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The Navier-Stokes problem. Solution of a millennium
problem related to the Navier-Stokes equations

ALEXANDER G. RAMM*

ABSTRACT. The goal of this paper is to present the author’s results concerning the Navier-Stokes problem (NSP) in
R3 without boundaries. It is proved that the NSP is contradictory in the following sense:

Assume (for simplicity only) that the exterior force f = f(x, t) = 0. If one assumes that the initial data v(x, 0) ̸≡ 0, v(x, 0)
is a smooth and rapidly decaying at infinity vector function, ∇ · v(x, 0) = 0, and the solution to the NSP exists for all t ≥ 0,
then one proves that the solution v(x, t) to the NSP has the property v(x, 0) = 0.

This paradox (the NSP paradox) shows that the NSP is not a correct description of the fluid mechanics problem
and the NSP does not have a solution defined for all times t > 0. This solves the millennium problem concerning
the Navier-Stokes equations: the solution does not exist for all t > 0 if v(x, 0) ̸≡ 0, v(x, 0) is a smooth and rapidly
decaying at infinity vector function, ∇ · v(x, 0) = 0. In the exceptional case, when the data are equal to zero, the
solution v(x, t) to the NSP exists for all t ≥ 0 and is equal to zero, v(x, t) ≡ 0.

Keywords: the Navier-Stokes problem, the paradox, the solution to the millennium problem related to the Navier-
Stokes equations.
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1. INTRODUCTION

The author’s theory of the Navier-Stokes problem (NSP) is presented in detail in monograph
[13]. Our goal in this relatively short paper to outline the basic steps of this theory in a self-
contained way accessible for broad audience. The logical structure of this work is simple:
we use an integral equation equivalent to the Navier-Stokes problem, see equation (1.12); we
derive from this equation an integral inequality (1.19) and the corresponding integral equation
(1.23) with hyper-singular kernels; we give a theory of such equations; we derive the NSP
paradox.

The problem we deal with consists of solving the Navier-Stokes problem (NSP) in R3 with-
out boundaries:

v′ + (v,∇)v = −∇p+ ν∆v + f, x ∈ R3, t ≥ 0,(1.1)

∇ · v = 0,(1.2)

v(x, 0) = v0(x),(1.3)

see, for example, books [3, 4]. Here v = v(x, t) is the velocity of incompressible viscous fluid, a
vector function, v′ := vt, p = p(x, t) is the pressure, a scalar function, f = f(x, t) is the exterior
force, ν = const > 0 is the viscoucity coefficient, v0 = v0(x) = v(x, 0) is the initial velocity,

(1.4) ∇ · v0 = 0.
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The data v0 and f are given, the v and p are to be found. The fluid’s density ρ is assumed to be
constant, namely ρ = 1.

We assume, for simplicity only, that f(x, t) = 0 and v(x, 0) ̸≡ 0 is a smooth rapidly decaying
function. We prove that the solution to problem (1.1)–(1.4) does not exist for t ∈ [0,∞). In the
literature, for example, in [2, Theorem 2, p. 472], there is a statement that, for f = 0 and v0(x)
sufficiently small, the solution to problem (1.1)-(1.4) exists for all t > 0 if m ≤ q, where m is the
dimension of the space and the solution belongs to Lq(R3). In our case m = 3, q = 2, so the
claim in [2, p. 472] is not applicable. There is a very large literature on fluid dynamics, both
mathematical and physical. We mention only books [3] and [4]. Our results, see references
in this paper, have no intersections with the published results of other authors. We mention
below several results from monograph [13].

From 1822, when C-L. Navier published the Navier-Stokes equations, until 2021, when
monograph [12] and paper [14] have appeared, it was not known whether the solution to the
Navier-Stokes problem (1.1)-(1.4) exists for all times t > 0. This problem was known as the
millennium problem related to the NSP. The NSP paradox, see below, yields a negative answer
to this millennium problem.

