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Approximation by symmetrized and perturbed hyperbolic
tangent activated convolutions as positive linear operators
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ABSTRACT. In this work, we studied further the univariate symmetrized and perturbed hyperbolic tangent acti-
vated convolution type operators of three kinds. Here, this is done with the method of positive linear operators. Their
new approximation properties are established by the quantitative convergence to the unit operator using the modulus
of continuity. It is also studied the related simultaneous approximation, as well as the iterated approximation.
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1. INTRODUCTION

The author studied extensively the quantitative approximation of positive linear operators
to the unit since 1985, see for example [1]-[3], [8]. He originated from the quantitative weak
convergence of finite positive measures to the unit Dirac measure, having as a method the
geometric moment theory, see [2], and he produced best upper bounds, leading to attained (i.e.
sharp Jackson type inequalities), e.g. see [1], [2]. These studies have been gone to all possible
directions, univariate and multivariate, though in this work, we stay only on the univariate
approach over an infinite domain.

Our convolution operators here have as a kernel the symmetrized and perturbed hyperbolic
tangent activation function, which is used very commonly in the study of neural networks, and
they can be interpreted as positive linear operators. So here our proving methods come from
the theory of positive linear operators. Thus, in Section 2, we discuss about the symmetrized
and perturbed hyperbolic tangent activation function. In Section 3, we describe our activated
convolution type operators and we present their properties, such as differentiation and itera-
tion, along with positive linear operators results to be applied. In Section 4, we derive some
auxiliary results which are estimates to our operators, when applied to polynomial type func-
tions and to be used into our main results. In Section 5, we present our main explicit results
under the lens of positive linear operators theory. We treat also the simultaneous and iter-
ated approximation cases under the same spirit. We are greatly inspired by our earlier works
[4, 5, 7]. Furthermore, general motivation comes from the great works [12] and [13].
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2. ABOUT q-DEFORMED AND λ-PARAMETRIZED HYPERBOLIC TANGENT FUNCTION gq,λ

Here, all this initial background comes from [6, Chapter 18]. We use gq,λ, see (2.1), and
exhibit that it is a sigmoid function and we will present several of its properties related to
the approximation by neural network operators. So, let us consider the hyperbolic tangent
activation function

(2.1) gq,λ (x) :=
eλx − qe−λx

eλx + qe−λx
, λ, q > 0, x ∈ R.

We have that
gq,λ (0) =

1− q

1 + q
.

We notice also that

(2.2) gq,λ (−x) =
e−λx − qeλx

e−λx + qeλx
=

1
q e

−λx − eλx

1
q e

−λx + eλx
= −

(
eλx − 1

q e
−λx

)
eλx + 1

q e
−λx

= −g 1
q ,λ

(x) .

That is

(2.3) gq,λ (−x) = −g 1
q ,λ

(x) , ∀ x ∈ R,

and
g 1

q ,λ
(x) = −gq,λ (−x) ,

hence

(2.4) g′1
q ,λ

(x) = g′q,λ (−x) .

It is

gq,λ (x) =
e2λx − q

e2λx + q
=

1− q

e2lx

1 + q
e2λx

→
(x→+∞)

1,

i.e.

(2.5) gq,λ (+∞) = 1.

Furthermore

gq,λ (x) =
e2λx − q

e2λx + q
→

(x→−∞)

−q

q
= −1,

i.e.

(2.6) gq,λ (−∞) = −1.

We find that

(2.7) g′q,λ (x) =
4qλe2λx

(e2λx + q)
2 > 0,

therefore gq,λ is strictly increasing. Next, we obtain (x ∈ R)

(2.8) g′′q,λ (x) = 8qλ2e2λx

(
q − e2λx

(e2λx + q)
3

)
∈ C (R) .

We observe that
q − e2λx ≷ 0 ⇔ q ≷ e2λx ⇔ ln q ≷ 2λx ⇔ x ≶

ln q

2λ
.

