately constant if r ̸= n, suggesting that segments of the integral itself are peri-
odic and therefore correlated. Since the integral reflects the oscillatory nature of the integrand,
it is worthwhile to conjecture that the integrand itself possesses corresponding segments with
periodically correlated values. This could be a reflection of either (or both) of the cosine or
absolute value factors appearing in (4.49).

Specifically, if, as observed (see e.g., Figure 17b), a partial sum and therefore its correspond-
ing proper integral itself, is periodic, that is, in general, if∫ L2

L1

f (t) dt ≈
∫ L2+ρ

L1+ρ

f (t) dt, ∀ L1, L2,

then ∫ L2

L1

f (t+ ρ)− f (t) dt ≈ 0
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and one possibility is that f(t) and f(t + ρ) are correlated to some extent. With reference to
(4.49), one expects a considerable degree of periodicity attached to the cosine function; how-
ever, more intriguing is the possibility that a correlation exists between elements of ζ(σ + it)
lying on corresponding offset (i.e., shifted) segments of the imaginary line σ + it.

(a) This shows overlain segments of the argu-
ment of (4.49), each shifted relative to t = 0 by
the amounts ρ indicated. In all cases, r = 2.1

(b) This shows overlain segments of the func-
tion |ζ(1/2 + it)|2, each shifted relative to t = 0
by the amounts ρ indicated

FIGURE 13. This figure overlays two quantities, each shifted by t → t + ρ
shown

Again, inspired by Figures 5, 7 and 17b, Figure 13, which overlays three segments of the
imaginary line, each of length 126 (see Figure 11) and each offset from t = 0 by the quantity
ρ indicated, suggests that a correlation may, in fact, exist. This can be quantitatively explored
by devising a coefficient to measure any correlation that may exist between segments of the
Z ′(σ, r) integrand as a function of the offset quantity ρ.

For any two continuous functions f(t) and g(t), we borrow from the field of statistics, and
define a correlation coefficient Cor(f, g) by

Cor(f, g) =
Cov(f, g)√
Var(f)Var(g)

where the “Covariance“ between two functions f(t) and g(t) is defined by

Cov(f, g) ≡ E(fg)− E(f)E(g),

the “Variance" by
Var(f) ≡ E(f2)− E(f)2

in terms of the fundamental quantity “Expectation“ defined for any function h(t) by

(5.50) E(h) ≡ 1

L2 − L1

∫ L2

L1

h(t) dt .
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FIGURE 14. This Fig-
ure shows the correla-
tion coefficient between
f(t) = |ζ(1/2 + it)| and
f(t) = |ζ(1/2 + i(t+ ρ))|
as a function of ρ, between
offset intervals starting at
t = L1 as shown. Values
above 0.5 are considered to
be moderately correlated.

FIGURE 15. This Fig-
ure shows the correla-
tion coefficient between
f(t) = |ζ(3/4 + it)| and
f(t) = |ζ(3/4 + i(t+ ρ))| as
a function of ρ.

Effectively, the correlation coefficient measures the normalized (scaled between ±1) correlation
between the values of f(t) and g(t) averaged over the interval [L1, L2], with the statistical
average operator replaced here by a numerical integration operator. If Cov(f, g) is close to
±1, the functions f(t) and g(t) are strongly correlated/anticorrelated; if Cov(f, g) is close to
zero, they are uncorrelated; otherwise the strength of the (anti)correlation becomes a subject of
statistical study and opinion. Since we are not dealing here with statistical correlations between
individual Cesàro summation elements, it is worth noting an adage that encapsulates varied
opinion on this subject: correlation coefficients between 0.5 and 0.7 indicate variables that are
moderately correlated. See also [8].

In the light of the observations discussed previously, and based on Figure 7, in the fol-
lowing, set L2 = L1 + 126. Figure 14 shows the correlation coefficient Cor(f, g) between
f(t) = |ζ(1/2 + it)| and g(t) = |ζ(1/2 + i(t+ ρ))| as a function of ρ, evaluated over two con-
tiguous pairs of segments, one starting at L1 = 0, the other starting at L1 = 126. This indicates
that over a very narrow range of offset – notably ρ = 126.1 ± 0.6 – there exist offset segments,
between which the average value of ζ(1/2 + it) compared between each segment, is moder-
ately correlated. The fact that such contiguous segments exist and moderate correlation can
be found for very precise values of the offset ρ, suggests that this is not a random statistical
artifact. Therefore, it is reasonable to theorize that there exist other segments of the line 1/2+ it
among which the average value of the function |ζ(1/2 + it)| is moderately auto-correlated [4].
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This observation may in turn reflect on the distribution of zeros of the function ζ(1/2 + it) (see
[1]).

Since correlations between ζ(σ + it) and offset σ have been reported elsewhere [10, Section
6.4.1], all of the above suggests that we evaluate the correlation coefficient for a wider range of σ
over a wider range of ρ. This is performed in Figure 15 showing that moderate correlation exists
over a much broader range of ρ than the previous exercise would lead us to believe. In this
figure, we see that moderate correlation exists for offsets of ρ = 126.1±0.6 and ρ = 136.5±0.7 all
of which suggests that there exists an underlying offset of ρ ∼ 10.1 between correlated average
values of ζ(σ + it). Qualitatively, the separation of peaks in Figure 16 lends plausibility to this
conjecture. The study of offset (i.e., shifted) moments of the Zeta function involving integrals
similar to those studied here also can be found in the literature (e.g. [3], [13]).

FIGURE 16. A comparison of |ζ(3/4 + i(t+ ρ))| with two different offsets over
a small range of t. The corresponding comparisons for the real and imaginary
parts of ζ(σ + it) are given in Appendix C, Figures 18 and 19

6. SUMMARY

In this work, the functions Z(σ, r) and Z ′(σ, r) have been studied, both by analysis and
numerical experimentation. As discovered both here and elsewhere, these functions possess
the interesting property that for certain values of the parameter r, the value of the function
depends continuously on its limiting value as r approaches an integer n, but discontinuously at
the point of discontinuity r = n. In particular, the traditional limiting value of either function as
r → n is different from its value at r = n, demonstrating that both functions are discontinuous
and the traditional definition limr→n is invalid, but only at the limit point. With respect to
the function Z(σ, r), the value at the point of discontinuity r = n lies naturally, rather than
by decree, halfway between its value(s) as the limit point is approached from either direction.
This property was verified numerically.

The derivative function Z ′(σ, r) was also shown to have a similar property, notably that, for
a certain range of the parameter σ, it vanishes everywhere except at points r = n where it is di-
vergent. In this respect it represents one tine of the Dirac comb function, without the necessity
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of invoking limits or test functions. Again, this was verified numerically – the numbers speak
for themselves.

