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Functors induced by comma categories

SUDDHASATTWA DAS*

ABSTRACT. Category theory provides a collective description of many arrangements in mathematics, such as topo-
logical spaces, Banach spaces and game theory. Within this collective description, the perspective from any individual
member of the collection is provided by its associated left or right slice. The assignment of slices to objects extends to
a functor from the base category, into the category of categories. Slice categories are a special case of the more general
notion of comma categories. Comma categories are created when two categories A and B transform into a common
third category C, via functors F,G. Such arrangements denoted as [F ; G] abound in mathematics, and provide a cat-
egorical interpretation of many constructions in mathematics. Objects in this category are morphisms between objects
of A and B, via the functors F,G. We show that these objects also have a natural interpretation as functors between
slice categories of A and B. Thus even though A and B may have completely disparate structures, some morphisms
in C lead to functors between their respective slices. We present this relation in the form of a functor from C into the
category of left slices. The proof of our main result requires a deeper look into associated categories, in which the
objects themselves are various commuting diagrams.

Keywords: Comma categories, functors, slices, orbits.

2020 Mathematics Subject Classification: 18A40, 18A35, 37A99.

1. INTRODUCTION

Category theory has emerged as an useful alternative to the descriptive language of set-
theory. Instead of specifying mathematical objects from the ground-up, i.e. by their con-
stituents, it provides a collective description of their relative arrangements. Categorical ap-
proaches have yielded surprising simplifications of deep results in all fields of mathematics,
such as topology [8, 33, 40], probability theory [19, 20, 34], dynamical systems theory [7, 11, 44],
and game theory [21, 22]. Readers can obtain a basic understanding of categories and functors
from sources such as [31, 39].

Our discussion is based on the following general arrangement of categories and functors:

(1.1)
A B

C
α β

We shall see several examples of how such a general arrangement is prevalent all over math-
ematics. Our focus will be on a category built upon such arrangements, called the comma
category [α ; β]. The objects in this category are

ob ([α ; β]) := {(a, b, ϕ) : a ∈ ob(A), b ∈ ob(B), ϕ ∈ HomC (αa;βb)} ,
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and the morphisms comprise of pairs {(f, g) : f ∈ Hom(D), g ∈ Hom(E)} such that the fol-
lowing commutation holds:

(a, ϕ, b) (a′, ϕ′, b′)
(f,g) ⇔

a

a′

f ,

b

b′

g , s.t.
αa αa′

βb βb′

αf

ϕ ϕ′

βg

Thus [α ; β] may be interpreted as the category of bindings between α, β, via their common
codomain C. Comma categories contain as sub-structures, the original categories A,B, via the
forgetful functors

A [α ; β] Bπ1 π2

whose action on morphisms in [α ; β] can be described as

a

a′

f
π1

αa αa′

βb βb′

αf

ϕ ϕ′

βg

π2

b

b′

g

Comma categories prevail all over category theory and mathematics in general, such as graph
theory [23], in the theory of lenses and fibrations [30], iterative algebras [2], stochastic processes
[5], Paré et al.’s work on double categories [26, 27], connectedness [37], and mathematical logic
[38, 43]. If a category can be presented as a comma category, then one obtains additional re-
sults to prove the existence of (co)-limits [7, 24]. We now examine two simpler examples for
motivation:

Example 1.1 (Measured dynamical systems). Suppose T is a semigroup, then it is representable as a
1-object category. Let [Topo] be the category of topological spaces and continuous maps. Then the class
of topological dynamics is the functor category F (T ; [Topo]). Now let [Euc] be the subgroup of [Topo]
comprised only of Euclidean spaces. Then the following arrangement is of the pattern given in (1.1):

F (T ; [Topo]) [Euc]

[Topo]dom
⊂

The domain functor dom above assigns to every dynamical system its domain. A typical object in the
resulting comma category is a dynamical systems (Ω,Φt) along with a measurement ϕ : Ω→ Rd:

Ω Ω Rd.Φt ϕ

A typical morphism in this comma category is a change of variables h : Ω → Ω′ that leads to the
following joint commutation:

Ω Ω Rd

Ω′ Ω′ Rd′

h

Φt

h

ϕ

ιA

Φ′t ϕ′

, ∀t ∈ T .

This comma category encapsulates the collection of all measured, topological dynamical systems. This
category has been instrumental in a categorical study of data and reconstruction theory [11].
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Example 1.2 (Finite subspaces). Let [Aff] be the category of vector spaces and affine maps, [Vec] be
the category of vectors spaces and linear maps, Euc be the category of finite dimensional vector spaces
and linear maps, and Eucmono be the subcategory of Euc comprising only of injective maps. Then the
following arrangement

Eucmono [Aff]

[Vec]
⊂ proj

leads to a comma category in which the objects are affine linear embeddings P : Rd → V of finite
dimensional vector spaces in possible infinite dimensional vector spaces. The morphisms between these
objects are now allowed to be affine. Shown below is a morphism from an object P to an object P ′:

Rd V

Rd′ V ′

ι

P

A

P ′

in which ι must be injective, and A is an affine map. The study of these objects and morphisms lead to a
generalized notion of “null" and “everywhere" [9, 29].

A particular instance of comma categories are slice categories. Henceforth, we shall use the
symbol ⋆ to denote the category with a single object with no non-trivial morphism. Take any
category X , and an object x in it. This object may be interpreted by a unique functor from ⋆ to
X , which we shall also denote by ⋆ x−→ X . Now, set

B = ⋆, A = C = X , β = x, α = IdX ,

in (1.1). The resulting comma category [IdX ; x] is known as the left slice of x in X , and will be
denoted more briefly as [X ; x]. A typical morphism in this category is shown below

y x

y′

f

ϕ
f ′

The objects are the morphisms shown in blue, and a morphism ϕ from f to f ′ is a morphism
ϕ : y → y′ such that the above commutation holds. One can similarly define the right slice of
an object within its category. An important example of a slice category is the right slice of the
pointed space in the category [Topo] of topological spaces. This corresponds to the category of
pointed topological spaces. If X is a preorder category, the left or right slice of an object x is
the down-set or up-set of the object. If X is the collection of subsets of a superset U ordered by
inclusion, then the left slice of any subset x of U is the power set of x, also ordered by inclusion.

Example 1.3. Let U be any topological space. Then its left slice [[Topo] ; U ] in [Topo] is the category
formed by the collection of all continuous maps into U .

Example 1.4. Let U be a set and 2U be the power set of U . Thus 2U is a preorder and a category. Then
the left slice of any set S ⊂ U in 2U is the power set of S.