So, in case of x < ln q
2λ , we have that gq,λ is strictly concave up, with g′′q,λ

(
ln q
2λ

)
= 0. In case of

x > ln q
2λ , we have that gq,λ is strictly concave down. Clearly, gq,λ is a shifted sigmoid function
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with gq,λ (0) =
1−q
1+q , and gq,λ (−x) = −gq−1,λ (x), (a semi-odd function). By 1 > −1, x+1 > x−1,

we consider the function

(2.9) Mq.λ (x) :=
1

4
(gq,λ (x+ 1)− gq,λ (x− 1)) > 0,

∀x ∈ R; q, λ > 0. Notice that Mq,λ (±∞) = 0, so the x-axis is horizontal asymptote. We have
that

Mq,λ (−x) =
1

4
(gq,λ (−x+ 1)− gq,λ (−x− 1)) =

1

4
(gq,λ (− (x− 1))− gq,λ (− (x+ 1)))

=
1

4

(
−g 1

q ,λ
(x− 1) + g 1

q ,λ
(x+ 1)

)
=

1

4

(
g 1

q ,λ
(x+ 1)− g 1

q ,λ
(x− 1)

)
(2.10)

= M 1
q ,λ

(x) , ∀ x ∈ R.

Thus

(2.11) Mq,λ (−x) = M 1
q ,λ

(x) , ∀ x ∈ R; q, λ > 0,

a deformed symmetry. Next, we have that

(2.12) M ′
q,λ (x) =

1

4

(
g′q,λ (x+ 1)− g′q,λ (x− 1)

)
, ∀ x ∈ R.

Let x < ln q
2λ − 1, then x − 1 < x + 1 < ln q

2λ and g′q,λ (x+ 1) > g′q,λ (x− 1) (by gq,λ being
strictly concave up for x < ln q

2λ ), that is M ′
q,λ (x) > 0. Hence Mq,λ is strictly increasing over(

−∞, ln q
2λ − 1

)
. Let now x− 1 > ln q

2λ , then x+ 1 > x− 1 > ln q
2λ , and g′q,λ (x+ 1) < g′q,λ (x− 1),

that is M ′
q,λ (x) < 0. Therefore Mq,λ is strictly decreasing over

(
ln q
2λ + 1,+∞

)
. Let us next

consider, ln q
2λ − 1 ≤ x ≤ ln q

2λ + 1. We have that

M ′′
q,λ (x) =

1

4

(
g′′q,λ (x+ 1)− g′′q,λ (x− 1)

)
(2.13)

= 2qλ2

[
e2λ(x+1)

(
q − e2λ(x+1)(
e2λ(x+1) + q

)3
)

− e2λ(x−1)

(
q − e2λ(x−1)(
e2λ(x−1) + q

)3
)]

.

By ln q
2λ − 1 ≤ x ⇔ ln q

2λ ≤ x + 1 ⇔ ln q ≤ 2λ (x+ 1) ⇔ q ≤ e2λ(x+1) ⇔ q − e2λ(x+1) ≤ 0. By
x ≤ ln q

2λ + 1 ⇔ x − 1 ≤ ln q
2λ ⇔ 2λ (x− 1) ≤ ln q ⇔ e2λ(x−1) ≤ q ⇔ q − e2λβ(x−1) ≥ 0. Clearly

by (2.13), we get that M ′′
q,λ (x) ≤ 0, for x ∈

[
ln q
2λ − 1, ln q

2λ + 1
]
. More precisely Mq,λ is concave

down over
[
ln q
2λ − 1, ln q

2λ + 1
]
, and strictly concave down over

(
ln q
2λ − 1, ln q

2λ + 1
)
.

Consequently, Mq,λ has a bell-type shape over R. Of course it holds M ′′
q,λ

(
ln q
2λ

)
< 0. At

x = ln q
2λ , we have

(2.14) M ′
q,λ (x) =

1

4

(
g′q,λ (x+ 1)− g′q,λ (x− 1)

)
= qλ

(
e2λ(x+1)(

e2λ(x+1) + q
)2 − e2λ(x−1)(

e2λ(x−1) + q
)2
)
.