Our presentation in this paper is simple. First, we prove an a priori estimate

(1.5) sup
t>0

∥v(x, t)∥ ≤ c,

where the norm is L2(R3) norm throughout this paper and c > 0 are various estimation con-
stants. Then, we prove that problem (1.1)-(1.4) is equivalent to the integral equation

(1.6) v(x, t) = F −
∫ t

0

ds

∫
R3

G(x− y, t− s)(v,∇)vdy,

where F = F (x, t) depends only on the data f(x, t) and v0(x),

(1.7) F (x, t) :=

∫ t

0

ds

∫
R3

G(x− y, t− s)f(y, s)dy +

∫
R3

g(x− y, t)v0(y)dy,

see [13, Theorem 3.2, p.18], there. We assume (for simplicity only and without loss of general-
ity) that f = f(x, t) = 0. Under this assumption one has

(1.8) F (x, t) :=

∫
R3

g(x− y, t)v0(y)dy,

where

(1.9) g(x, t) =
e−

|x|2
4νt

(4νπt)3/2
, t > 0; g(x, t) = 0, t ≤ 0; g̃ = e−|ξ|2νt.

The g̃ is the Fourier transform of g(x, t) with respect to x-variable, see [13, Formula (3.50), p.17],
there. The Fourier transform is defined by formula (1.11) below. The function G = Gjm(x, t) is
calculated in [13, p. 15]:

(1.10)
G(x, t) = (2π)−3

∫
R3

eiξ·x
(
δjm − ξpξm

ξ2

)
e−ν|ξ|2tdξ

G̃ = (2π)−3
(
δpm − ξpξm

ξ2

)
e−ν|ξ|2t,

where δjm is the Kronecker delta. Let us define the Fourier transform Fv = ṽ:

(1.11) F(v) := ṽ(ξ, t) := (2π)−3

∫
R3

v(x, t)e−iξ·xdx.
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Taking the Fourier transform of equation (1.6), we get an equivalent equation:

(1.12) ṽ = F̃ − (2π)3
∫ t

0

dsG̃(ξ, t− s)ṽ⋆(iξṽ)ds,

where ⋆ denotes the convolution in R3. By the Cauchy inequality, one has

(1.13) |ṽ⋆(iξṽ)| ≤ ∥ṽ∥∥|ξ|ṽ∥.

It is known that

(1.14) F(v⋆w) = (2π)3F(v)F(w), (2π)3∥F(v)∥2 = ∥v∥2.

Theorem 1.1. The following a priori estimate holds:

(1.15) sup
t≥0

∥ṽ∥ ≤ c.

We assume that v = v(x, t) and other functions in the NSP are real-valued and the following inequality
holds for the data:

(1.16) ∥v0∥+
∫ ∞

0

∥f(x, t)∥dt < c.

Proof. Multiply equation (1.1) by v, integrate over R3 and get

1

2
(∥v∥2),t ≤ |(f, v)| ≤ ∥f∥∥v∥.

In deriving this inequality, we have used integration by parts:

−
∫

p,jvjdx =

∫
pvj,jdx = 0,

∫
νv,jjvjdx = −ν

∫
v,jv,jdx ≤ 0,

and ∫
vmvj,mvjdx = −1

2

∫
vm,mvjvjdx = 0.

It follows that
∥v∥,t ≤ ∥f∥.

Consequently,

∥v∥ ≤ ∥v0∥+
∫ ∞

0

∥f∥dt ≤ c.

This and our assumption (1.16) imply the estimate supt≥0 ∥v∥ ≤ c. By the Parseval equality the
estimate supt>0 ∥ṽ∥ ≤ c follows. Theorem 1.1 is proved. □

Inequalities (1.13) and (1.15) imply

(1.17) |ṽ⋆(iξṽ)| ≤ c∥|ξ|ṽ∥.

This inequality is important, because it allows one to estimate the nonlinear term in equation
(1.12) by the linear term on the right side of (1.17). From formula (1.10) it follows that

(1.18) |G̃(ξ, t− s)| ≤ ce−ν(t−s)ξ2 ,

because

|
(
δpm − ξpξm

ξ2

)
| ≤ c.
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Estimate (1.18) will be used more than once in this paper. Next, we prove that any solution to
equation (1.12) satisfies the following integral inequality

(1.19) b(t) ≤ b0(t) + c

∫ t

0

(t− s)−
5
4 b(s)ds, b(t) = ∥|ξ|ṽ∥ ≥ 0,

where

(1.20) b0(t) := ∥|ξ|F̃ (ξ, t)∥, b(t) := ∥|ξ|ṽ(ξ, t)∥ ≥ 0.