Example 1.5. More generally, let C be any category and Cmono be the subcategory comprising only of
monomorphisms. Then the left slice of any object c of C in Cmono is the subobject category of c.
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The forgetful functors inbuilt into comma categories may also be arranged into diagrams
similar to (1.1). Consider the following more abstract example:

Example 1.6. Given the arrangement as in (1.1) one has the following diagram:

[α ; β] ⋆

B
π2 b

where b is an object of B and ⋆ is the 1-point category. This arrangement creates the comma category[
π
[α ; β]
2 ; b

]
, whose objects are

(1.2) ob
([
π
[α ; β]
2 ; b

])
:=


αa′

βb′

f ,

b′

b

g

 .

Every such object creates an L-shaped diagram:

αa′

βb′ βb′

f

βg

This is a diagram within C in which one morphism f is drawn from C, while another g is drawn from B.

Example 1.6 reveals how various diagrams following a certain pattern create a category of
its own. Example 1.6 is a generalization of the more concrete Example 1.1. The comma category
(1.2) will play a significant role in the next section, where we state some technical results. Yet,
another important manifestation of comma categories are arrow categories. If we set

A = B = C = X , α = β = IdX ,

in (1.1), then the resulting comma category [IdX ; IdX ] is called the arrow category of X , and
is denoted by Arrow [X ]. The objects in this category are the arrows or morphisms in X . A

morphism between two morphisms x
f−→ x′ and y

g−→ y′ is a pair of morphisms x
ϕ−→ y and

x′
ϕ′

−→ y′ such that the following commutation holds:

x x′

y y′

f

ϕ ϕ′

g

Thus, Arrow [X ] reveals how the arrows of X are bound to each other via the commutation
relations in X . Some important examples are

Example 1.7. The arrow category Arrow [[Topo]] in [Topo] corresponds to the category of topological
pairs.

Example 1.8. The arrow category Arrow [[Vec]] in [Vec] corresponds to the category of linear maps,
with linear change of variables serving as morphisms.
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Example 1.9. Recall the notations in Examples 1.3 and 1.4. Let U be a topological space. Take X to be
the power set 2U and Y to be the subcategory of [Topo] formed by all topological subspaces of U . Then
one has an obvious inclusion ι : X → Y . Note that the comma category [ι ; ι] has the same objects
as the arrow category Arrow [Y] : any object F ∈ Arrow [Y] is a continuous map between topological
spaces F : X → Y . But a morphism from F to another such object F ′ : X ′ → Y ′ is just inclusion, i.e.,
X ′ ⊇ X , Y ′ ⊇ Y and F is a restriction of F ′.

Comma, slice and arrow categories thus represent finer structures present within categories,
and also how objects from different categories assemble together to produce more complex
categories. The language of comma categories contributes to the universality of category the-
ory as an alternate formulation for descriptive set theory [32]. Comma categories have been
used in a variety of ways, from being a descriptive tool to higher constructions in category
theory. Classical expositions on category theory [31, 39] rely on slice categories for pointwise
description of Kan extensions. The descriptive strength has also been an integral part of a cat-
egorical reformulation of dynamical systems theory [11, 12]. One important consideration in
our analysis is the fact that the objects of comma and slice categories are morphisms, and thus
composable in nature. This composability of comma-objects were utilized in [36] to develop a
string-diagrammatic language for ordinary categories. One of the most important applications
of comma categories is Paré et al.’s work on double categories [26, 27], which are categories
with two orthogonal dimensions of structure. This very concept, along with its associated no-
tion of connectedness [37] for categories, rely on a heavy use of comma categories. In the next
section, we present the main result which analyzes how the objects in a comma category could
induce functors between left slices. The functor is created when one tries to complete L-shaped
diagrams into universal commuting squares. The topic of functors induced by universal prop-
erties of comma categories has not been explored much. The reader might find interest in
the recent work [28] on functors induced by comma categories involving exact functors and
Abelian categories.

2. MAIN RESULTS

The main difference of a categorical description of a subject from the classical set-theoretic
description, is that properties are not internal to an object, but defined entirely in terms of their
relations to external objects. Set-theoretic discourses start with several elementary ideas such
as points, sets, maps, numbers and addition, and more advanced ideas are built from various
combinations of these primitive concepts. On the other hand category theory only has mor-
phisms and objects as the primitive concepts. So the more advanced concepts of mathematics
have to be realized as patterns or diagrams in a categorical discourse. Various conclusions
and theorems are extracted from the inter-relations between various diagram classes, and from
properties defined by universality.

The simplest diagram in a category is a morphism, which expresses a relation between two
objects. A more advanced diagram would be a commutation square,

A C

B D

f

g

h

i

⇒
A

B D

f

i

,

A C

D

g

h ,

C

B D

h

i

,

A C

B

f

g

which not only expresses a set of four relations between four objects, but also a relation bind-
ing these four relations. Every such square contains four smaller L-shaped diagrams as shown
above. They are the four corners of the commutation square and are objects of certain comma
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categories. As objects of these categories they are also inter-related functorially. Adjacent cor-
ners overlap on a common arrow. These overlaps can be expressed as constraints that bind the
functors between the various comma-categories. The paper presents a deep dive into this dia-
grammatic language of category theory. One can various questions, such as given any corner
L-diagram, what is the minimal or maximum square to which it can be completed? If the bot-
tom edge i is fixed, one can look for lower-left corners, lower-right corners that extend that edge
into an L-diagram. Let these classes be named LL(i) and LR(i) respectively. Are these classes
also categories? If each object in LL(i) and LR(i) can be completed into a universal square, is
this correspondence functorial, and how does it correspond to the iwe started out with? While
these questions are entirely diagrammatic, we will discover important applications to classical
branches of mathematics. We focus on an arrangement of the form X ι−→ Y ι←− X , which is a
special instance of (1.1). More precisely:

Assumption 2.1. There are complete categories X and Y , with initial objects 0X and 0Y respectively,
and there is a continuous functor ι : X → Y such that 0Y = ι (0X ), and ι is injective on objects.

Let LeftSlice (X ) denote the category whose objects are left-slice categories [X ; Ω] for var-
ious X ∈ X , and morphisms are the functors between these categories. Thus LeftSlice (X ) is
a full subcategory of [Cat], the category of small categories. Let ι(X ) denote the full subcate-
gory of Y generated by objects of ι. Note that the morphisms in ι(X ) are precisely the objects
of [ι ; ι]. Recall that a morphism f in any category is said to be surjective or equivalently, an
epimorphism, if for any composable morphisms g, g′, if g′f = gf , then g = g′. Similarly, a mor-
phism is said to be injective or equivalently, a monomorphism, if for any composable morphisms
g, g′, if fg′ = fg, then g = g′. We need the following assumptions:

Assumption 2.2. For every monomorphism f in Y , there are morphisms g in Y and h in Y such that
f = (ιh)g.

Assumption 2.3. The image under ι of every morphism in X is injective in Y .

Assumption 2.4. The category Y is balanced, i.e., any morphism in Y which is both surjective and
injective is an isomorphism.