Thus

M ′
q,λ

(
ln q

2λ

)
= qλ

 e2λ(
ln q
2λ +1)(

e2λ(
ln q
2λ +1) + q

)2 − e2λ(
ln q
2λ −1)(

e2λ(
ln q
2λ −1) + q

)2

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= λ

(
e2λ
(
e−2λ + 1

)2 − e−2λ
(
e2λ + 1

)2
(e2λ + 1)

2
(e−2λ + 1)

2

)
= 0.(2.15)

That is, ln q
2λ is the only critical number of Mq,λ over R. Hence at x = ln q

2λ , Mq,λ achieves its
global maximum, which is

Mq,λ

(
ln q

2λ

)
=

1

4

[
gq,λ

(
ln q

2λ
+ 1

)
− gq,λ

(
ln q

2λ
− 1

)]
=

1

4

[(
eλ − e−λ

eλ + e−λ

)
−
(
e−λ − eλ

e−λ + eλ

)]
=

1

4

[
2
(
eλ − e−λ

)
eλ + e−λ

]
=

1

2

(
eλ − e−λ

eλ + e−λ

)
=

tanh (λ)

2
.(2.16)

Conclusion 2.1. The maximum value of Mq,λ is

(2.17) Mq,λ

(
ln q

2λ

)
=

tanh (λ)

2
, λ > 0.

We mention the following:

Theorem 2.1 ([6, Ch. 18, p. 458]). We have that

(2.18)
∞∑

i=−∞
Mq,λ (x− i) = 1, ∀ x ∈ R, ∀ λ, q > 0.

Also, it holds the following:

Theorem 2.2 ([6, Ch. 18, p. 459]). It holds

(2.19)
∫ ∞

−∞
Mq,λ (x) dx = 1, λ, q > 0.

So that Mq,λ is a density function on R; λ, q > 0. Similarly, we get that

(2.20)
∫ ∞

−∞
M 1

q ,λ
(x) dx = 1, λ, q > 0,

so that M 1
q ,λ

is a density function. Furthermore, we observe the symmetry

(2.21)
(
Mq,λ +M 1

q ,λ

)
(−x) =

(
Mq,λ +M 1

q ,λ

)
(x) , ∀ x ∈ R.

Furthermore

(2.22) φ =
Mq,λ +M 1

q ,λ

2
> 0

is a new density function over R, i.e. ∫ ∞

−∞
φ (x) dx = 1,

and φ is an even function. Clearly, then

(2.23)
∫ ∞

−∞
φ (nx− u) du = 1, ∀ n ∈ N, x ∈ R.
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3. BASICS

We give the following:

Definition 3.1. Let f ∈ CB (R) (continuous and bounded functions on R), n ∈ N. We define the
following basic activated hyperbolic tangent perturbed convolution type operators

(3.24) An (f) (x) :=

∫ ∞

−∞
f
(u
n

)
φ (nx− u) du, ∀ x ∈ R.

In this work, we examine the quantitative convergence of An to the unit operator. We study
similarly the activated Kantorovich type operators,

A∗
n (f) (x) := n

∫ ∞

−∞

(∫ u+1
n

u
n

f (t) dt

)
φ (nx− u) du

= n

∫ ∞

−∞

(∫ 1
n

0

f
(
t+

u

n

)
dt

)
φ (nx− u) du,(3.25)

where f ∈ CB (R), n ∈ N, x ∈ R, and the activated quadrature operators

(3.26) An (f) (x) :=

∫ ∞

−∞

(
r∑

i=1

wif

(
u

n
+

i

nr

))
φ (nx− u) du,

where wi ≥ 0,
r∑

i=1

wi = 1; f ∈ CB (R), n ∈ N, x ∈ R. An essential property follows:

Theorem 3.3 ([7]). Let 0 < α < 1, n ∈ N : n1−α > 2. Then

(3.27)
∫

{u∈R:|nx−u|≥n1−α}

φ (nx− u) du <

(
q + 1

q

)
e2λ(n1−α−1)

, q, λ > 0.

The first modulus of continuity here is

(3.28) ω1 (f, δ) := sup
x,y∈R,|x−y|≤δ

|f (x)− f (y)| , δ > 0.

We need the following:

Proposition 3.1 ([7]). It holds (k ∈ N)

(3.29)
∫ ∞

−∞
|z|k φ (z) dz ≤

 tanh (λ)
(k + 1)

+

(
q + 1

q

)
e2λk!

(2λ)
k

 < ∞.