A very significant outcome of this study was the demonstration of the power of a modified
Cesàro summation to approximate an improper integral and to verify analytic predictions. It
is well-known (e.g., see Figures 16 and 17a) that the Riemann zeta function fluctuates wildly,
but somehow the Cesàro summation tames the fluctuations and exposes properties that would
otherwise have remained well-hidden. Certainly, without the Cesàro approximation, the quasi-
periodic nature of Z(σ, r) and the offset property of |ζ(1/2 + it)|) would be unrecognized.

Having brought all these interesting properties to light, it is necessary to acknowledge that
many questions remain, all of which are outside the scope of this study. Chief among them
leads one to question “Why is Cesàro approximation so effective?" Along the same lines, we
observe that the Cesàro approximation appears to always approach its asymptotic limiting
value from one direction – is this significant and is there a reason? With respect to the fact
that the modified Cesàro summation was originally introduced as a means of approximating
an improper integral, it is necessary to recognize that although T ∼ 4000, the maximum used
here, takes us a reasonable distance along the number line, it is still a long way to infinity. Thus
there is no assurance of the validity of the underlying assumption – the numerical observations
presented will continue to behave as they have done here, as T → ∞.

When studying the periodic nature of the functions, it was first observed that the offset pa-
rameter ρ = 126 yielded a reasonable suggestion of the existence of an underlying correlation,
but that this choice is probably serendipitous and reflects a deeper periodicity of ∼ 10. If that
is the case, the connection between a very clear Cesàro periodicity signal and a moderate un-
derlying auto-correlation of the integrand function remains to be investigated. The underlying
reason for the numerical value of any of the observed periodicities is not evident, and so it
must be finally noted that the numerical experiments reported here merely scratch the surface
of further study needed to verify these observations.

7. CAVEATS

The calculations and analysis in this work are based on two fundamental premises:
• Glasser’s Master Theorem (or, equivalently the translation of contour integrals) is valid

only if the integrand functions vanish appropriately at the integration end-points;
• The numerical integrations were performed initially using [9, Maple] and later [17,

Mathematica] when it was found that the latter executed orders of magnitude faster
than the former and gave the same answers. However, the overall validity is depen-
dent on the accuracy of algorithms built into these two computer codes on which our
results are dependent.
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APPENDIX A. CESÀRO SUMMATION - A PRIMER

Cesàro summation [2] assigns a value to an improper integral or sum that is not necessarily
convergent in the usual sense. In the first case, the Cesàro summability of an integral involves
the limit of the means of its partial integrals; in the second case it involves the limit of the means
of its partial sums. Here, we study an improper integral in a different way, by first converting
it into a sum, utilizing simple subdivision and numerical integration, and then employ Cesàro
summation to evaluate the sum. In particular we employ the Cesàro algorithm (C, 1) [16],
defined as the limit, as J tends to infinity, of the sequence of arithmetic means of the first J
partial sums of the series. Since we are here interested in improper integrals, some of which
possess debatable convergence status, by transforming each integral into a corresponding sum
and observing a large number of partial sums, we obtain, if convergent, a valid estimate of its
value, and, if divergent, an accepted regularization, which may, or may not, tend to infinity. To
be specific, consider an integral

(A.51) H(T ) =

∫ T

0

h(t)dt

where we are interested in the limit T → ∞ . Subdivide the integral into small parts defined
by

(A.52) h (tj) =

∫ tj+δ

tj

h (t) dt

so that

(A.53) H (tm) =

m∑
j=1

h (tj)

where t1 = 0, tJ + δ = T and H(T ) = H(tJ). As employed here, we set δ = 1 and evaluate
each of the elements h(tj) by numerical integration over the appropriate interval to arrive at

https://stats.stackexchange.com/questions/233606/exact-meaning-of-correlation\-coefficient
https://stats.stackexchange.com/questions/233606/exact-meaning-of-correlation\-coefficient
http://encyclopediaofmath.org/index.php?title=Ces%C3%A0ro_summation_methods&oldid=26199
http://encyclopediaofmath.org/index.php?title=Ces%C3%A0ro_summation_methods&oldid=26199
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an accurate numerical estimate of the value of the integral H(tm) over some interval defined
by the choice of j ≤ m. We now form partial sums defined by

(A.54) Pk =

k∑
m=1

H (tm) , k ≤ J,

and form the running average of each partial sum

(A.55) Hn =
1

n

n∑
k=1

Pk n ≤ J .

(a) Individual integration elements h(tj).

(b) The corresponding partial sums Pk.
These also equate to the numerical value
of the integral (4.47) as a function of its up-
per limit T . The asymptotic limit −2.1π is
also shown.

FIGURE 17. A comparison of individual elements and partial sums. The aver-
age of the partial sums Pk can be found in Figure 4a.

If the sum is convergent, when n = J , HJ , the Cesàro sum, is an accurate numerical estimate
[14, VI.8] of the sum of the series (A.53) and hence of the finite integral (A.51) and our interest
focusses on HJ as J → ∞. The advantage of evaluating the integral in this manner is that it
affords the analyst a simple means to study the properties of the integral as it converges to its
upper limit, and, in the case of violently oscillating integrands, averaging the running partial
sums tends to smooth any associated noise. If the integral diverges, it is still possible that the
sum Hn will converge to some finite value as n → J as J itself increases, thereby yielding one
possible regularization of a divergent series and its underlying divergent integral – the sum of
the series being defined (i.e., regularized) by the average of its partial sums. It is educational to
consider an example examined in this study.

Figure 17a demonstrates that the individual elements h(tj) of the subdivision of the integral
(4.46) under consideration vary wildly as expected for the choice σ = 1/2 and r = 2.1. Figure
17b shows that the partial sum of these elements varies considerably less violently than do the
individual elements themselves. Since the partial sum equates to the numerical evaluation of
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the integral with varying upper limit, in this case we see that the finite integral periodically
intercepts its own asymptotic value and is itself periodic. Finally, as presented previously in
Figure 4a, we see that the act of averaging the partial sums has completely washed out the
noise, suggesting that the integral is dominated by the periodic components of its integrand.
This is studied in Section 4.

Remark A.7. We note that it is the rare analyst who would pause to consider the average characteristics
of the individual elements of a numerical integration and it is only through the use of Cesàro summation
that one might consider such an examination.