Assumption 2.4 is satisfied in categories such as topoi [4, 17, 25]. Two prime examples of
topoi are [Set] and [Topo]. Another important category in which Assumption 2.4 is satisfied is
[Group], the category of groups and homomorphisms. Our main result establishes a functor

(2.3) ι(X ) Dyn−−→ LeftSlice (X )
that achieves certain universal diagram completions, as discussed before. Recall that a typical
morphism in ι(X ) is a Y-morphism ιΩ

F−→ ιΩ′. The functor in (2.3) should convert this into a
functor between the left-slice categories [X ; Ω] and [X ; Ω′] associated to the endpoints of F .

Theorem 2.1. Let Assumptions 2.1, 2.2, 2.3 and 2.4 hold. Then, there is a functor as in (2.3) which
maps every object Ω ∈ X to the left slice [X ; Ω]. It maps an morphism ιΩ

F−→ ιΩ′ into a functor

[X ; Ω]
τF−−→ [X ; Ω′]

such that for every slice-object A a−→ Ω ∈ [X ; Ω], τF (a) creates a commutation square

(2.4)
ιA

ιΩ ιΩ′

ιa

F

⇒
ιA ιB

ιΩ ιΩ′

ιa

τF (a)

ιb

F
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for some B b−→ Ω ∈ [X ; Ω′]. Moreover, this square is universal in the sense that for any slice-object
b′ : B′ → Ω′ and any morphism f : ιA→ ιB′, if the blue commutation square shown below holds

(2.5) ∀

ιB′

ιA ιB

ιΩ ιΩ′

ιb′ιa

τF (a)

f

ιb

∃!ϕ

F

then there is a unique morphism ϕwhich factors the outer commutation loop into the inner commutation
loop.

The statement of Theorem 2.1 is pictorial. It says that beginning with any L-shaped diagram
as shown on the left of (2.4), one has the commuting diagram as shown on the right of (2.4).
Moreover, this diagram is universal in the sense that all other possible commutation squares
over the L-diagram can be recovered from it, as shown in (2.5). The completion into a square is
essentially created by the top horizontal arrow τF (a), which is being claimed by Theorem 2.1 to
be the image of a functor. The left slice objects in LeftSlice (X ) reside within the structure of X .
The claim thus implies that morphisms from a different category Y naturally creates functors
between the various left-slices of X .

There are numerous examples of the arrangement of Theorem 2.1 in mathematics. One of
the most important among them is the following:

Example 2.10. Recall the notations in Example 1.9. Any object F ∈ [ι ; ι] is a continuous map between
topological spaces F : X → Y . Then τF can be interpreted to be the induced map from the power set
[ι ; X] of X , into the power set [ι ; Y ] of Y . The correspondence between F and τF is itself functorial.
Overall, we have a functor Dyn : [ι ; ι] → LeftSlice

(
2U

)
. Note that LeftSlice

(
2U

)
is the category in

which each object is a power set of some S ⊂ U , and morphisms are inclusion preserving maps between
these power sets.

Example 2.10 can be generalized based on the following observation:

Lemma 2.1. Given any complete category C, the subcategory Cmono formed by monomorphisms is
complete, and has the same initial object as C.

Lemma 2.1 and Theorem 2.1 have the following important consequence:

Corollary 2.1. Suppose C is a complete, balanced category. Then:
(i) The inclusion ι : Cmono → C satisfies Assumptions 2.1, 2.2, 2.3 and 2.4.

(ii) There is a functor Dyn from C into the full subcategory of [Cat] spanned by the sub-object categories
of C.

Some examples of categories C which satisfy the conditions of Corollary 2.1 are [Set], [Topo]
and [Group]. As a result we have the following instances of Corollary 2.1:

Example 2.11. Continuing the discussion in Example 1.8, any linear map A : U → V between vector
spaces induces a mapping between the subspaces of U and V respectively. This correspondence is a
functor from [Vec] to the category of collections of vector subspaces.

As a slight variation to Example 2.11, we have:
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Example 2.12. Take X = [Vec]mono and Y = [Aff]. The initial objects 0X and 0Y are both the zero-
dimensional vector space. Note that there is an inclusion functor ι : X → Y which maps 0X into 0Y .
Thus according to Theorem 2.1 any affine map is functorially related to a map between the collection of
vector subspaces of the corresponding spaces.

If X is a preorder, a left slice [X ; a] can be interpreted as the set {a′ ∈ X : a′ ≤ a}. This is a
sub-preorder of X , and is called the down-set of a.

Corollary 2.2. Let X be a complete preorder, and ι : X → [Group] a functor that maps 0X into the
trivial group with one object. Let a, b be objects in X and F : ι(a) → ι(b) be a group homomorphism.
Then F induces an order preserving map τF between the down-sets [X ; a] and [X ; b]. Moreover this
correspondence is functorial.

An example of X , ι from Corollary 2.2 is when X is a cellular complex, comprised of a col-
lection of inclusions between face maps. Recall that singular homology is a functor

Homology : [Topo]→ [Group] ,

mapping each topological space into its sequence of homology groups.

Example 2.13. Let X be a simplicial complex of dimension n, comprised of simplices of various dimen-
sions from 0 to n. Each simplex of dimension less than n is included as a face map of a simplex of a
higher dimension. Thus X is a preorder with a finite number of objects and morphisms contained within
[Topo]. Then for any two faces a, b of X , the down-sets [X ; a] and [X ; b] are the sub-simplexes of
these faces. Any group homomorphism

F : Homology(a)→ Homology(b)

induces a unique simplicial map between these sub-complexes whose induced map between the homology
groups is precisely F .

The last statement in the example above is supported by the commutation in (2.5).
Example 1.1 presented a functorial interpretation of dynamical systems. Category theoretic

reformulations of dynamical systems have become of increasing interest due to the simplic-
ity of presentation of many of the deeper results in dynamical systems theory [7, 11, 35, 44].
This is the advantage provided by the constructive/synthetic language of category theory, as
opposed to the descriptive nature of set-theoretic language. The new challenge that emerges
is that many basic definitions which are trivial in a set-theoretic presentation, becomes harder
to present in a category theoretic setting. A prime example is the notion of an orbit. One can
associate orbits to both topological, smooth, or measurable dynamical systems. However, the
notion of orbit itself is as a minimal object in [Set] satisfying certain properties. In a category
theoretic presentation, objects lose all their inner details and are presented as part of a larger
collection. The focus shifts from the content of objects, to their relational and compositional
structure. Thus orbits cannot be simply defined to be a union of successive images. A categor-
ical definition of orbits is a major gap in the category theoretic reformulation of dynamics, and
the functor Dyn discovered in Theorem 2.1 fills this gap.