Equation (1.19) has hyper-singular kernel. The integral in this equation diverges classically
(that is, from the classical analysis point of view). We define such integrals in Section 2. We
prove the estimate

(1.21) sup
t>0

|b(t)| ≤ c.

This, Theorem 1.1 and Parseval’s identity imply the apriori estimate

(1.22) sup
t>0

(
∥v∥+ ∥∇v∥

)
≤ c.

Together with inequality (1.19), we study the integral equation

(1.23) q(t) = b0(t) + c

∫ t

0

(t− s)−
5
4 q(s)ds.

We solve this equation analytically and prove the inequality:

(1.24) 0 ≤ b(t) ≤ q(t).

One can check that

(1.25) ∥e−νt|ξ|2∥ = c1(t− s)−
3
4 , ∥|ξ|e−νt|ξ|2∥ = c11(t− s)−

5
4 ,

where

(1.26) c1 =
(4π ∫∞

0
e−s2s2ds

(2ν)3/2

)1/2

, c11 =
(4π ∫∞

0
e−s2s4ds

(2ν)5/2

)1/2

.

To derive inequality (1.19), we start with the inequality

(1.27) |ṽ| ≤ |F̃ |+
∫ t

0

ds|G̃(ξ, t− s)||ṽ⋆(iξṽ|ds,

which follows from (1.12). We use inequality (1.15), multiply (1.27) by |ξ|, take the norm of both
sides and use formulas (1.26) to get (1.19).

If f = 0, then F (x, t) =
∫
R3 g(x− y)v0(y)dy, so F̃ = (2π)3e−νt|ξ|2 ṽ0. Let us define the integral

in (1.23). First, let us define Φλ = Φλ(t) =
tλ−1

Γ(λ) , where Γ(λ) is the gamma-function, λ ∈ C is a
complex number, t = 0 for t ≤ 0, t = t for t > 0. Let

Lh :=

∫ ∞

0

e−pth(t)dt,

be the Laplace transform, Rep > 0. One can check that

(1.28) LΦλ =
1

pλ
, L(tλ−1) =

Γ(λ)

pλ
, λ ∈ C.
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For Reλ > 0 the integral LΦλ is defined classically. For Reλ ≤ 0 the LΦλ is defined by analytic
continuation with respect to λ. Let us rewrite equations (1.19) and (1.23) as

(1.29) b(t) ≤ b0(t)− cc1Φ− 1
4
⋆ b, b(t) = ∥|ξ|ṽ∥ ≥ 0, c1 := |Γ(−1

4
)| > 0,

and

(1.30) q(t) = b0(t)− cc1Φ− 1
4
⋆ q,

where ⋆ stands for the convolution in R1. One has

L(Φλ ⋆ q) = p−λLq,

where formula (1.28) and the known formula L(h ⋆ u) = Lh · Lu were used. The right side
of the expression p−λLq admits analytic continuation with respect to λ to the whole complex
plane C because Lq does not depend on λ and p−λ is an entire function of λ for Rep > 0. We
define Φλ ⋆q as L−1(Lq

pλ ). Let us find the solution to equation (1.30). Take the Laplace transform

of this equation and get Lq = Lb0 − cc1p
1
4Lq, so

(1.31) Lq =
Lb0

1 + cc1p1/4
,

and the solution q = q(t) is:

(1.32) q = L−1
( Lb0
1 + cc1p1/4

)
.

One can easily prove (see [13, p. 28]), that

(1.33) Φλ ⋆ Φµ = Φλ+µ, Φ0 = δ(t),

where δ(t) is the delta-function. Indeed, using formula (1.28) one has

(1.34) L(Φλ ⋆ Φµ) =
1

pλ
1

pµ
=

1

pλ+µ
= L(Φλ+µ).