APPENDIX B. AN ENIGMATIC DERIVATION

As an alternative to the derivation presented in Section 2.2, here we consider an attempted
independent derivation of (2.12) and (2.13) by direct integration of an identity equivalent to the
well-known [15, Eq. (2.1.4)], and convergent, integral representation

ζ
(
3
2 − i t

)
3
2 − i t

=

∫ ∞

1

⌊x⌋ − x+ 1
2

x
5
2−i t

dx+
1(

3
2 − i t

) (
1
2 − i t

) + 1

3− 2 i t
(B.56)

=

∫ ∞

1

⌊x⌋ − x+ 1
2

x
5
2−i t

dx+
1
2 + i t

t2 + 1/4
−

3
2 + i t

2 (t2 + 9/4)
.(B.57)

First, pre-multiply by r−i t and integrate (B.57), leading us to consider the integral

∫ ∞

−∞

ζ
(
3
2 − i t

)
r−i t

3
2 − i t

dt =

∫ ∞

1

(
⌊x⌋ − x+ 1

2

)
x

5
2

∫ ∞

−∞

(x
r

)i t
dt dx

+

∫ ∞

−∞

r−i t (1/2 + i t)

t2 + 1/4
dt− 1

2

∫ ∞

−∞

r−i t (3/2 + i t)

t2 + 9/4
dt(B.58)

where the double integral operators in the first (right-hand side) term have been transposed.
In a fashion similar to (1.6) and (1.7), with respect to the latter two integrals, we find

∫ ∞

−∞

r−i t
(
1
2 + i t

)
t2 + 1

4

dt =
1

2

∫ ∞

−∞

cos (t ln (r)) + 2 t sin (t ln (r))

t2 + 1/4
dt

=
2π√
r

if r > 1;

= 2π if r = 1;

= 0 if 0 < r < 1(B.59)

and

1

2

∫ ∞

−∞

r−i t
(
3
2 + i t

)
t2 + 9

4

dt =
1

2

∫ ∞

−∞

3
2 cos (t ln (r)) + t sin (t ln (r))

t2 + 9/4
dt

=
π

r
3
2

if r > 1;

= π if r = 1;

= 0 if 0 < r < 1 .(B.60)
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We now consider the first (right-hand side) term in (B.58) and, making use of the identity
(Maple, Mathematica)

(B.61)
∫ ∞

−∞
cos
(
t ln

(x
r

))
dt = 2πδ

(
ln
(x
r

))

along with the change of variables ln(xr ) := x, we obtain

∫ ∞

1

x− 5
2

(
⌊x⌋ − x+

1

2

)∫ ∞

−∞

(x
r

)it
dtdx

=

∫ ∞

1

x− 5
2

(
⌊x⌋ − x+

1

2

)∫ ∞

−∞
cos
(
t ln

(x
r

))
dtdx

=− πr−
3
2

∫ ∞

− ln(r)

(2 r ex − 2 ⌊r ex⌋ − 1) e−3x/2δ (x) dx

=− πr−
3
2 (2r − 2⌊r⌋ − 1) if r > 1;

=πn− 3
2 if r = n, n ≥ 1;

=0 if 0 < r < 1.(B.62)

Remark B.8. Nowhere in this derivation does r = n suggest the existence of a special discontinuous
case, and, in all cases, particularly (B.62), the case r = n simply corresponds to the reduction r → n of
the more general case corresponding to r > 1. In contrast, see Remark 2.3.

Putting it all together, this derivation yields the prospective, but aberrant, identity

∫ ∞

−∞

ζ
(
3
2 − it

)
3
2 − i t

r
3
2−itdt = 2π⌊r⌋ if r > 1 ;

= 2πn if r = n, n ≥ 1;

= 0 if 0 < r < 1 .(B.63)

Remark B.9. Note that

• (i) the derivations (2.13) and (B.63) disagree when r = n;
• (ii) the disagreement extends to the numerical evaluation presented in Figure 1, and
• (iii) this derivation employs the traditional definition of the floor function (Remark 1.2).

APPENDIX C. TWO FIGURES

The following two figures present the real and imaginary components of the functions shown
in Figure 16.
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FIGURE 18. A comparison of ℜζ(3/4+ i(t+ ρ)) with two different offsets over
a small range of t

FIGURE 19. A comparison of ℑζ(3/4+ i(t+ ρ)) with two different offsets over
a small range of t
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1. INTRODUCTION

Banach contraction principle is one of the earlier and main results in fixed point theory.
Banach contraction principle [1] was proved in complete metric spaces. Many generalizations
of the concept of metric spaces are defined and some fixed point theorems were proved in these
spaces. In particular, b-metric spaces were introduced by Bakhtin [2] and Czerwik [4], in such
a way that triangle inequality is replaced by the b-triangle inequality. Various mathematician
considered a lot of interesting extensions and generalizations [3, 6, 14]. Piri and Kumam [12]
introduced new type of contractions called F-contraction and F-weak contraction and proved
new fixed point theorems concerning F-contractions. Very recently, Kari et al. [7] introduced
the notion of (θ − ϕ)-contraction in these metric spaces and proved a fixed point theorem.

Definition 1.1 ([5]). Let X be a nonempty set s ≥ 1 be a given real number and let d : X × X →
[0,+∞[ be a mapping such that for all x, y ∈ X and all distinct points u, v ∈ X each distinct from x
and y:

(i) d(x, y) = 0 if only if x = y,
(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] (b-rectangular inequality).

Then, (X, d) is called a b-rectangular metric space.

In 1971, S. Reich [14] presented the following lemma to establish some remarks concerning
contraction mappings

Lemma 1.1 ([14]). Let (X, d) be a b-rectangular metric space.
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(i) Suppose that sequences {xn} and {yn} ∈ X are such that xn → x and yn → y as n → ∞, with
x ̸= y, xn ̸= x and yn ̸= y for all n ∈ N. Then, we have

1

s
d(x, y) ≤ lim

n→∞
inf d(xn, yn) ≤ lim

n→∞
sup d(xn, yn) ≤ sd(x, y).

(ii) If y ∈ X and {xn} is a Cauchy sequence in X with xn ̸= xm for any m,n ∈ N,m ̸= n,
converging to x ̸= y, then

1

s
d(x, y) ≤ lim

n→∞
inf d(xn, y) ≤ lim

n→∞
sup d(xn, y) ≤ sd(x, y) ∀x ∈ X.

Lemma 1.2 ([9]). Let (X, d) be a b-rectangular metric space and let {xn} be a sequence in X such that

lim
n→∞

d(xn, xn+1) = lim d(xn, xn+2) = 0.