Example 2.14. Recall the notations from Examples 1.3, 1.4 and 2.10. Let Topo(U) denote the sub-
category of [Topo] generated by all topological subspaces of U . Recall from Example 1.1 that a functor
Φ : T → Topo(U) is a topological dynamical system in the universe U . Its time semigroup T is typically
N0, Z or R. Then one has the following composable sequence of functors

T Topo(U) LeftSlice
(
2U

)Φ Dyn
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The composition of these functors is a set-theoretic dynamical system with time semigroup T . Thus the
interpretation of a topological dynamical system as a set-theoretic dynamical system is also functorial.

Dynamical systems theory is about the study of orbits, and their asymptotic properties.
There has been a recent interest in developing a categorical language for dynamical systems,
and a major gap has been a functorial description of orbits. Example 2.14 along with Theorem
2.1 fills this gap. Given a dynamical system Φt : Ω → Ω on a space Ω, the orbit of a subset
S ⊆ Ω is the union ∪t∈T Φ

t(S). Alternatively it can be defined to be the smallest subset of Ω
that contains all the images Φt(S). This definition is very suitable for a category theoretic pre-
sentation. Note that the composite functor Φ̃ : Dyn ◦Φ from Example 2.14 leads to a functor
2Ω × T → 2Ω. Then the orbit of Φ is the functor shown in the diagram below:

(2.6)
2Ω × T 2Ω

2Ω 2Ω

proj1

Φ̃

Orbit

The bottom horizontal arrow is created by a construction called a right-Kan extension. Kan ex-
tensions are a purely diagrammatic/categorical notion, and is elaborated in Section 7. Example
2.14 and Diagram (2.6) is a succinct but precise way of stating the following facts:

Corollary 2.3. Every topological dynamical system in the universe U is a functor Φ : T → Topo(U).
It leads to the following notions :

(i) This functor combines with Dyn from Theorem 2.1 to get a dynamical system T → LeftSlice
(
2U

)
.

(ii) This leads to a functor Φ̃ : 2Ω × T → 2Ω.
(iii) The existence of the orbit functor follows from the existence of a right Kan extension, as shown in

(2.6).
(iv) The minimality of the orbit follows from the universal property of a right Kan extension.

These examples and Corollaries 2.1–2.3 highlight the prevalence of the arrangement de-
scribed in Theorem 2.1. This ends the presentation of some examples of manifestations of
slice categories and applications of Theorem 2.1. Slice categories have had recent applications
[15] in optimization and approximation theory [3, 10, 16]. The possibility of applications of
Theorem 2.1 to this emerging field is an interesting prospect.
Outline. Theorem 2.1 has several layers to it. Firstly, it associates a functor between left slice
categories to every morphism of the form F : ιΩ → ιΩ′. Secondly (2.3) states that this corre-
spondence itself is functorial, which means that composition of morphisms become composi-
tion of functors. Thirdly, the correspondence is defined by the unique and minimal commu-
tation square (2.4) that it creates. We shall unravel the categorical principles that contribute to
each claim, over the course of the next sections. The main ingredient of Theorem 2.1 is Assump-
tion 2.1. Assumption 2.1 is slightly generalized into Assumption 3.5 next in following Section
3. This generalization allows us to formulate two Theorems 3.2 and 3.3 which cover part of
the claims of Theorem 2.1. The compositionality is proved next in Section 4 via Theorem 4.5.
Theorem 2.1 is proved in Section 4, as a consequence of Theorems 3.2, 3.3 and 4.5. See Figure
1 for an outline of the proof of Theorem 2.1, and how the other main results fit into the proof.
We take a deep look at comma and arrow categories in Sections 5 and 6. The uniqueness of
the commutation in (2.4) is next established via a special categorical construction in Section 7.
Finally Theorems 3.2 and 3.3 are proved in Section 8.



Functors induced by comma categories 119

3. THE INDUCED FUNCTOR BETWEEN SLICES

Theorem 2.1 was about the comma category [ι ; ι] which is a special case of (1.1). We now
make an assumption on (1.1), which turns out to be a generalization of Assumption 2.1.

Assumption 3.5. The category A and B from (1.1) are complete, the functor β is continuous. Cate-
gories A and C have initial elements 0A and 0C respectively, and α (0A) = 0C .

Our first result arises from the simple situation when two objects a, b are picked from A,B
in (1.1), mapped into C, and bound by a morphism F in C. The objects a, b have their own
left-slice categories inA,B, which are independent of each other as well as C. We shall see how
the morphism ϕ induces a functor between these two categories.

Theorem 3.2 (Induced functor). Assume the arrangement of (1.1), and let Assumption 3.5 hold. Fix
an object αa F−→ βb of the comma category [α ; β]. Then there is a functor τF : [A ; a] → [α ; β]

such that for any object a′ f−→ a in [A ; a], there is an object b′ g−→ b in [B ; b], such that the following
commutation holds

(3.7)
a′

b

f ⇒
αa′ βb′

αa βb

αf

τF (f)

βg

F

Moreover, τF (f) is minimal in the sense for any other object b′′ g−→ b, if the commutation shown below
on the left holds :

αa′ βb′′

αa βb

αf

F̃

βg′′

F

⇒

βb′

αa′ βb′′

αa βb

βg′

βϕ

αf

F̃

τF (f)

βg′′

F

then there is a unique morphism b′
ϕ−→ b′′ such that the commutation on the right holds.

Thus the correspondence τF associates to every object f in the left slice [A ; a] an object
τF (f) in the comma category [α ; β]. This object τF (f) itself is an morphism in C and creates a
commutation square involving f and F .

Remark 3.1. The minimality so described is hardly surprising, since whenever a commutation such as
(3.7) holds, the following commutation also holds

βb′

αa′ βb

αa βb

βg

βg

αf

βg◦τF (f)

τF (f)

β Idb

F

This diagram is a special case of the second claim of Theorem 3.2, with F̃ = βg ◦ τF (f) and ϕ = g′.
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Remark 3.2. One of the consequences of Theorem 3.2 and the commutation in (3.7) is

[A ; a]

A [α ; β]

π1 τF

π1

This means that the domain of the morphism τF (f) is the same as the domain of the morphism f .

Remark 3.3. Any object a′ f−→ a in [A ; a] is sent by π1 into a′, whereas it is sent by τF into τF (f),
which is then sent by π1 into a′. This commutation be extended as follows :

(3.8)

[A ; a] [B ; b]

A [α ; β] B

DynF

π1 τF π1

π1 π2

The diagram presents a new functor DynF between the slice categories associated to the terminal points
of the comma object F .