By the injectivity of the Laplace transform, the first formula (1.33) follows. If λ + µ = 0, then
L(Φ0) = 1 by formula (2.36), so Φ0(t) = δ(t). The second formula (1.33) is proved. We prove in
Section 2 that the solution given by formula (1.32) is a bounded funtion such that

(1.35) sup
t>0

|q(t)| ≤ c, q(0) = 0.

From this we derive that v0(x) = 0. Since we assumed originally that v0(x) ̸≡ 0, we obtain a
paradox.

The NSP Paradox. If one assumes that the initial data v(x, 0) ̸≡ 0, ∇· v(x, 0) = 0 and the solution
to the NSP exists for all t ≥ 0, then one proves that the solution v(x, t) to the NSP has the property
v(x, 0) = 0.

This paradox (the NSP paradox) shows that:
The NSP is not a correct description of the fluid mechanics problem and the NSP does not have a

solution defined on all t ≥ 0. This solves the millennium problem related to the NSP.
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2. PROOFS

The equivalence of the problem (1.1)–(1.4) to integral equation (1.6) is proved in [13, p. 18].
Formula (1.10) is derived in [13, p. 15].

From equation (1.6) we have derived the equivalent equation (1.12). From this equation and
inequality (1.19) we derived inequality (1.27), multipied it by |ξ|, took the norm of both sides
of the resulting inequality, used formulas (1.26) and got inequalities (1.19) and (1.29).

Theorem 2.2. Inequality (1.24) holds.

From Theorem 2.2, Theorem 1.1, estimate (1.35) and Parseval’s identity the apriori estimate
(1.22) follows immediately. Proof of Theorem 2.2 requires some preparations. Note that if
h ≥ w, then ∥h∥ ≥ ∥w∥, Lh ≥ Lw for p > 0 and Φλ ⋆ h ≥ c for λ > 0. Define a linear operator

Aq :=

∫ t

0

(t− s)aq(s)ds.

Lemma 2.1. If a > −1, then the spectral radius r(A) = 0 in the space X = C(0, T ) for any T > 0.
The equation

q = Aq + h

is uniquely solvable in X and its solution is

q =

∞∑
j=0

Ajh.

The iterative process
qn+1 = Aqn + h

converges in X and
lim
n→∞

qn = q.

Proof. Recall that
r(A) = lim

n→∞
∥An∥1/n.

By the mathematical induction one gets

∥Anh∥ ≤ Tn(a+1) Γn(a+ 1)

Γ(1 + n(a+ 1))
∥h∥X , n ≥ 1.

Using the known asymptotic

Γ(z) = e(z−0.5) ln z−z+0.5 ln(2π)[1 +O(|z|−1)], |z| ≫ 1, |argz| ≤ π − δ, δ > 0,

see [5], one derives that r(A) = 0. If r(A) =0, then the other two statements of Lemma 2.1 are
easy to prove. Lemma 2.1 is proved. □

Apply the operator Φ1/4⋆ to equation (1.30), use formulas (1.33) and get

(2.36) q = c2(Φ1/4 ⋆ b0 − Φ1/4q), c2 := (cc1)
−1.

Proof of Theorem 2.2. By Lemma 2.1, the unique solution to equation (2.36) can be written as

(2.37) q =

∞∑
j=0

(−c2Φ1/4⋆)
jc2Φ1/4 ⋆ b0.

Apply the operator Φ1/4⋆ to equation (1.29), use formulas (1.33) and get

(2.38) b ≤ c2(Φ1/4 ⋆ b0 − Φ1/4b), c2 := (cc1)
−1.
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Since λ = 1/4 > 0, the sign in (1.29) is preserved by the application of the operator Φ1/4⋆ to
equation (1.29). Applying the iterations to inequality (2.38) one gets

(2.39) b ≤
∞∑
j=0

(−c2Φ1/4⋆)
jc2Φ1/4 ⋆ b0.

Comparing equations (2.37) and (2.39), one obtains inequality (1.24). Theorem 2.2 is proved. □

Let us derive from (1.32) the following result.

Theorem 2.3. One has b(0) = 0.

Proof. It is sufficient to prove that q(0) = 0. Indeed, b(t) ≥ 0 and by inequality (1.24) it follows
that b(0) = 0 if q(0) = 0. To prove that q(0) = 0 we use formula (1.32) and the following result.