If {xn} is not a Cauchy sequence, then there exist ϵ > 0 and two sequences {mk} and {nk} of positive
integers such that

(i) ϵ ≤ limk→∞ inf d(xm(k)
, xn(k)

) ≤ limk→∞ sup d(xm(k)
, xn(k)

) ≤ sϵ,
(ii) ϵ ≤ limk→∞ inf d(xn(k)

, xm(k)+1
) ≤ limk→∞ sup d(xn(k)

, xm(k)+1
) ≤ sϵ,

(iii) ϵ ≤ limk→∞ inf d(xm(k)
, xn(k)+1

) ≤ limk→∞ sup d(xm(k)
, xn(k)+1

) ≤ sϵ,
(iv) ϵ

s ≤ limk→∞ inf d(xm(k)+1
, xn(k)+1

) ≤ limk→∞ sup d(xm(k)+1
, xn(k)+1

) ≤ s2ϵ.

Definition 1.2 ([16]). Let F be the family of all functions F : R+ → R such that
(i) F is strictly increasing,

(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,

(iii) There exists k ∈]0, 1[ such that limx→0 x
kF (x) = 0.

In 2018, the following result was appeared.

Theorem 1.1 ([15]). Let (X, d, s) be a complete b-metric space and T be a self-map on X. Assume
that there exist τ > 0 and a function F :]0,+∞[→ R satisfying a sequence tn ∈]0,+∞[ such that
τ + F (d(Tx, Ty)) ≤ F (d(x, y)) holds for all x, y ∈ X with Tx ̸= Ty. Then, T has a unique fixed
point.

Recently, Piri and Kuman [12] extended the result of Wardowski [17, Definition 1.6] as fol-
low:

Definition 1.3 ([12]). Let F be the family of all functions F : R+ → R such that
(i) F is strictly increasing,

(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,

(iii) F is continuous.
The following definition introduced by Wardowski [17] will be used to prove our result.

Definition 1.4 ([17]). Let F be the family of functions F : R+ → R and ϕ :]0,+∞[→]0,+∞[ satisfy
the following:

(i) F is strictly increasing,
(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,
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(iii) lim infs→α+ ϕ(s) > 0, ∀s > 0,
(iv) There exists k ∈]0, 1[ such that

lim
x→0+

xkF (x) = 0.

Theorem 1.2 ([17]). Each F -contraction T on a complete metric space (X, d) has a unique fixed point.
Moreover, for each x0 ∈ X, the corresponding Picard sequence {Tnx0} converges to that fixed point.

Recently, Kari and Rossafi [10] gave the following definition.

Definition 1.5 ([10]). Let F be the family of all functions F : R+ → R and ϕ :]0,+∞[→]0,+∞[
satisfy the following:

(i) F is strictly increasing,
(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,

(iii) lim infs→α+ ϕ(s) > 0, ∀s > 0,
(iv) There exists k ∈]0, 1[ such that

lim
x→0+

xkF (x) = 0,

(v) For each sequence αn ∈ R+ of positive numbers such that ϕ(αn) + F (s αn+1) ≤ F (αn) for all
n ∈ N, then ϕ(αn) + F (snαn+1) ≤ F (sn−1αn) for all n ∈ N.

Definition 1.6 ([9]). Let F be the family of all functions F : R+ → R and ϕ : ]0,+∞[ → ]0,+∞[
satisfy the following:

(i) F is strictly increasing,
(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,

(iii) lim infs→α+ ϕ(s) > 0, ∀s > 0,
(iv) F is continuous.

Definition 1.7 ([17]). Let (X, d) be a metric space. A mapping T : X → X is called an (ϕ, F )-
contraction on (X, d), if there exists F ∈ F and ϕ such that

F (d(Tx, Ty) + ϕ(d(x, y)) ≤ F (d(x, y))

for all x, y ∈ X for which Tx ̸= Ty.

In this paper, using the idea introduced by Wardowski [17], we introduce the concept of
(ϕ, F )-Gregus contraction and Gregus type quadratic contraction in b-rectangular metric spaces
and prove some fixed point results for such spaces. Our results are validated by suitable exam-
ples.

2. MAIN RESULT

Now, we introduce the following:

Definition 2.8. Let (X, d) be a b-rectangular metric space with parameter s > 1 space and T : X → X
be a mapping. T is said to be a (ϕ, F )-Gregus contraction if there exist F ∈ F and ϕ ∈ Φ such that

(2.1) d(Tx, Ty) > 0 =⇒ F [s2d(Tx, Ty)] + ϕ(d(x, y)) ≤ F [M(x, y)]

where
M(x, y) = ad(x, y) + (1− a)max {d(x, Tx), d(y, Ty), d(y, Tx)} , 0 ≤ a ≤ 1.
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Example 2.1. Let F (x) = 1− 1
x . Then, it is easy to prove that F (x) is strictly increasing for x > 0 as

xn → 0+, F (xn) = 1 − 1
x → −∞. Also, the function F (x) = 1 − 1

x is continuous for x > 0. Again,
if we choose ϕ(s) = s which satisfies lim infs→α+ ϕ(s) > 0 for all s > 0. Therefore, F (x) = 1 − 1

x
belongs to F. Let T (x) = x

4 . We now compute

M(x, y) = ad(x, y) + (1− a)max {d(x, Tx), d(y, Ty), d(y, Tx)} , 0 ≤ a ≤ 1.

Using the metric d(x, y) = |x− y|, we have d(x, Tx) =
∣∣x− x

4

∣∣ = ∣∣ 3x
4

∣∣ , d(y, Ty) = ∣∣y − y
4

∣∣ = ∣∣ 3y
4

∣∣ ,
d(y, Tx) =

∣∣y − x
4

∣∣ = ∣∣ 4y−x
4

∣∣ . Thus, we can express M(x, y) as:

M(x, y) = a|x− y|+ (1− a)max

{
3x

4
,
3y

4
,
|4y − x|

4

}
.

Now, we have

F [s2d(Tx, Ty)] + ϕ(d(x, y)) = F [
s2

16
|x− y|] + ϕ(|x− y|)

≤ F [s2d(Tx, Ty)] + F [a|x− y|+ (1− a)max

{
3x

4
,
3y

4
,
|4y − x|

4

}
≤ F [M(x, y)].

Thus, all the conditions of Definition 2.8 are satisfied.

Remark 2.1. The above example does not satisfy corresponding Definition presented in [10] and [17].

Now, we present our main result.

Theorem 2.3. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be an (ϕ−F )-
Gregus contraction (F) i.e, there exist F ∈ F and ϕ such that for any x, y ∈ X, satisfying (2.1) then, T
has a unique fixed point.