Recall the category
[
π
[α ; β]
2 ; b

]
(1.2) presented in Example 1.6. The compound objects in[

π
[α ; β]
2 ; b

]
lead to a projection functor[

π
[α ; β]
2 ; b

]
[B ; b]

Restrict

Both Theorem 3.2 and (3.8) are consequences of the following more general result:

Theorem 3.3. Under the same assumptions as Theorem 3.2 and the category in (1.2) there is a functor

τ̄F : [A ; a]→
[
π
[α ; β]
2 ; b

]
such that the functors τF and DynF are created via composition:

(3.9)

[A ; a] [B ; b]

[α ; β] UR (α, β)
[
π
[α ; β]
2 ; b

]τF

DynF

τ̄F

π1 ⊆

Restrict

Theorem 3.3 jointly implies the statements of Theorem 3.2 and (3.8). Theorem 3.3 is proved
in Section 8. See Figure 1 for a summary of the various results and their logical connections.

Remark 3.4. When A = B = C in (1.1), and α = β = IdA, then [α ; β] is just the arrow category
Arrow [A]. Any object a F−→ b in this category induces a functor between the slice categories :

x a

x′

f

ϕ
f ′

x

a b

x′

f

ϕ F

f ′
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The yellow and blue arrows represent different objects in the respective slice categories, and the red
arrows represent morphisms between these objects. The diagram on the right is obtained from the left by
simply composing with F . This functorial relation coincides with τF .

Remark 3.5. While τF has a simple interpretation when all the functors in (1.1) are identities, deter-
mining an induced functor in the more general setting is not trivial. One notable approach relies on the
existence of special factorization systems [1, 18]. This approach has been extended to an axiomatic study
of topology [6, 13, 14, 42].

In the next section, we look more closely at the correspondence between F and τF .

4. ALGEBRA OF INDUCED FUNCTORS

Theorem 3.2 presents how an object in a comma category induces a functor between the left-
slices associated to the two endpoints of the object. The functor is realized through morphisms
in C binding an object in a left slice object in A, to a left slice object in B. In this section we shift
our attention back to the case when A = B. In that case all the left slices involved are within
the same category. Our first important realization will be that the induced morphisms τF (f)
are surjective.

Theorem 4.4. Assumptions 2.1 and 2.2 hold. Then the induced morphisms τF (f) from Theorem 3.2
are surjective.

The proof requires the following lemma :

Lemma 4.2. In any category, an equalizer is injective.

Proof of Theorem 4.4. To prove surjectivity we need to show that for any pair of morphisms α, β :
ιB → C, if α ◦ τF f = β ◦ τF f then α = β. Since Y is complete it has equalizers. Consider the
following diagram in which the equalizer of α, β has been shown.

D

ιA ιB C C

C

Eq(α,β)”

τF (a)

∃!ϕ

α

β

∼=

∼=

Since the equalizer is by definition, the universal morphism γ such that βγ = αγ, the morphism
τF (f) must factor through the equalizer via the morphism ϕ as shown. Now by Lemma 4.2,
the morphism Eq(α, β) is injective. By Assumption 2.2, Eq(α, β) factorizes as shown below.

D ιE

ιA ιB

Eq(α,β)”

f

ιψ

τF (a)

ϕ
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Theorem 2.1 : Func-
tor from codomain
category into cat-
egory of left slices

Theorem 3.2 :
induced func-

tor between left
slice categories

Theorem 3.3 : Com-
mutation (3.9)

Theorem 4.4 : sur-
jectivity of the

induced morphism

Theorem 4.5 :
compositionality

Assumption 2.1

Assumption 3.5

Assumption 2.2

Assumption 2.3Assumption 2.4

Construction (8.26)

Lim-Pre con-
struction (7.23)

Corner cate-
gories (5.12)

Lemmas 6.8, 6.9

Lemma 7.12

Pullback (6.20)

FIGURE 1. Outline of the results, assumptions, and their logical dependence.
The white boxes display the various assumptions, and grey boxes display the
main results.

This commutation diagram can be joined with the definition of τF (f) to get

D ιE

ιA ιB

ιΩ ιΩ′

Eq(α,β)”

f

ιψ

ι(b◦ψ)
τF (a)

ϕ

ιa ιb

F

By the universality of τF (f), the morphism ψ must be an isomorphism. This would mean that
Eq(α, β) is an isomorphism too. This in turn implies that α = β, which was our goal. This
completes the proof of Theorem 4.4. □

We have been examining the particular instance of (1.1) when A = B = X , and C = Y , and
both functors α, β are ι : X → Y . In that case, the diagram (3.8) becomes

X [ι ; ι] X

[X ; Ω] [X ; Ω′]

π1 π2

π2
τF

DynF

π2

One of the consequences of equating A and B is that the functor described by Theorems 3.2
and 3.3 are between slices of the same category. Our goal is to investigate the composability of
the horizontal arrows in the bottom row. To gain a precise footing, we assume

Theorem 4.5 (Compositionality of induced functors). Suppose Assumptions 2.1, 2.3 and 2.4 hold.
Then there is a functor

ι(X ) τ−→ LeftSlice (X ) ,

which maps an morphism ιΩ
F−→ ιΩ′ into [X ; Ω]

τF−−→ [X ; Ω′].
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Remark 4.6. Theorem 4.5 essentially says that the correspondence of DynF with F preserves composi-
tion. This leads to the following diagram :

ιΩ

ιΩ′

ιΩ′′

F ′◦F

F

F ′

⇒

[X ; Ω] [X ; Ω′] [X ; Ω′′]

[ι ; ι] X [ι ; ι] X

[ι ; ι] X

τF

DynF

τF ′◦F

DynF ′◦F

τF
π1

DynF ′

π2 1

π1
π2 π2

π2

The upper commuting loop is the statement of Theorem 4.5. The outer commutating loop, along with
the two smaller loops are a consequence of (3.8).

Lemma 4.3. In any category C, if f, g are two composable morphisms such that f, g ◦ f are surjective,
then g is also surjective.

Proof. We need to shown that for any morphisms α, β such that αg = βg, α must equal β. Now
note that

α (gf) = (αg) f = (βg) f = β (gf) .

Since gf is surjective, we must have α = β, proving the claim. □

Proof of Theorem 4.5. We start with the following setup:

ιA

ιΩ ιΩ′ ιΩ′′

ιa

F F ′

This contains an object A ∈ [X ; Ω], and two composable morphisms F, F ′ ∈ [ι ; ι]. We can
apply the functors τF and τF ′ in succession to get

ιA ιB ιC

ιΩ ιΩ′ ιΩ′′

ιa

τF (a)

ιb

τF ′ (b)

ιc

F F ′

To prove Theorem 4.5, it has to be shown that the composition along the morphisms in the
upper row equals τF ′◦F . The object τF ′◦F (a) itself can be drawn as shown below:

ιD

ιA ιB ιC

ιΩ ιΩ′ ιΩ′′

ιd

!ιϕ

ιa

τF (a)

τF ′◦F (a)

ιb

τF ′ (b)

ιc

F F ′
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The connecting morphism ϕ : D → C exists by the minimality of τF ′◦F (a). The upper commut-
ing loop can be expressed as

τF ′(b) ◦ τF (a) = ιϕ ◦ τF ′◦F (a).

