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Critical issues with the Pearson’s chi-square test

VLADIMIR GURVICH AND MARIYA NAUMOVA*

ABSTRACT. Pearson’s chi-square tests are among the most commonly applied statistical tools across a wide range
of scientific disciplines, including medicine, engineering, biology, sociology, marketing and business. However, its
usage in some areas is not correct. For example, the chi-square test for homogeneity of proportions (that is, comparing
proportions across groups in a contingency table) is frequently used to verify if the rows of a given nonnegative
m × n (contingency) matrix A are proportional. The null hypothesis H0: “m rows are proportional” (for the whole
population) is rejected with confidence level 1−α if and only if χ2

stat > χ2
crit, where the first term is given by Pearson’s

formula, while the second one depends only on m,n, and α, but not on the entries of A.
It is immediate to notice that the Pearson’s formula is not invariant. More precisely, whenever we multiply all

entries of A by a constant c, the value χ2
stat(A) is multiplied by c, too, χ2

stat(cA) = cχ2
stat(A). Thus, if all rows of

A are exactly proportional then χ2
stat(cA) = cχ2

stat(A) = 0 for any c and any α. Otherwise, χ2
stat(cA) becomes

arbitrary large or small, as positive c is increasing or decreasing. Hence, at any fixed significance level α, the null
hypothesis H0 will be rejected with confidence 1−α, when c is sufficiently large and not rejected when c is sufficiently
small. Yet, obviously, the rows of cA should be proportional or not for all c simultaneously. For this reason, Pearson’s
test certainly cannot be applied to “physical data”, which are obtained by measurements. Indeed, in this case matrix
A depends on the unit of measurement. The test can be applied only to categorical data and even then some further
limitations are required, which we consider in this paper.
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1. INTRODUCTION

The chi-square test for proportionality determines whether there is a statistically significant
difference between the proportions of a certain outcome in two independent groups.

The original chi-square test, commonly referred to as Pearson’s chi-square, originated from
Karl Pearson’s papers in the late 1800 - early 1900s [11, 12, 13, 14]. It is used both as a “goodness
of fit test” - where data are classified along a single dimension - and as a test for contingency
tables, where classification occurs across two or more dimensions. A historical overview of
the development of the test is provided in [2, 15]. Pearson suggested but did not provide a
proof that the test statistic follows the chi-square distribution [2]. The correction regarding the
number of degrees of freedom was addressed in Fisher’s papers published in 1922 and 1924
[5, 6].

Currently, the chi-square test is extensively utilized across a broad spectrum of research
disciplines in analyzing categorical data. Its applications span fields such as social sciences,
biomedical research, economics, education, and marketing, where it is employed to assess as-
sociations between variables and evaluate the goodness of fit of observed data to expected
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distributions. This widespread adoption underscores its substantial role in empirical research
and statistical inference. According to [1], the chi-square test has seen more use than any other
statistical test beside possibly Student’s t-test. However, despite its widespread application,
multiple authors (see for ex., [2, 7, 9, 10]) mention that the chi-square test presents several
methodological limitations, such as (not theoretically proven) lower and upper bounds on the
sample size, the assumption that the data are derived from independent observations, etc.

In this paper, we demonstrate an extreme sensitivity of the test to the sample sizes and data
representation. Specifically, we show that if the given contingency matrix is multiplied by a
constant c, the test statistic is multiplied by c as well. The results of the test can therefore be
easily manipulated (to reject or not reject H0).

Remark 1.1. Similar problems were recently detected for the analysis of variance (ANOVA) and the
Tukey-Kramer test. Tukey-Kramer’s formula (see (4) in [8]) of the critical range for groups of observa-
tions i and j depends not only on these two groups but also on all other groups. This contradicts common
sense, since these other groups may be not related to groups i and j at all, and immediately leads to some
logical contradictions in ANOVA with more than two groups of observations; see [8] for definitions and
more details.

2. PEARSON CHI-SQUARE TEST FOR HOMOGENEITY OF PROPORTIONS

All three omnibus tests in the Pearson family - goodness of fit, independence, and homo-
geneity of proportions - share basically the same underlying formula for the test statistic. We
will concentrate on the homogeneity test.

Consider a scenario in which T outcomes of multinomial trials are classified according to
two distinct criteria, into one of the same m categories, in one of n groups. The outcomes can
be presented in a two-way contingency table with m rows and n columns, as shown in Table
1. For example, in [4], a population-based case-control study of prostatic cancer in Alberta

Group 1 Group 2 · · · Group j · · · Group n Row Total

Category 1 O11 O12 · · · O1j · · · O1n O1·
Category 2 O21 O22 · · · O2j · · · O2n O2·
...

...
...

...
...

...
Category i Oi1 Oi2 · · · Oij · · · Oin Oi·
...