Proof. Suppose x0 ∈ X be an arbitrary point in X and define a sequence {xn} by xn+1 = Txn =
Tn+1x0, for all n ∈ N. If there exists n0 ∈ N such that d(xn0

, xn0+1) = 0, then proof is finished.
We can suppose that d(xn, xn+1) > 0 for all n ∈ N. Substituting x = xn−1 and y = xn, from
(2.1), for all n ∈ N, we have

(2.2) F [d(xn, xn+1)] ≤ F [s2d(xn, xn+1)] + ϕ(d(xn−1, xn)) ≤ F (M(xn−1, xn)),∀n ∈ N,

where

M(xn−1, xn) = ad(xn−1, xn)

+ (1− a)max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn+1, xn+1)}
= ad(xn−1, xn) + (1− a)max{d(xn−1, xn), d(xn, xn+1)}
= d(xn, xn+1).

If M(xn−1, xn) = d(xn, xn+1), by (2.2), we have
F [d(xn, xn+1)] ≤ F [d(xn, xn+1)] − ϕ(d(xn−1, xn)) < F (d(xn, xn+1)). Since F is increasing, we
have

(2.3) d(xn, xn+1) < d(xn−1, xn)

which is a contradiction. Hence, M(xn−1, xn) = d(xn−1, xn). Thus,

(2.4) F [d(xn, xn+1)] ≤ F [d(xn−1, xn)]− ϕ(d(xn−1, xn)).
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Repeating this step, we conclude that

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− ϕ(d(xn−1, xn))

≤ F (d(xn−2, xn−1))− ϕ(d(xn−1, xn))− ϕ(d(xn−2, xn−1))

≤ · · · ≤ F (d(x0, x1))−
n∑

i=0

ϕ(d(xi, xi+1)).

Since lim infα→s+ ϕ(α) > 0, we have lim infn→∞ ϕ(d(xn−1, xn)) > 0, then from the definition of
the limit, there exists n0 ∈ N and A > 0 such that for all n ≥ n0, ϕ(q(xn−1, xn)) > A, hence

F (d(xn−1, xn+1)) ≤ F (d(x0, x1))−
n0−1∑
i=0

ϕ(d(xi, xi+1))−
n∑

i=n0−1

ϕ(d(xi, xi+1))

≤ F (d(x0, x1))−
n∑

i=n0−1

A

= F (d(x0, x1))− (n− n0)A(2.5)

for all n ≥ n0. Taking the limit as n → ∞ in the above inequality, we get

(2.6) lim
n→∞

F (d(xn, xn+1)) ≤ lim
n→∞

[F (d(x0, x1))− (n− n0)A],

that is, limn→∞ F (d(xn, xn+1)) = −∞. Then, from the condition (ii) of Definition 1.3, we con-
clude that

(2.7) lim
n→∞

d(xn, xn+1) = 0.

Next, we shall prove that
lim

n→∞
d(xn, xn+2) = 0.

We assume that xn ̸= xm for every n,m ∈ N, n ̸= m. Suppose that xn = xm for some n = m+ k
with k > 0 and using (2.2)

(2.8) d(xm, xm+1) = d(xn, xn+1) < d(xn−1, xn).

Continuing this process, so that d(xm, xn+1) = d(xn, xn+1) < d(xm, xm+1). It is a contradiction.
Therefore, d(xn, xm) > 0 for every n,m ∈ N, n ̸= m. Now, applying (2.1) with x = xn−1 and
y = xn+1, we have

F (d(xn, xn+2)) = F [d(Txn−1, Txn+1)]

≤ F [s2d(Txn−1, Txn+1)]

≤ F (M(xn−1, xn+1))− ϕ(d(xn−1, xn)),(2.9)

where

M(xn−1, xn+1) = ad(xn−1, xn+1)

+ (1− a)max {d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2), d(xn+1, xn)}
= ad(xn−1, xn+1) + (1− a)max{d(xn−1, xn+1), d(xn−1, xn)}
= d(xn−1, xn+1).

So, we get

(2.10) F (d(xn, xn+2) ≤ F (max{d(xn−1, xn), d(xn−1, xn+1)})− ϕ(d(xn−1, xn+1)).

Take an = d(xn, xn+2) and bn = d(xn, xn+1). Thus by (2.10), one can write

(2.11) F (an) ≤ F (max(an−1, bn−1))− ϕ(d(an−1)).
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Since F is increasing, we get

an < max{an−1, bn−1}.

By (2.2), we have

bn ≤ bn−1 ≤ max(an−1, bn−1)

which implies that

max{an, bn} ≤ max{an−1, bn−1}, ∀ n ∈ N.

Therefore, the sequence max{an−1, bn−1}n∈N is non-negative decreasing sequence of real num-
bers. Thus, there exists λ ≥ 0, such that

lim
n→∞

max{an, bn} = λ.

By (2.6) assume that λ > 0, we have

λ = lim
n→∞

sup an = lim
n→∞

supmax{an, bn} = lim
n→∞

max{an, bn}.

Taking the lim supn→∞ in (2.10) and applying the continuity of F and the property of ϕ, we get

F ( lim
n→∞

sup an) ≤ F ( lim
n→∞

supmax{an−1, bn−1})− lim
n→∞

supϕ(an−1)

≤ F ( lim
n→∞

supmax{an−1, bn−1})− lim
n→∞

inf ϕ(an−1)

< F ( lim
n→∞

max{an−1, bn−1}).

Therefore,

F (λ) < F (λ)

which is a contradiction. Hence,

(2.12) lim
n→∞

d(xn, xn+2) = 0.

Next, we shall prove that {xn}n ∈ N is a Cauchy sequence, i.e, limn→∞ d(xn, xm) = 0, for all
n,m ∈ N. Suppose to the contrary. By Lemma 1.2, then there is ϵ > 0 such that for an integer k
there exists two sequences {mk} and {nk} such that

(i) ϵ ≤ limk→∞ inf d(xm(k)
, xn(k)

) ≤ limk→∞ sup d(xm(k)
, xn(k)

) ≤ sϵ,
(ii) ϵ ≤ limk→∞ inf d(xn(k)

, xm(k)+1
) ≤ limk→∞ sup d(xn(k)

, xm(k)+1
) ≤ sϵ,

(iii) ϵ ≤ limk→∞ inf d(xm(k)
, xn(k)+1

) ≤ limk→∞ sup d(xm(k)
, xn(k)+1

) ≤ sϵ,
(iv) ϵ

s ≤ limk→∞ inf d(xm(k)+1
, xn(k)+1

) ≤ limk→∞ sup d(xm(k)+1
, xn(k)+1

) ≤ s2ϵ.