By Theorem 4.4, all the three morphisms τF (a), τF ′(b) and τF ′◦F (a) are surjective. Thus by
Lemma 4.3, ιϕmust be surjective too. By Assumption 2.3, ιϕ is also injective. Thus by Assump-
tion 2.4, ιϕ is an isomorphism. This implies that τF ′(b) ◦ τF (a) and τF ′◦F (a) are equal up to
isomorphism. This completes the proof of Theorem 4.5. □

This completes the statement of our main results. The proof of Theorem 2.1 can now be
completed.

Proof of Theorem 2.1. Note that Assumption 2.1 in Theorem 2.1 is a special case of Assumption
3.5. As a result we can build the induced functors τ̄F and τF from Theorems 3.2 and 3.3 respec-
tively. Since ι is assumed to be injective on objects, the objects of ι(X ) are in bijection with the
object of X . Thus each object in ι(X ) corresponds to a unique image ιΩ, for some Ω ∈ ob(X ).
The functoriality now follows from Theorem 4.5. This completes the proof of Theorem 2.1. □

Theorems 3.2 and 3.3 remain to be proven. The proofs require building a deeper insight into
the inter-relations between comma, arrow, and slice categories. We build this insight over the
course of three sections 5, 6 and 7. In the next section, we complete the proof of Theorem 2.1.

5. COMMA AND ARROW CATEGORIES

In this section, we take a deeper look into the commutation squares in comma categories.
We assume throughout this section the general arrangement of (1.1), and the resultant comma
category [α ; β]. We have seen how an arrow category is a special instance of a comma category.
In this section we are interested in the arrow category of the comma category: Arrow [[α ; β]].
The objects of this category are commutations of the form

(5.10)
αa βb

αa′ βb′

ϕ

αf βg

ϕ′

, a, a′ ∈ ob(A), b, b′ ∈ ob(B).

The vertical morphisms lie in C while the horizontal morphisms are the images of morphisms
inA and B. The key to proving our results is the realization that the different pieces of (5.10) are
also comma categories of various kinds. Let us consider the lower left and upper right corners
of (5.10):

αa

αa′ βb′

αf

ϕ′
,

αa βb

βb′

ϕ

βg

This first diagram is an object of the comma category

DL (α, β) :=
[
IdA ; π

[α ; β]
1

]
The initials DL indicates "down-left", the position of an object of this category relative to an
object of Arrow [[α ; β]] (5.10). Similarly, the upper-right corner is an object of the category

UR (α, β) :=
[
π
[α ; β]
2 ; IdB

]
.



Functors induced by comma categories 125

Both the categories DL (α, β) and UR (α, β) can be written more expressively as


A [α ; β]

A
Id π1

 ,


[α ; β] B

B
π2 Id

 .

One can proceed similarly to describe each of the other two corners of (5.10) as categories. This
leads to the following layout of the arrow category and its corner categories:

(5.11)

Arrow [[α ; β]]


A [α ; β]

A
Id π1




[α ; β] A

A
π1 Id




[α ; β] B

B
π2 Id




B [α ; β]

B
Id π2


A B

[α ; β]

[α ; β]

The arrows connecting the comma categories are functors, created from the forgetful functors
associated with the arrow category. The commutative diagram in (5.10) is an object in the
central category of this diagram. The image of (5.10) under the various functors of (5.11) are
displayed below:

α(a) β(b)

α(a′) β(b′)

αf

ϕ

βg

ϕ′

α(a)

α(a′) β(b′)

αf

ϕ′

α(a) β(b)

α(a′)

αf

ϕ
α(a) β(b)

β(b′)

ϕ

βg

β(b)

α(a′) β(b′)

βg

ϕ′

a’ b’

α(a′) β(b′)
ϕ′

α(a) β(b)
ϕ
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The corner categories, which have been presented pictorially, can be written more succinctly as
comma categories:
(5.12)

A [α ; β] B

[
π
[α ; β]
1 ; IdA

] [
π
[α ; β]
2 ; Idβ

]

Arrow [[α ; β]]

[
IdA ; π

[α ; β]
1

] [
Idβ ; π

[α ; β]
2

]

A [α ; β] B

π
[α ; β]
1 π

[α ; β]
2

π1

π2

π1

π2

Uα,β

Dα,β

DRα,β

URα,β

DLα,β

ULα,β

π2

π1

π2

π1

π1 π2

The commutations in (5.12) will be one of the most important theoretical tools in our proofs.
The green arrows labeledU,D,UR,UL,DL,DR respectively represent the upper, lower, upper-
right, upper-left, lower left and lower-right corners of the object in (5.10). The categories A,B
also find their place in this diagram as the smallest ingredients of the arrow comma category
Arrow [[α ; β]]. We next shift our attention to transformations from between comma categories.
Comma transformations. Consider a commuting diagram

(5.13)
A B C

A′ B′ C′
I

F

J

G

K

F ′ G′

in which functors I, J,K connect two comma arrangements F,G and F ′G′. Then, we have

Proposition 5.1 (Functors between comma categories). Consider the arrangement of categories
A,B, C,D, E and functors F,G,H, I, J from (5.13). Then there is an induced functor between comma
categories

(5.14) ΨI,J,K : [F ; G]→ [F ′ ; G′] ,

where the map between objects and morphisms is as follows:

(a, ϕ, c)

(a′, ϕ′, c′)

f,g =

Fa Gc

Fa′ Gc′

Ff

ϕ

Gg

ϕ′

7→
F ′Ia JFa JGc IKc

F ′Ia′ JFa′ JGc′ IKc

=

JFf=F ′If

Jϕ =

JGg=G′Kf

= Jϕ′ =

=

(Ia, Jϕ,Kc)

(Ia′, Jϕ′,Kc′)

If,Kg
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Moreover, the following commutation holds with the marginal functors:

(5.15)

A [F ; G] A

A′ [F ′ ; G′] C′
I

π1 π2

ΨI,J,K K

π1 π2

The proof of Proposition 5.1 will be omitted. A particular instance of (5.13) is shown in the
center below,

(5.16)
αa

βb

F ⇒
A A ⋆

A A [α ; β]

IdA

IdA

IdA

a

F

IdA π
[α ; β]
1

⇒

[A ; a]