We make the following:

Remark 3.1. Given f ∈ CB (R), by [7], we obtain that An (f), A∗
n (f), An (f) ∈ CB (R). Clearly,

here An, A∗
n, An are positive linear operators from CB (R) into itself, with the property An (1) =

A∗
n (1) = An (1) = 1, n ∈ N. Let i ∈ N be fixed. Assume that f ∈ C(i) (R), with f (j) ∈ CB (R), for

j = 0, 1, ..., i. We derive from [7] that

(3.30)

(An (f))
(j)

(x) = An

(
f (j)

)
(x) ,

(A∗
n (f))

(j)
(x) = A∗

n

(
f (j)

)
(x) ,

(
An (f)

)(j)
(x) = An

(
f (j)

)
(x) , ∀ x ∈ R,
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for all j = 1, ..., i.

Call Ψn any of the An, A∗
n and An, n ∈ N. We also make the following:

Remark 3.2. Furthermore, it holds

|An (f) (x)| ≤ ∥f∥∞
∫ ∞

−∞
φ (z) dz = ∥f∥∞ ,

i.e.

(3.31) ∥An (f)∥∞ ≤ ∥f∥∞
so An is a bounded positive linear operator. Clearly, it holds

(3.32)
∥∥A2

n (f)
∥∥
∞ = ∥An (An (f))∥∞ ≤ ∥An (f)∥∞ ≤ ∥f∥∞ .

And for k ∈ N we obtain

(3.33)
∥∥Ak

n (f)
∥∥
∞ ≤

∥∥Ak−1
n (f)

∥∥
∞ ≤

∥∥Ak−2
n (f)

∥∥
∞ ≤ ... ≤ ∥f∥∞ ,

so the contraction property valid and Ak
n is a bounded linear operator. Let r ∈ N. We observe that

Ar
nf − f =

(
Ar

nf −Ar−1
n f

)
+
(
Ar−1

n f −Ar−2
n f

)
+
(
Ar−2

n f −Ar−3
n f

)
+ ...+

(
A2

nf −Anf
)
+ (Anf − f) .(3.34)

Then

∥Ar
nf − f∥∞ ≤

∥∥Ar
nf −Ar−1

n f
∥∥
∞ +

∥∥Ar−1
n f −Ar−2

n f
∥∥
∞ +

∥∥Ar−2
n f −Ar−3

n f
∥∥
∞

+ ...+
∥∥A2

nf −Anf
∥∥
∞ + ∥Anf − f∥∞

=
∥∥Ar−1

n (Anf − f)
∥∥
∞ +

∥∥Ar−2
n (Anf − f)

∥∥
∞ + ...+ ∥An (Anf − f)∥∞

+ ∥Anf − f∥∞ ≤ r ∥Anf − f∥∞ .

Therefore

(3.35) ∥Ar
nf − f∥∞ ≤ r ∥Anf − f∥∞ .

Let now m1,m2, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr, and Ami
as above, then

Amr

(
Amr−1

(...Am2
(Am1

f))
)
− f(3.36)

= ... = Amr

(
Amr−1

(...Am2
)
)
(Am1

f − f) +Amr

(
Amr−1

(...Am3
)
)
(Am2

f − f)

+Amr

(
Amr−1

(...Am4
)
)
(Am3

f − f) + ...+Amr

(
Amr−1

f − f
)
+Amr

f − f.

Consequently it holds, as in [6, Chapter 2],

(3.37)
∥∥Amr

(
Amr−1

(...Am2
(Am1

f))
)
− f

∥∥
∞ ≤

r∑
i=1

∥Ami
f − f∥∞ .

All of (3.31)-(3.37) are also true for A∗
n and An, and n ∈ N.

We need the following Hölder’s type inequality for positive linear operators.

Theorem 3.4 ([9]). Let L be a positive linear operator from C (R) into CB (R), and f, g ∈ C (R),
furthermore let p, q > 1 : 1

p + 1
q = 1. Assume that L ((|f (·)|p)) (s∗), L ((|g (·)|q)) (s∗) > 0 for some

s∗ ∈ R. Then

(3.38) L (|f (·) g (·)|) (s∗) ≤ (L ((|f (·)p|)) (s∗))
1
p (L ((|g (·)q|)) (s∗))

1
q .