From (2.2) and by setting x = xmk
and y = xnk

, we have,

lim
k→∞

M(xmk
, xnk

) =ad(xmk
, xnk

)

+(1− a)max {d(xmk
, xnk

), d(xmk
, xmk+1), d(xnk

, xnk+1), d(xnk
, xmk+1)}

≤sϵ.(2.13)

Now, using (2.1) with x = xmk
and y = xnk

, we get

(2.14) F [s2d(xmk+1, xnk+1] ≤ F (M(xmk
, xnk

))− ϕ(d(xmk
, xnk

)).
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Letting k → ∞ the above inequality and applying (2.13) and (iv), we get

F (
ϵ

s
s2) = F (ϵs)

≤ F (s2 lim
k→∞

sup d(xmk+1, xnk+1))

= lim
k→∞

supF (s2d(xmk+1, xnk+1))

≤ lim
k→∞

supF (M(xmk
, xnk

)− lim
k→∞

supϕ(d(xmk
, xnk

))

= F (M(xmk
, xnk

))− lim
k→∞

supϕ(d(xmk
, xnk

))

≤ F (M(xmk
, xnk

))− lim
k→∞

inf ϕ(d(xmk
, xnk

))

< F ( lim
k→∞

supM(xmk
, xnk

))

≤ F (sϵ).

Therefore,

F (sϵ) < F (sϵ).

Since F is increasing, we get

sϵ < sϵ

which is a contradiction. So limn,m→∞ d(xm, xn) = 0. Hence, {xn} is a Cauchy sequence in X.
By completeness of (X, d), there exists z ∈ X such that

lim
n→∞

d(xn, z) = 0.

Now, we show that d(Tz, z) = 0 arguing by contradiction, we assume that

d(Tz, z) > 0.

Since xn → z as n → ∞ for all n ∈ N, then from Lemma 1.1 so that

(2.15)
1

s
d(z, Tz) ≤ lim

n→∞
sup d(Txn, T z) ≤ sd(z, Tz).

Now, we are using (2.1) with x = xn and y = z, we have

F (s2d(Txn, T z)) ≤ F (M(xn, z))− ϕ(d(xn, z)),∀ n ∈ N,

where

M(xn, z) = a d(xn, z) + (1− a)max {d(xn, z), d(xn, Txn), d(z, Tz), d(z, Txn)}

and

(2.16) lim
n→∞

supmax {d(xn, z), d(xn, Txn), d(z, Tz), d(z, Txn)} = d(z, Tz).

Therefore,

(2.17) F (s2d(Txn, T z)) ≤ F (max {d(xn, z), d(xn, Txn), d(z, Tz), d(z, Txn)})− ϕ(d(xn, z)).
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By letting n → ∞ in inequality (2.17), using (2.15), (2.16) and continuity of F , we obtain

F (s2
1

s
d(z, Tz)) = F (sd(z, Tz))

≤ F (s2 lim
n→∞

sup d(Txn, T z))

= lim
n→∞

supF (s2d(Txn, T z))

≤ lim
n→∞

supF (M(xn, z))− lim
n→∞

ϕ(d(xn, z))

= F (d(Tz, z))− lim
n→∞

ϕ(d(xn, z))

< F (d(z, Tz)).

Since F is increasing, we get
sd(z, Tz) < d(z, Tz),

which implies that d(z, Tz)(s− 1) < 0 implies s < 1, which is contradiction. Hence, Tz = z.
Therefore, we have

d(z, u) = d(Tz, Tu) > 0.

Applying (2.1) with x = z and y = u, we have

F (d(z, u)) = F (d(Tz, Tu)) ≤ F (s2d(Tz, Tu)) ≤ F (M(z, u))− ϕ(d(z, u)),

where

M(z, u) = a d(z, u) + (1− a)max {d(z, u), d(z, Tz), d(u, Tu), d(u, Tz)}
= d(z, u).

Therefore, we have

F (d(z, u)) ≤ F (d(z, u))− ϕ(d(z, u))

< F (d(z, u))

which implies that d(z, u) < d(z, u), which is a contradiction. Therefore, u = z. □

Now, we introduce a (ϕ, F )-Gregus type quadratic contraction as follows:

Definition 2.9. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be an
(ϕ − F )-Gregus type quadratic type contraction (F), i.e, there exist F ∈ F and ϕ such that for any
x, y ∈ X, we have

(2.18) d(Tx, Ty) > 0 =⇒ F [s2d2(Tx, Ty) + ϕ(d2(x, y))] ≤ F [M(x, y)],

where
M(x, y) = ad2(x, y) + (1− a)max

{
d2(x, Tx), d2(y, Ty), d2(y, Tx)

}
.

Example 2.2. Let X = R+ be a usual metric and T : R+ → R be the function defined by T (x) = x
2 .

Let F (x) = log x and ϕ(x) = 1
x . We need to verify the condition in (2.18). We have d2(Tx, Ty) =

1
4d

2(x, y). Again, we have

M(x, y) = ad2(x, y) + (1− a)max
{
d2(x, y), d2(x, Tx), d2(y, Ty), d2(Tx, y)

}
= a|x− y|2 + (1− a)max

{
1

4
x2,

1

4
y2,

∣∣∣y − x

2

∣∣∣2} .
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On the other hand,

F [M(x, y)] = log

(
ad2(x, y) + (1− a)max

{
1

4
x2,

1

4
y2,

∣∣∣y − x

2

∣∣∣2})
≤ F [M(x, y)].

Thus, all the conditions of Definition 2.9 are satisfied. Now, we present our next result.

Theorem 2.4. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be a (ϕ− F )-
Gregus type quadratic (F) contraction. Then, T has a unique fixed point.

Proof. Suppose x0 ∈ X be an arbitrary point in X and define a sequence {xn} by xn+1 = Txn =
Tn+1x0, for all n ∈ N. If there exists n0 ∈ N such that d(xn0

, xn0+1) = 0, then proof is finished.
We can suppose that d(xn, xn+1) > 0 for all n ∈ N. Substituting x = xn−1 and y = xn, from
(2.1), for all n ∈ N, we have

(2.19) F [d2(xn, xn+1)] ≤ F [s2d2(xn, xn+1)] + ϕ(d2(xn−1, xn)) ≤ F (M(xn−1, xn)),

where
M(xn−1, xn) = ad2(xn−1, xn)

+ (1− a)max{d2(xn−1, xn), d
2(xn−1, xn), d

2(xn, xn+1), d
2(xn+1, xn+1)}

= ad2(xn−1, xn) + (1− a)max{d2(xn−1, xn), d
2(xn, xn+1)}

= d2(xn, xn+1).

If M(xn−1, xn) = d2(xn, xn+1), by (2.19), we have
F [d2(xn, xn+1)] ≤ F [d2(xn, xn+1)] − ϕ(d2(xn−1, xn)) < F (d2(xn, xn+1)). Since F is increasing,
we have

(2.20) d2(xn, xn+1) < d2(xn−1, xn)

which is a contradiction. Hence, M(xn−1, xn) = d2(xn−1, xn). Thus,

(2.21) F [d2(xn, xn+1)] ≤ F [d2(xn−1, xn)]− ϕ(d2(xn−1, xn)).