Theorem 2.4. Let F (p), p = σ + is, s ∈ R, be analytic in the region σ > 0, limσ→0 F (σ + is) =
F (is) ∈ L1

loc(R) exists for almost all s, and

|F (p)| ≤ c(1 + |p|)−b, |p| ≫ 1, b > 1.

Then F (p) = L(h), h = h(t) = 0 for t < 0, supt≥0 |h(t)| ≤ c, h ∈ C(R), and h(0) = 0.

Proof. From our assumption on F (p) it follows that the function h(t) := 1
2π

∫∞
−∞ eistF (is)ds is

well defined and is a continuous uniformly bounded function. By the analyticity of F one has∫
Cn

F (p)dp = 0, where Cn is a closed contour, a union of Kn := −in, in and the semi-circle
γn = neiϕ, −π/2 ≤ ϕ ≤ π/2. Since b > 1, it follows that limn→∞

∫
γn

F (p)dp = 0. Therefore
limn→∞

∫
Kn

F (p)dp =
∫∞
−∞ F (is)ds = 0. So, h(0) = 0.

Let us calculate

Lh =

∫ ∞

0

e−pth(t)dt =

∫ ∞

0

e−pt 1

2π

∫ ∞

−∞
eistF (is)ds =

1

2π

∫ ∞

−∞

1

is− p
F (is)ds.

Analyticity of F implies F (p) = 1
2πi

∫
Cn

F (p′)dp′

p′−p . Let n → ∞. The result is

F (p) =
1

2π

∫
K

F (is)ds

is− p
.

Therefore, Lh = F (p). We have used the fact limn→∞
∫
γn

F (p′)dp′

p′−p = 0. Theorem 2.4 is proved.
□

Let us finish the proof of Theorem 2.3. The right side of formula (1.32) is analytic for σ > 0,
it is O(|p|−b) for |p| ≫ 1 and b = 5/4. Indeed, for smooth and rapidly decaying v0(x) one has
Lb0 = O( 1

1+|p| ), the function 1
1+cp1/4 is analytic in the half-plane σ > 0 and 1

1+cp1/4 = O(|p|−1/4)

for |p| ≫ 1. By Theorem 2.4, the conclusion b(0) = 0 of Theorem 2.3 follows. □

Theorem 2.5. From b(0) = 0, it follows that v0(x) = 0.

Proof. If b(0) = 0, then ∥|ξ|ṽ∥ = 0. Therefore, the ṽ = 0 for |ξ| > 0. By estimate (1.5) and the
Parseval identity it follows that ∥v0(x) = 0∥, so v0(x) = 0. Theorem 2.5 is proved. □

As was explained at the end of Section 1, Theorem 2.5 implies the NSP paradox and the
resulting consequences: It shows the contradictory nature of the Navier-Stokes equations. It
also proves that the solution to the NSP does not exists on the semi-axis t ∈ R+.

Let us prove the following a priori estimate for the solution v to problem (1.1)–(1.4).
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Theorem 2.6. The inequality

(2.40) sup
t≥0

(∥v(x, t)∥+ ∥∇v(x, t)∥) ≤ c

holds, where v solves the NSP problem and c depends on the data.

Proof. We have proved in Theorem 1.1 inequality (1.5). By the Parseval identity, one has b(t) =
∥∇v(x, t)∥. We have proved earlier that supt≥0 b(t) ≤ c. Therefore, Theorem 2.6 is proved. □

Remark 2.1. If the data are equal to zero, that is, f(x, t) = 0 and v0(x) = 0, then the solution v(x, t)
to the NSP exists for all t ≥ 0 and v(x, t) ≡ 0.

This follows from the a priori estimate (2.40). Indeed, if the data are zeros, then c = 0 and
formula (2.40) implies that v(x, t) = 0.

3. CONCLUSIONS

The basic result of this paper is a proof of the NSP paradox and its consequences: the contra-
dictory nature of the Navier-Stokes equations. The NSP paradox proves that the millennium
problem related to the Navier-Stokes equations in R3 without boundaries does not have a so-
lution. If one assumes that the data are smooth, rapidly decaying and not identically equal to
zero, then one proves that these data are equal to zero.
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