...
...

...
...

...
Category m Om1 Om2 · · · Omj · · · Omn Om·

Column Total O·1 O·2 · · · O·j · · · O·n T

TABLE 1. General structure of an m × n contingency table. Here, Oij denotes
the observed (absolute) frequency in cell (i, j), Oi·, O·j denote the marginal
totals for row i and column j respectively, and T is the grand total.

uses the contingency table related to 376 newly diagnosed prostatic cancer patients and 620
controls, group-matched based on their ethnicity (see Table 2). Let Oij denote the observed
(absolute) frequency in the cell corresponding to row i and column j, for i = 1, 2, . . . ,m and
j = 1, 2, . . . , n.



Critical issues with the Pearson’s chi-square test 103

Cases Controls Row Total

British 200 279 479
French 16 20 36
German 55 93 148
Ukrainian 31 79 110
Others 74 149 223

Column Total 376 620 996

TABLE 2. The contingency table for a population-based case-control study of
prostatic cancer in Alberta, with 376 newly diagnosed prostatic cancer patients
and 620 controls of different ethnicities [4].

Let

Ri =

n∑
j=1

Oij , i ∈ {1, 2, ...,m} (row sum for population i),

Cj =

m∑
i=1

Oij , j ∈ {1, 2, ..., n} (column sum for category j),

T =

m∑
i=1

n∑
j=1

Oij . (total sample size).

The null hypothesis is:

H0 : π1j = π2j = · · · = πmj , ∀j ∈ {1, . . . , n},

where πij ∈ [0, 1] denotes the proportion of individuals in group i falling into category j, and∑n
j=1 πij = 1 for each i. Under H0, the expected frequency Eij in cell (i, j) is given by:

Eij =
Ri · Cj

N
, ∀i = 1, . . . ,m; j = 1, . . . , n.

Define the test statistic:

(2.1) χ2
stat =

m∑
i=1

n∑
j=1

(Oij − Eij)
2

Eij
.

Under the test assumptions (see Section 3), the test statistic χ2
stat approximately follows a chi-

square distribution with (m − 1)(n − 1) degrees of freedom under H0. Let α ∈ (0, 1) be the
significance level. Then the decision rule is:

Reject H0 if χ2
stat > χ2

1−α,(m−1)(n−1),

where χ2
1−α,(m−1)(n−1) is the (1−α)-quantile of the chi-square distribution with (m− 1)(n− 1)

degrees of freedom.

3. ASSUMPTIONS OF THE CHI-SQUARE TEST

While the mathematical formulation of the chi-square test statistic is relatively simple - com-
paring observed frequencies with expected frequencies under a specified null hypothesis- the
validity of the test’s conclusions rests on a set of non-trivial assumptions. These assumptions
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pertain to the way the data are generated, the structure of the contingency table, and the the-
oretical conditions under which the chi-square distribution serves as a valid approximation to
the true sampling distribution of the test statistic. Specifically, the assumptions of the test are
as follows [10]:

(i) Random Sampling: The data must be drawn via random sampling.
(ii) Categorical Data: The variables involved must be categorical. The full set of m × n cells

represents all possible combinations of category levels, and each observation must belong
to exactly one cell.

(iii) Expected Frequency Condition: The expected frequency in each cell should be suffi-
ciently large to ensure the validity of the chi-square approximation. Specifically, it is
recommended that for each cell (i, j),

Eij ≥ 51, ∀ i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

(iv) Independence of Observations: Each observation must contribute to exactly one cell,
and observations must be independent. That is,

Cov(Oij , Okl) = 0 for all (i, j) ̸= (k, l).

(v) Fixed Margins (if applicable): For the test of homogeneity or independence, it is often
assumed that either the row totals, the column totals, or both are fixed by the sampling
design or conditioning.

4. ONLY INVARIANT TESTS CAN VERIFY PROPORTIONALITY

Obviously, χ2
stat(cA) = cχ2

stat(A) for all real c ≥ 0. The null hypothesis H0 stated in Section 2
is rejected for any fixed significance level α, if and only if χ2

stat(A) > χ2
crit(A), where χ2

crit(A) =
χ2
1−α,(m−1)(n−1) is the (1−α)-quantile of the chi-square distribution with (m−1)(n−1) degrees

of freedom, which depends only on m,n, and α, but not on the entries of A.

Observation 4.1. The following five statements are equivalent:

(a) the rows of A are exactly proportional;
(b) the columns of A are exactly proportional;
(c) Oij = Eij for all i = 1, . . . ,m and j = 1, . . . , n;
(d) χ2

stat(A) = 0;
(e) χ2

stat(cA) = 0 for all real positive c.