Repeating this step, we conclude that

F (d2(xn, xn+1)) ≤ F (d2(xn−1, xn))− ϕ(d2(xn−1, xn))

≤ F (d2(xn−2, xn−1))− ϕ(d2(xn−1, xn))− ϕ(d2(xn−2, xn−1))

≤ · · · ≤ F (d2(x0, x1))−
n∑

i=0

ϕ(d2(xi, xi+1)).

Since lim infα→s+ ϕ(α) > 0, we have lim infn→∞ ϕ(d2(xn−1, xn)) > 0, then from the definition
of the limit, there exists n0 ∈ N and A > 0 such that for all n ≥ n0, ϕ(q(xn−1, xn)) > A, hence

F (d2(xn−1, xn+1)) ≤ F (d2(x0, x1))−
n0−1∑
i=0

ϕ(d2(xi, xi+1))−
n∑

i=n0−1

ϕ(d2(xi, xi+1))

≤ F (d2(x0, x1))−
n∑

i=n0−1

A

= F (d2(x0, x1))− (n− n0)A

for all n ≥ n0. Taking the limit as n → ∞ in the above inequality, we get

lim
n→∞

F (d2(xn, xn+1)) ≤ lim
n→∞

[F (d2(x0, x1))− (n− n0)A],
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that is, limn→∞ F (d2(xn, xn+1)) = −∞, then from the condition (ii) of Definition 1.3, we con-
clude that

(2.22) lim
n→∞

d2(xn, xn+1) = 0.

Next, we shall prove that
lim
n→∞

d2(xn, xn+2) = 0.

We assume that xn ̸= xm for every n,m ∈ N, n ̸= m. Indeed, suppose that xn = xm for some
n = m+ k with k > 0 and using (2.2)

(2.23) d2(xm, xm+1) = d2(xn, xn+1) < d2(xn−1, xn).

Continuing this process, we can that d2(xm, xn+1) = d2(xn, xn+1) < d2(xm, xm+1) which is a
contradiction. Therefore, d2(xn, xm) > 0 for every n,m ∈ N, n ̸= m. Now, applying (2.1) with
x = xn−1 and y = xn+1, we have

F (d2(xn, xn+2)) = F [d2(Txn−1, Txn+1)]

≤ F [s2d2(Txn−1, Txn+1)]

≤ F (M(xn−1, xn+1))− ϕ(d2(xn−1, xn)),

where

M(xn−1, xn+1) = ad2(xn−1, xn+1)

+ (1− a)max
{
d2(xn−1, xn+1), d

2(xn−1, xn), d
2(xn+1, xn+2), d

2(xn+1, xn)
}

= ad2(xn−1, xn+1) + (1− a)max{d2(xn−1, xn+1), d
2(xn−1, xn)}

= d2(xn−1, xn+1).

So, we get

(2.24) F (d2(xn, xn+2)) ≤ F (max{d2(xn−1, xn), d
2(xn−1, xn+1)})− ϕ(d2(xn−1, xn+1))

Suppose an = d2(xn, xn+2) and bn = d2(xn, xn+1). Thus, by (2.24), one can write

(2.25) F (an) ≤ F (max{an−1, bn−1)} − ϕ(d2(an−1)).

Since F is increasing, we get
an < max{an−1, bn−1}.

By (2.2), we have
bn ≤ bn−1 ≤ max{an−1, bn−1}

which implies that
max{an, bn} ≤ max{an−1, bn−1}, ∀n ∈ N.

Therefore, the sequence max{an−1, bn−1}n∈N is decreasing sequence of real non-negative num-
bers. Thus, there exists λ ≥ 0 such that

lim
n→∞

max{an, bn} = λ.

By (2.6), assume that λ > 0, we have

λ = lim
n→∞

sup an = lim
n→∞

supmax{an, bn} = lim
n→∞

max{an, bn}.
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Taking the lim supn→∞ in (2.24) and applying the continuity of F and the property of ϕ, we get

F ( lim
n→∞

sup an) ≤ F ( lim
n→∞

supmax{an−1, bn−1})− lim
n→∞

supϕ(an−1)

≤ F ( lim
n→∞

supmax{an−1, bn−1})− lim
n→∞

inf ϕ(an−1)

< F ( lim
n→∞

max{an−1, bn−1}).

Therefore, F (λ) < F (λ), which is a contradiction. Hence,

(2.26) lim
n→∞

d2(xn, xn+2) = 0.

Next, we shall prove that {xn}n ∈ N is a Cauchy sequence.

lim
k→∞

M(xmk
, xnk

) = ad2(xmk
, xnk

)

+ (1− a)max
{
d2(xmk

, xnk
), d2(xmk

, xmk+1), d
2(xnk

, xnk+1), d
2(xnk

, xmk+1)
}

≤ sϵ.(2.27)

Now, applying (2.1) with x = xmk
and y = xnk

, we get

(2.28) F [s2d2(xmk+1, xnk+1] ≤ F (M(xmk
, xnk

))− ϕ(d2(xmk
, xnk

)).

Letting k → ∞ the above inequality and using (2.26) and (iv), we obtain

F (
ϵ

s
s2) = F (ϵs)

≤ F (s2 lim
k→∞

sup d2(xmk+1, xnk+1))

= lim
k→∞

supF (s2d(xmk+1, xnk+1))

≤ lim
k→∞

supF (M(xmk
, xnk

)− lim
k→∞

supϕ(d2(xmk
, xnk

))

= F (M(xmk
, xnk

))− lim
k→∞

supϕ(d2(xmk
, xnk

))

≤ F (M(xmk
, xnk

))− lim
k→∞

inf ϕ(d2(xmk
, xnk

))

< F ( lim
k→∞

supM(xmk
, xnk

))

≤ F (sϵ).

Therefore, F (sϵ) < F (sϵ). Since F is increasing, we get sϵ < sϵ which is a contradiction. Then,

lim
n,m→∞

d2(xm, xn) = 0.

Hence, {xn} is a Cauchy sequence in X. By completeness of (X, d) there exists z ∈ X such that

lim
n→∞

d2(xn, z) = 0.

Now, we show that d2(Tz, z) = 0 arguing by contradiction, assume that

d2(Tz, z) > 0.