We also need the following
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Theorem 3.5 ([9]). Let N ∈ N and f, f (N) ∈ CB (R), x ∈ R. Consider Ln a sequence of positive linear
operators from CB (R) into itself, n ∈ N, such that Ln (1) = 1. Assume Ln

(
|· − x|N+1

)
(x) > 0, and

f (i) (x) = 0, for i = 1, ..., N. Then

|Ln (f) (x)− f (x)| ≤ ω1

(
f (N),

((
Ln

(
|· − x|N+1

))
(x)
) 1

N+1

)

×

Ln

(
|· − x|N

)
(x) +

(
Ln

(
|· − x|N+1

)
(x)
) N

N+1

(N + 1)

 < +∞, ∀ n ∈ N.(3.39)

Given that lim
N→+∞

Ln

(
|· − x|N+1

)
(x) = 0, then lim

n→+∞
Ln (f) (x) = f (x) . If N = 1, we derive

|Ln (f) (x)− f (x)| ≤ ω1

(
f ′,
((

Ln

(
(· − x)

2
))

(x)
) 1

2

)

×

Ln (|· − x|) (x) +

(
Ln

(
(· − x)

2
)
(x)
) 1

2

2

 < +∞, ∀ n ∈ N.(3.40)

Given that lim
n→+∞

Ln

(
(· − x)

2
)
(x) = 0, then lim

n→+∞
Ln (f) (x) = f (x) .

Note 3.1. Assuming Ln

(
|· − x|N+1

)
(x) > 0, by Theorem 3.4, for g = 1, and Ln such that Ln (1) =

1, we obtain

(3.41) Ln

(
|· − x|N

)
(x) ≤

(
Ln

(
|· − x|N+1

)
(x)
) N

N+1

.

Proof. In case of N = 1, we derive

(3.42) Ln (|· − x|) (x) ≤
√(

Ln

(
(· − x)

2
)
(x)
)
.

□

We also need the following:

Theorem 3.6 ([11]). Let f ∈ CB (R), x ∈ R. Consider Ln a sequence of positive linear operators from
CB (R) into itself, n ∈ N, such that Ln (1) = 1. Assume that Ln (|· − x|) (x) > 0. Then

(3.43) |Ln (f) (x)− f (x)| ≤ 2ω1 (f, Ln (|· − x|) (x)) , ∀ n ∈ N.

Given that lim
n→+∞

Ln (|· − x|) (x) = 0, and f is also uniformly continuous, we obtain

lim
n→+∞

Ln (f) (x) = f (x).

4. AUXILIARY RESULTS

We have the following result.

Lemma 4.1. Let m ∈ N. Then
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(4.44) 0 < AN (|· − x|m) (x) ≤ 1

nm

 tanh (λ)
(m+ 1)

+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n → +∞,

∀ x ∈ R. And, it is

(4.45) 0 < ∥AN (|· − x|m) (x)∥∞ ≤ 1

nm

 tanh (λ)
(m+ 1)

+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0,

as n → +∞.

Proof. We have that (m ∈ N, x ∈ R)

0 < AN (|· − x|m) (x) =

∫ ∞

−∞

∣∣∣u
n
− x
∣∣∣m φ (nx− u) du

=
1

nm

∫ ∞

−∞
|nx− u|m φ (nx− u) du

(z:=nx−u)
=

1

nm

∫ ∞

−∞
|z|m φ (z) dz(4.46)

≤ 1

nm

 tanh (λ)
(m+ 1)

+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n → +∞.

□

It follows:

Lemma 4.2. Let m ∈ N. Then

(4.47) 0 < A∗
N (|· − x|m) (x) ≤ 2m−1

nm

1 +
 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0,

as n → +∞ and ∀ x ∈ R. And, it is

(4.48) 0 < ∥A∗
N (|· − x|m) (x)∥∞ ≤ 2m−1

nm

1 +
 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0,

as n → +∞.