A
[
IdA ; π

[α ; β]
1

]
ΦF :=ΨIdA,IdA,F

π1

π1

The leftmost figure in (5.16) is an object F in [α ; β]. The middle diagram presents a simple
commutation in which this object is re-interpreted as a functor. Finally, the leftmost figure
presents an application of Proposition 5.1 to this commutation. The dashed arrow in the above
diagram indicate that it is are defined via composition. Proposition 5.1 applied to the commu-
tative diagram in the center leads to the functor ΨIdA,IdA,F shown on the right. Composition
with this functor leads to the functor ΦF shown in green on the right. The top right commuta-
tion is a consequence of (5.15). The action of ΦF can be explained simply as

x

x′ a

a′

ϕ

ΦF

αx

αx′ αa βb

αa′ βb′

αϕ

F

βψ

F ′

The yellow and blue sub-diagrams on the actions of ΦF , ΦF ′ for different objects F, F ′ ∈ [α ; β].
Two other examples of Proposition 5.1 can be found in the diagram on the left below:

(5.17)

[α ; β] B B

[α ; β] B ⋆

B B ⋆

π
[α ; β]
2 =

=

π
[α ; β]
2

π
[α ; β]
2

=

=

b

b

=

= b

⇒

UR (α, β) =
[
π
[α ; β]
2 ; IdB

]
[
π
[α ; β]
2 ; b

]

[B ; b]

Restrict

⊆

gain Proposition 5.1 yields the trivial transformations between three categories, as indicated
on the right above. We next use this functorial relation ΦF between categories to study more
complicated arrangements.
The dynamics map. The language of comma categories enable complex arrangements of
spaces and transformations to be concisely depicted by the comma notation. Once a comma
category is built, one has two forgetful or projection functors from the comma category. One
can then use these functors to build comma categories of a higher level of complexity. We
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have already seen several examples of this constructive procedure over the course of the dia-
grams (5.11) and (5.12). Another important instance arises when the functor ΦF from (5.16) is
combined with a part of (5.12) to give

[A ; a] [α ; β] Arrow [[α ; β]]
ΦF Dα,β

Now, consider any element a′
f−→ a from the slice category [A ; a], which we just represent as

f . This can be represented as a functor from the one point category ⋆. This leads to

⋆

[A ; a] [α ; β] Arrow [[α ; β]]

f

ΦF Dα,β

This arrangement is also a diagram in [Cat], the category of small categories. As a result we can
construct its pull back, which is shown below in green:

⋆ Z (f, F )

[A ; a] [α ; β] Arrow [[α ; β]]

f

ΦF Dα,β

The category Z (f, F ) is the full subcategory of Arrow [[α ; β]] whose objects are pairs (F ′, g)
such that

αa′ βb′

αa βb

βf

F ′

βg

F

The upper horizontal arrow can be recovered via the functor Uα,β . This functor can be added
to our previous arrangement to get:

(5.18)

⋆ Z (f, F )

[A ; a] [α ; β] Arrow [[α ; β]] [α ; β]

f ζf,F

ΦF Dα,β Uα,β

The functor ζf,F which is created via composition, directly yields the functor we are looking
for:

(5.19) τF (f) := lim ζf,F .

Equation (5.19) is an alternative and easy route to construct the functor τF from Theorem 3.2.
However, this construction does not reveal the functorial nature of the correspondence be-
tween f and lim ζf,F . In the following section, we describe a different route to establishing
functoriality.

6. ADJOINTNESS IN COMMAS

In this section the categorical properties of various comma categories and forgetful functors
will be examined. The first is a classic result from category theory:
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Lemma 6.4. [41, Theorem 3] Let α : A → C and β : B → C be functors with α (finitely) continuous.
If A and B are (finitely) complete, then so is the comma category [α ; β].

One immediate consequence of Lemma 6.4 is:

Lemma 6.5. The comma category [α ; β] is complete.

We also have:

Lemma 6.6. The upper right category UR (α, β) is complete.

Lemma 6.6 follows directly from the construction of UR (α, β) as a comma category in Sec-
tion 5, the continuity of the identity functor, and Lemma 6.4. The following basic lemma is an
useful tool in establishing the existence of right adjoints.

Lemma 6.7 (Right inverse as right adjoint). Suppose F : P → Q and G : Q → P are two functors
such that FG = IdQ and IdP ⇒ GF . Then F,G are left and right adjoints of each other.

These insights lead to two technical results. The first one is:

Lemma 6.8. Consider an arrangement of categories and functors P P−→ R Q←− Q. If P and R have
initial elements 0P and 1R respectively, and P (0P) = 0R, then the functor π2 : [P ; Q] has a left
adjoint given by

(π2)
(L)

: Q → [P ; Q] , q 7→
P0P = 0R

Qq

!Qq

In fact, (π1)
(L) is a right inverse of π1, i.e., π2 ◦ (π2)

(L)
= IdQ.

Proof. Since (π1)
(R) is a right inverse of π1 by Lemma 6.7, it only remains to be shown that there

is a natural transformation (π2)
(L) ◦ π2 ⇒ Id[P ; Q], called the counit. The diagram on the left

below traces the action of this composite functor on an object F (blue) of [P ; Q] into an object
(green) of [P ; Q]:

Pp

Qq

F
π2

q
(π2)

(L)
P0P = 0R

Qq

!Qq ;

P0P Qq

Pp Qq

P (!p)

!Qq

Q Idq

F

The diagram on the left demonstrates a commutation arising out of the initial element preserv-
ing property. The descending yellow morphisms together constitute the connecting morphism
of the counit transformation we seek. This completes the proof. □

The second technical results is:

Lemma 6.9. In the arrangement of (1.1), the forgetful functor

π1 : UR (α, β) :=
[
π
[α ; β]
2 ; IdB

]
→ [α ; β] ,

has a left adjoint

π
(L)
1 : [α ; β]→ UR (α, β) ,

αa

βb

F

αa βb

βb

F

β Idb
.
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Proof. The functor π(L)
1 is clearly a right inverse of π1. Thus again by Lemma 6.7 , it is enough

to show the existence of a natural transformation as shown on the left below:

η : π
(L)
1 ◦π1 ⇒ Id,

αa

βb

F ,

b

b′

ϕ ,
η

αa βb

αa βb βb

βb′

F

=
=

β Idb

F

ϕ
ϕ

The connecting morphisms of this natural transformation is shown above on the right. □

The reader is once again referred to the outline presented in Figure 1. The main results
that remain to be proven are Theorems 3.2 and 3.3. They are proved by a final, complicated
diagram presented later in (8.26). Lemmas 6.8 and 6.9 help in the construction of this diagram.
We end this section with one final observation about the upper-right corner category. Recall
the inclusion functor from (5.17). It leads to a pull-back square:[

π
[α ; β]
2 ; b

]
UR (α, β)

⋆ B

⊂

π2

b

Now consider any functor T : P → UR (α, β) such that π2 ◦T ≡ b, for some object b of B. Then
the commutation on the left below is satisfied:

(6.20)
P UR (α, β)

⋆ B

T

π2

b

⇒

P

[
π
[α ; β]
2 ; b

]
UR (α, β)

[B ; b] ⋆ B

T

T ′

T ′′

Restrict

⊂

π2

b

This commutation must factor through the pullback square as shown by the blue arrow in the
diagram in the middle. Thus given any functor T as above, (6.20) says that T factors through a
map T ′ mapping into

[
π
[α ; β]
2 ; b

]
, a subcategory of UR (α, β). Since the category

[
π
[α ; β]
2 ; b

]
can be further restricted to the slice [B ; b], T ′ extends to a functor mapping into [B ; b].