Since xn → z as n → ∞ for all n ∈ N, then from Lemma 1.2, we conclude that d2(xn, xm) = 0,
for all n,m ∈ N. Suppose to the contrary. By Lemma 1.2, then there is ϵ > 0 such that for an
integer k there exists two sequences {mk} and {nk} such that

(i) ϵ ≤ limk→∞ inf d2(xm(k)
, xn(k)

) ≤ limk→∞ sup d2(xm(k)
, xn(k)

) ≤ sϵ,
(ii) ϵ ≤ limk→∞ inf d2(xn(k)

, xm(k)+1
) ≤ limk→∞ sup d2(xn(k)

, xm(k)+1
) ≤ sϵ,

(iii) ϵ ≤ limk→∞ inf d2(xm(k)
, xn(k)+1

) ≤ limk→∞ sup d2(xm(k)
, xn(k)+1

) ≤ sϵ,



New fixed point theorems for (ϕ, F )-Gregus contraction in b-rectangular metric spaces 53

(iv) ϵ
s ≤ limk→∞ inf d2(xm(k)+1

, xn(k)+1
) ≤ limk→∞ sup d2(xm(k)+1

, xn(k)+1
) ≤ s2ϵ.

From (2.1) and by setting x = xmk
and y = xnk

, we have

lim
k→∞

M(xmk
, xnk

) = ad2(xmk
, xnk

)

+ (1− a)max
{
d2(xmk

, xnk
), d2(xmk

, xmk+1), d
2(xnk

, xnk+1), d
2(xnk

, xmk+1)
}

≤ sϵ.(2.29)

Now, applying (2.1) with x = xmk
and y = xnk

, we get

(2.30) F [s2d2(xmk+1, xnk+1] ≤ F (M(xmk
, xnk

))− ϕ(d2(xmk
, xnk

)).

Letting k → ∞ the above inequality and using (2.27) and (iv), we get

F (
ϵ

s
s2) = F (ϵs)

≤ F (s2 lim
k→∞

sup d2(xmk+1, xnk+1))

= lim
k→∞

supF (s2d(xmk+1, xnk+1))

≤ lim
k→∞

supF (M(xmk
, xnk

)− lim
k→∞

supϕ(d2(xmk
, xnk

))

= F (M(xmk
, xnk

))− lim
k→∞

supϕ(d2(xmk
, xnk

))

≤ F (M(xmk
, xnk

))− lim
k→∞

inf ϕ(d2(xmk
, xnk

))

< F ( lim
k→∞

supM(xmk
, xnk

))

≤ F (sϵ).

Therefore,
F (sϵ) < F (sϵ).

Since F is increasing, we get
sϵ < sϵ

which is a contradiction. Then
lim

n,m→∞
d2(xm, xn) = 0.

Hence, {xn} is a Cauchy sequence in X. By completeness of (X, d) there exists z ∈ X such that

lim
n→∞

d2(xn, z) = 0.

Now, we show that d2(Tz, z) = 0 arguing by contradiction, we assume that

d2(Tz, z) > 0.

Since xn → z as n → ∞ for all n ∈ N, then from Lemma 1.1, we conclude that

(2.31)
1

s
d2(z, Tz) ≤ lim

n→∞
sup d2(Txn, T z) ≤ s d2(z, Tz).

Now, we applying (2.1) with x = xn and y = z, we have

F (s2d2(Txn, T z)) ≤ F (M(xn, z))− ϕ(d2(xn, z)),∀n ∈ N,

where

M(xn, z) = a d2(xn, z) + (1− a)max
{
d2(xn, z), d

2(xn, Txn), d
2(z, Tz), d2(z, Txn)

}
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and

(2.32) lim
n→∞

supmax
{
d2(xn, z), d

2(xn, Txn), d
2(z, Tz), d2(z, Txn)

}
= d2(z, Tz).

Therefore,
(2.33)

F (s2d2(Txn, T z)) ≤ F (max
{
d2(xn, z), d

2(xn, Txn), d
2(z, Tz), d2(z, Txn)

}
)− ϕ(d2(xn, z)).

By letting n → ∞ in inequality (2.33), using (2.32), (2.31) and continuity of F , we obtain

F [s2
1

s
d2(z, Tz)] = F [sd2(z, Tz)]

≤ F [s2 lim
n→∞

sup d2(Txn, T z)]

= lim
n→∞

supF [s2d2(Txn, T z)]

≤ lim
n→∞

supF (M(xn, z))− lim
n→∞

ϕ(d2(xn, z))

= F (d2(Tz, z))− lim
n→∞

ϕ(d2(xn, z))

< F (d2(z, Tz)).

Since F is increasing, we get
s d2(z, Tz) < d2(z, Tz)

which implies that
d2(z, Tz)(s− 1) < 0 implies s < 1

which is contradiction. Hence, Tz = z.
Therefore,

d2(z, u) = d2(Tz, Tu) > 0.

Applying (2.2) with x = z and y = u, we have

F (d2(z, u)) = F (d2((Tz, Tu))) ≤ F (s2d2(Tz, Tu)) ≤ F (M(z, u))− ϕ(d2(z, u)),

where

M(z, u) = ad2(z, u) + (1− a)max
{
d2(z, u), d2(z, Tz), d2(u, Tu), d2(u, Tz)

}
= d2(z, u).

We have

F (d2(z, u)) ≤ F (d2(z, u))− ϕ(d2(z, u))

< F (d2(z, u))

which implies that
d2(z, u) < d2(z, u)

which is a contradiction. Hence, u = z. □

Corollary 2.1. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be given
mapping. Suppose that there exist F ∈ F and τ ∈]0,∞[ such that for any x, y ∈ X, we have

d2(Tx, Ty) > 0 =⇒ F [s2d2(Tx, Ty)] + τ ≤ [F (M(x, y))],

where

M(x, y) = a d2(x, y) + (1− a)max
{
d2(x, y), d2(x, Tx), d2(y, Ty), d2(Tx, y)

}
.

T has a unique fixed point.
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If we take a = 0 we have the following result.

Corollary 2.2. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be given
mapping. Suppose that there exist F ∈ F and τ ∈]0,∞[ such that for any x, y ∈ X, we have

d2(Tx, Ty) > 0 =⇒ F [s2d2(Tx, Ty)] + τ ≤ [F (M(x, y))],

where

M(x, y) = (1− a)max
{
d2(x, y), d2(x, Tx), d2(y, Ty), d2(Tx, y)

}
.

T has a unique fixed point.

For a = 1 we have the following:

Corollary 2.3. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be given
mapping. Suppose that there exist F ∈ F and τ ∈]0,∞[ such that for any x, y ∈ X, we have

d2(Tx, Ty) > 0 =⇒ F [s2d2(Tx, Ty)] + τ ≤ [F (M(x, y))],

where

M(x, y) = a d2(x, y).

T has a unique fixed point.
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