Proof. We have that (m ∈ N, x ∈ R)

0 < A∗
N (|· − x|m) (x) = n

∫ ∞

−∞

(∫ 1
n

0

∣∣∣t+ u

n
− x
∣∣∣m dt

)
φ (nx− u) du

≤ n

∫ ∞

−∞

(∫ 1
n

0

(
|t|+

∣∣∣u
n
− x
∣∣∣)m dt

)
φ (nx− u) du

≤
∫ ∞

−∞

(
1

n
+
∣∣∣u
n
− x
∣∣∣)m

φ (nx− u) du(4.49)

=
1

nm

∫ ∞

−∞
(1 + |nx− u|)m φ (nx− u) du
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≤ 2m−1

nm

[
1 +

∫ ∞

−∞
|nx− u|m φ (nx− u) du

]
=

2m−1

nm

[
1 +

∫ ∞

−∞
|z|m φ (z) dz

]

≤ 2m−1

nm

1 +
 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

→ 0, as n → +∞,

and it is finite. □

At last, we obtain the following:

Lemma 4.3. Let m ∈ N. Then

(4.50) 0 < AN (|· − x|m) (x) ≤ 2m−1

nm

1 +
 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0,

as n → +∞ and ∀ x ∈ R. And, it is

(4.51) 0 <
∥∥AN (|· − x|m) (x)

∥∥
∞ ≤ 2m−1

nm

1 +
 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0,

as n → +∞.

Proof. We observe that

0 < AN (|· − x|m) (x) =

∫ ∞

−∞

(
r∑

i=1

wi

∣∣∣∣un +
i

nr
− x

∣∣∣∣m
)
φ (nx− u) du

≤
∫ ∞

−∞

(
r∑

i=1

wi

(∣∣∣u
n
− x
∣∣∣+ i

nr

)m
)
φ (nx− u) du(4.52)

≤
∫ ∞

−∞

(
1

n
+
∣∣∣u
n
− x
∣∣∣)m

φ (nx− u) du

=
1

nm

∫ ∞

−∞
(1 + |nx− u|)m φ (nx− u) du.

The proof finishes as in the proof of Lemma 4.2. □

5. MAIN RESULTS

We present the following results.

Theorem 5.7. Let N ∈ N and f, f (N) ∈ CB (R), x ∈ R. Assume f (i) (x) = 0, i = 1, ..., N. Then

|Ψn (f) (x)− f (x)| ≤ ω1

(
f (N),

((
Ψn

(
|· − x|N+1

))
(x)
) 1

N+1

)

×

Ψn

(
|· − x|N

)
(x) +

(
Ψn

(
|· − x|N+1

)
(x)
) N

N+1

(N + 1)

 < +∞, ∀ n ∈ N.(5.53)
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Hence, lim
n→+∞

Ψn (f) (x) = f (x) . If N = 1, we obtain

|Ψn (f) (x)− f (x)| ≤ ω1

(
f ′,
((

Ψn

(
(· − x)

2
))

(x)
) 1

2

)

×

Ψn (|· − x|) (x) +

(
Ψn

(
(· − x)

2
)
(x)
) 1

2

2

 < +∞, ∀ n ∈ N.(5.54)

Again, it holds lim
n→+∞

Ψn (f) (x) = f (x) .

Proof. By Theorem 3.5 and Lemmas 4.1-4.3. □

Theorem 5.8. Let f ∈ CB (R), x ∈ R. Then

(5.55) |Ψn (f) (x)− f (x)| ≤ 2ω1 (f,Ψn (|· − x|) (x)) < +∞, ∀ n ∈ N.

If f is also uniformly continuous, we derive lim
n→+∞

Ψn (f) (x) = f (x) .

Proof. Direct application of Theorem 3.6 and Lemmas 4.1-4.3. □

We make the following:

Remark 5.3. By (3.41), (3.42), we derive that

(5.56) Ψn

(
|· − x|N

)
(x) ≤

(
Ψn

(
|· − x|N+1

)
(x)
) N

N+1

,

and

(5.57) Ψn (|· − x|) (x) ≤
√(

Ψn

(
(· − x)

2
)
(x)
)
, ∀ n ∈ N.

Notation 5.1. Let m,n ∈ N. Denote by

(5.58) ρ1n (m) :=
1

nm

 tanh (λ)
(m+ 1)

+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n → +∞,

and

(5.59) ρ2n (m) :=
2m−1

nm

1 +
 tanh (λ)

(m+ 1)
+

(
q + 1

q

)
e2λm!

(2λ)
m

 (< +∞) → 0, as n → +∞.

We give the following explicit results.