Furthermore, if statements (a - e) fail, then χ2
stat(A) > 0 and for any fixed significance level

α, the null hypothesis H0 will be rejected for cA with confidence 1− α, if c is sufficiently large,
and it will not be rejected if c is sufficiently small.

Proof. It is enough to notice that in the numerator and denominator of (2.1) are, respectively, a
quadratic and linear functions of the entries of A. Hence, χ2

stat(cA) = cχ2
stat(A). □

Yet, obviously, the result of testing proportionality of the rows of cA should not linearly
depend on c.

1In some sources, Eij ≥ 10 [2], but neither requirement seems to be mathematically justified.
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5. EXAMPLES

Example 5.1. We consider the following 2× 2 contingency table:

Group 1 Group 2 Row Total
Category A 1 1 2
Category B 1 11 12

Column Total 2 12 14

We test the null hypothesis that the proportions of outcomes are the same across the two groups. The
expected value for each cell under the null hypothesis are

E11 =
2 · 2
14

=
4

14
=

2

7
, E12 =

2 · 12
14

=
24

14
=

12

7
,

E21 =
12 · 2
14

=
24

14
=

12

7
, E22 =

12 · 12
14

=
144

14
=

72

7
,

and the chi-square statistic is found to be

χ2
stat =

(1− 2
7 )

2

2
7

+
(1− 12

7 )2

12
7

+
(1− 12

7 )2

12
7

+
(11− 72

7 )2

72
7

=
25

7

(
1

2
+

1

6
+

1

72

)
=

175

72
.

With 1 degree of freedom, and using the critical value from the chi-square distribution table at signifi-
cance level α = 0.05, which is approximately 3.841, we have that

χ2
stat ≈ 2.43 < 3.841.

Thus, we fail to reject the null hypothesis. There is not enough evidence to suggest a significant difference
in proportions between the two groups. Let’s modify the original table by multiplying each entry by 2:

Group 1 Group 2 Row Total
Category A 2 2 4
Category B 2 22 24

Column Total 4 24 28

Performing the same operations, we find the expected counts under the null hypothesis:

E11 =
4 · 4
28

=
16

28
=

4

7
, E12 =

4 · 24
28

=
96

28
=

24

7
,

E21 =
24 · 4
28

=
96

28
=

24

7
, E22 =

24 · 24
28

=
576

28
=

144

7
.

Then the chi-square statistic is computed as

χ2
stat =

(2− 4
7 )

2

4
7

+
(2− 24

7 )2

24
7

+
(2− 24

7 )2

24
7

+
(22− 144

7 )2

144
7

=
100

7

(
1

4
+

1

12
+

1

144

)
=

175

36
.

Comparing this value to the critical value χ2
0.05,1 = 3.841, we see that

χ2
stat ≈ 4.86 > 3.841,

and reject the null hypothesis. There is sufficient evidence to suggest that the proportions differ between
the two groups.

Vectors (1, 1) and (1, 11) do not look proportional at all. So it seems a bit strange that we
cannot reject proportionality, for the population, with confidence 95%, based on such a sample.

Some researchers (see, for ex. [2, 3, 7]) recommend to apply the Pearson’s test only to sam-
ples with “large enough” entries. In particular, the expected frequencies in each cell should
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generally be at least ten, or in some sources, no less than 5 (both numbers seem to be arbitrar-
ily chosen) [2], or otherwise, the test can result in inaccurate p-values and reduced statistical
power. Indeed, doubling the values in the first sample, we obtain the second one, with row
vectors (2, 2) and (2, 22), which already enables us to reject proportionality with confidence
95%. However, one should note that with very large samples, even trivial associations may
yield statistically significant results, potentially leading to overinterpretation.

These restrictions are ambiguous and do not solve the problem in general, since, as we al-
ready mentioned, χ2

stat(cA) ≡ cχ2
stat(A).

Example 5.2. We illustrate the test for the following 2× 2 contingency table:

Group A Group B Row Total
Category 1 22 18 40
Category 2 18 22 40

Column Total 40 40 80

Under the null hypothesis of homogeneity, expected counts for all cells are

Eij =
40 · 40
80

= 20, i, j ∈ {1, 2}.

The chi-square statistic:

χ2
stat =

(22− 20)2

20
+

(18− 20)2

20
+

(18− 20)2

20
+

(22− 20)2

20
=

4

5
= 0.8.

Since 0.8 < 3.841, we do not reject the null hypothesis. There is no significant difference in proportions
between the groups.