7. THE LIM-PRE CONSTRUCTION

At this stage we can start constructing the functors declared in Theorem 3.2 and (3.9). These
will be constructed by taking various limits. For that purpose we need to established the com-
pleteness and continuity of various categories and functors involved. We start with a classic
result from Category theory:

Lemma 7.10 (Right adjoints preserve limits). [39, Thm 4.5.3] If a functor F : P → Q has a left
adjoint, then for any diagram Ψ : J → P , if limψ exists, then lim(F ◦Ψ) = F (limΨ).
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Consider an arrangementY F←− X G−→ Z . Given an object y ofY , one can create the composite
functor:

(7.21)

[F ; y] Z

X × {⋆} X

PreF,G(y)

π[F ; y]

∼=

G

Recall that [[Cat] ; Z] is the left-slice of Z in the category [Cat] of small categories. Its objects
are thus all possible functors with codomain Z . The construction (7.21) thus gives us a functor
(7.22)

PreF,G : Y → [[Cat] ; Z] , y 7→ ([F ; y] ,PreF,G(y)) ;

y

y′

ψ 7→

[F ; y]

X Z

[F ; y′]

PreF,G(y)

π[F ; y]

ψ◦ G

π[F ; y′]

PreF,G(y′)

Now suppose that Z is a complete category. The collection of all diagrams in Z , which are
functors F : J → Z is the left slice of Z within [Cat] the category of small categories. We then
have the following result from basic category theory:

Lemma 7.11. Given a complete category Z , there is a functor lim : [[Cat] ; Z]→ Z which maps each
diagram F : J → Z into limF .

For a complete category Z , the lim functor can be used to extend the functor from (7.22) into
the dashed green arrow as shown below:

(7.23)
Y [[Cat] ; Z]

Z
LimPreF,G

PreF,G

lim

This construction LimPreF,G is one of the main innovations in this paper. The use of colimits
instead of limits would have yielded the right Kan extension of F along G. for any object y of
Y , LimPreF,G(y) is the limit point of the functor G restricted to the left slice [F ; y].

Given two complete categories Z,Z ′ a functor Ψ : Z → Z ′ is called limit preserving if the
following commutation holds:

(7.24)
[[Cat] ; Z] [[Cat] ; Z ′]

Q Z ′

lim

F◦

lim

F

The LimPre construction involves two functors R,Q with the same domain category. The sec-
ond functor Q may be extended to a different codomain by composition with some functor F .
The next lemma presents a simple condition under which the LimPre applied to a composition
of Q with F coincides with the composition of LimPreR,Q with F .

Lemma 7.12. Given an arrangement of functors

R P Q Q′QR F
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in which F is limit preserving, the following commutation holds between the LimPre functors:

P Q Q′

R Q Q′

F◦Q

Q

R

F

LimPreR,F◦Q

LimPreR,Q F

Proof. Note that for every y ∈ ob(Y),
LimPreR,F◦Q(y) = limPreR,F◦Q(y) = limPreR,F◦PreR,Q

(y)

= F ◦ limPreR,PreR,Q
(y) = F ◦ LimPreR,Q(y),

where the second last inequality holds from the limit preservation property. □

The reader is once again referred to the outline presented in Figure 1. The statement of
Lemma 7.12 is essentially a commutation. This commutation will be seen to occur multiple
times in the diagram presented later in (8.26). This diagram is the final step towards proving
Theorems 3.2 and 3.3. At this point we are ready to begin the proof.

8. PROOF OF THEOREMS 3.2 AND 3.3

The proofs of the two theorems shall be derived simultaneously. We begin the proof by
drawing a portion of (5.12).

Arrow [[α ; β]] UR (α, β) [α ; β]

DL (α, β)

DL

UR

π1

π1

Since the categories [α ; β] and UR (α, β) are complete by Lemmas 6.4 and 6.6 respectively, we
can create the LimPre constructions of these functors, as shown below:

Arrow [[α ; β]] UR (α, β) [α ; β]

DL (α, β) UR (α, β) [α ; β]

DL

UR

π1

π1

γF

γ̄F

π1

Each colored dotted arrow is the LimPre construction corresponding to the functor of the same
color on the top row. The commutation between the LimPre constructions in the second row
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holds by Lemma 6.8, Lemma 6.9 and Lemma 7.12. We now add some of the peripheral com-
mutations of (5.12) to get

Arrow [[α ; β]] UR (α, β) [α ; β]

B

DL (α, β) UR (α, β) [α ; β]

[α ; β]

DL

UR

π1

π2

π1

π2

π2

γF

γ̄F

π1

π2

Again, by Lemma 6.8 and Lemma 7.12, we can fill in:

Arrow [[α ; β]] UR (α, β) [α ; β]

B

DL (α, β) UR (α, β) [α ; β]

[α ; β]

DL

UR

π1

π2

π1

π2

γF

π2

γ̄F

π1

π2

π2

π2
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We now add the functor ΦF from (5.16) to this diagram:

Arrow [[α ; β]] UR (α, β) [α ; β]

B

DL (α, β) UR (α, β) [α ; β]

[α ; β]

[A ; a] ⋆

DL

UR

π1

π2

π1

π2

γF

π2

γ̄F

π1

π2

π2

π2

ΦF

F

b

Now, set τ̄F = γ̄F ◦ ΦF and τF = γF ◦ ΦF . Note that this creates a commutation:

(8.25)
[A ; a] UR (α, β)

⋆ B

τ̄F

π2

b

This is precisely the commutation described on the left of (6.20). Thus the conclusions of (6.20) along with
(5.17) hold and we get:

(8.26)

Arrow [[α ; β]] UR (α, β) [α ; β]

B

DL (α, β) UR (α, β) [α ; β]

[α ; β]
[
π
[α ; β]
2 ; b

]

[A ; a] ⋆ [B ; b]

DL

UR

π1

π2

π1

π2

γF

π2

γ̄F

π1

π2
π2

π2

Restrict

⊆

τ̄F

DynF

ΦF

F
b

π2

The commutations in (3.9) are included within the commutation of (8.26). The claim of minimality in
Theorem 3.2 follows from the construction of γF as a limit. The commutation diagram in (8.25) links this
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minimal comma object to minimal commutation squares completing

αa′

αa βb

αf

F

.

This completes the proof of Theorems 3.2 and 3.3. □
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