If we modify the original contingency table by multiplying all elements by 1,000 (for example, assum-
ing that the elements of the matrix represent the actual number of cases, while before they represented
the number of cases in thousands). This yields the following scaled observed frequencies:

Group A Group B Row Total
Category 1 22000 18000 40000
Category 2 18000 22000 40000

Column Total 40000 40000 80000

Under the null hypothesis of homogeneity, all expected counts are

Eij =
40000 · 40000

80000
= 20000, i, j ∈ {1, 2},

and the chi-square statistic:

χ2
stat =

(22000− 20000)2

20000
+

(18000− 20000)2

20000
+

(18000− 20000)2

20000
+

(22000− 20000)2

20000
= 800.

Note that the new χ2
stat is 1, 000 times greater than the original one. Comparing χ2

stat to the critical
value (800 > 3.841), we reject the null hypothesis. There is a significant difference in proportions
between the groups.

In this example, the null hypothesis H0 claims that all entries of the population are equal. For the first
(small) sample, deviations ±2 can appear with probability > 5%, so we cannot reject H0 with confidence
95%. Yet, the second sample is 1,000 times larger, so deviations ±2, 000 have chances < 5%, so we reject
H0 with confidence 95%. It is known that the standard deviation of entries in cA is proportional to

√
c,

rather than to c. And still, the value of c must be limited, even for the categorical data.
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Example 5.3. In this case, we work with the following 3×4 contingency matrix of observed frequencies:

Group 1 Group 2 Group 3 Group 4 Row Total
Category A 98 86 79 71 334
Category B 78 82 88 51 299
Category C 75 62 82 77 296

Column Total 251 230 249 199 929

The matrix of the expected frequencies is given by

E =

90.3 82.7 89.5 71.6
80.9 73.9 80.2 64.1
79.9 73.3 79.2 63.4

 ,

and the chi-square statistic is found to be χ2
stat ≈ 11.475.

For the given 3× 4 contingency matrix, the number of degrees of freedom is (3− 1)(4− 1) = 6. So,
the p-value is about 0.07 and for α = 0.05 we don’t reject the null hypothesis. In this case, the critical
value is 12.59. It is easy to verify that multiplying all entries, for example, by 2 yields the doubled test
statistic (χ2

stat ≈ 22.95) and the much lower p-value (≈ 0.0008).

Example 5.4. We now provide a construction of a matrix for which a proportionality test could be
designed. Suppose that we want to analyze the joint probabilistic distribution of two random variables
taking m and n distinct values, say, X = (x1, . . . , xm) and Y = (y1, . . . , yn). Our goal is to estimate
the two corresponding probabilistic distributions (p1, . . . , pm) and (q1, . . . , qn) and decide if X and
Y are independent. A given sample consists of T trials, each of which gives us the values of X and
Y , simultaneously. Let Zij be the number of trials realizing xi and yj . Then, zij = Zij/T are the
corresponding observed frequencies. Set pi =

∑n
j=1 zij , qj =

∑m
i=1 zij , and treat them as the observed

frequencies for X and Y , respectively. By the above definitions, we have
m∑
i=1

pi =

n∑
j=1

qj =

m∑
i=1

n∑
j=1

zij = 1.

We define the expected frequencies by setting zeij = piqj .

Although the last example is also a case of verifying proportionality, it is special. Since the
sum of all entries equals 1, multiplication of all observed frequencies zij by a constant c ̸= 1 is
impossible. More generally, the chi-square test will work when the sum of all entries must be
constant, or almost constant.

6. CONCLUSIONS

The Pearson chi-square test is one of the most widely used tools for analyzing categorical
data, particularly in contingency tables. As demonstrated through both theoretical formulation
and numerical examples, even under its common assumptions, including sufficiently large ex-
pected cell frequencies and the independence of observations, the test is extremely sensitive to
the input data, and its inaccurate application can lead to misleading conclusions. The inter-
pretation of the results must therefore be approached with caution, as the heuristic nature of
the test may introduce critical biases. Consequently, findings should be considered exploratory
rather than definitive.

The Pearson’s chi-square test cannot be applied for verifying proportionality for general
contingency matrices. We show that the chi-square statistic increases linearly when the entire
contingency table is multiplied by a constant factor, reflecting the proportional scaling of ob-
served and expected frequencies. However, the test is applicable in cases where the total sum
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of entries is a constant, or almost constant, for example, for testing the independence of two
probabilistic distributions, given a sample of pairwise frequencies.

Pearson’s test certainly cannot be applied to “physical data”, which are obtained by mea-
surements. Indeed, in this case, matrix A depends on the units of measurement. For example,
A is replaced by 3, 600A, when we switch from hours to seconds. The test can be applied only
to categorical data and even then further limitations are required; some of them are considered
in this paper.

One could modify formula (2.1) making it invariant with respect to multiplication of A by a
constant, for example, by squaring all denominators in (2.1) or by dividing all entries of A by
their sum or maximum. However, then the distribution χ2

crit should be modified accordingly.
Both above modifications deserve a separate consideration.
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