Corollary 5.1. Let N ∈ N and f, f (N) ∈ CB (R), x ∈ R. Assume f (i) (x) = 0, i = 1, ..., N. Then

|An (f) (x)− f (x)| ≤ ω1

(
f (N), (ρ1n (N + 1))

1
N+1

)
×

[
ρ1n (N) +

(ρ1n (N + 1))
N

N+1

(N + 1)

]
< +∞, ∀ n ∈ N.(5.60)

Hence lim
n→+∞

An (f) (x) = f (x). If N = 1, we obtain

|An (f) (x)− f (x)| ≤ ω1

(
f ′, (ρ1n (2))

1
2

)
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×

[
ρ1n (1) +

(ρ1n (2))
1
2

2

]
< +∞, ∀ n ∈ N.(5.61)

Again, it holds lim
n→+∞

An (f) (x) = f (x) .

Proof. By Theorem 5.7 and Lemma 4.1, see also (5.58). □

Corollary 5.2. Let N ∈ N and f, f (N) ∈ CB (R), x ∈ R. Assume f (i) (x) = 0, i = 1, ..., N. Then{
|A∗

n (f) (x)− f (x)|∣∣An (f) (x)− f (x)
∣∣ } ≤ ω1

(
f (N), (ρ2n (N + 1))

1
N+1

)
×

[
ρ2n (N) +

(ρ2n (N + 1))
N

N+1

(N + 1)

]
< +∞, ∀ n ∈ N.(5.62)

Hence lim
n→+∞

A∗
n (f) (x) = lim

n→+∞
An (f) (x) = f (x) . If N = 1, we obtain{

|A∗
n (f) (x)− f (x)|∣∣An (f) (x)− f (x)

∣∣ } ≤ ω1

(
f ′, (ρ2n (2))

1
2

)
×

[
ρ2n (1) +

(ρ2n (2))
1
2

2

]
< +∞, ∀ n ∈ N.(5.63)

Again, it holds lim
n→+∞

A∗
n (f) (x) = lim

n→+∞
An (f) (x) = f (x) .

Proof. By Theorem 5.7 and Lemmas 4.2, 4.3, see also (5.59). □

Corollary 5.3. Let f ∈ CB (R) . Then

(5.64) ∥An (f)− f∥∞ ≤ 2ω1 (f, ρ1n (1)) < +∞, ∀ n ∈ N.

If f is also uniformly continuous, we get that lim
n→+∞

An (f) = f , pointwise and uniformly.

Proof. By Theorem 5.8, Lemma 4.1, see also (5.58). □

Corollary 5.4. Let f ∈ CB (R) . Then

(5.65)
{

∥A∗
n (f)− f∥∞∥∥An (f)− f

∥∥
∞

}
≤ 2ω1 (f, ρ2n (1)) < +∞, ∀ n ∈ N.

If f is also uniformly continuous, we obtain that lim
n→+∞

A∗
n (f) = lim

n→+∞
An (f) = f , pointwise and

uniformly.

Proof. By Theorem 5.8, Lemmas 4.2, 4.3 see also (5.59). □

We continue with simultaneous approximations.

Theorem 5.9. Let f (j) ∈ CB (R) , for j = 0, 1, ..., N ∈ N. Then

(5.66)
∥∥∥(An (f))

(j) − f (j)
∥∥∥
∞

≤ 2ω1

(
f (j), ρ1n (1)

)
< +∞, ∀ n ∈ N.

If f (j) is uniformly continuous, we get that lim
n→+∞

(An (f))
(j)

= f (j), pointwise and uniformly.

Proof. By (3.30) and Corollary 5.3. □
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Theorem 5.10. Let f (j) ∈ CB (R) , for j = 0, 1, ..., N ∈ N. Then

(5.67)


∥∥∥(A∗

n (f))
(j) − f (j)

∥∥∥
∞∥∥∥(An (f)

)(j) − f (j)
∥∥∥
∞

 ≤ 2ω1

(
f (j), ρ2n (1)

)
< +∞, ∀ n ∈ N.

If f (j) is uniformly continuous, we obtain that lim
n→+∞

(A∗
n (f))

(j)
= lim

n→+∞

(
An (f)

)(j)
= f (j), point-

wise and uniformly.

Proof. By (3.30) and Corollary 5.4. □

Next, we talk about iterated approximation.

Remark 5.4. Let f ∈ CB (R), r ∈ N. Here Ψn is any of An, A∗
n, An, ∀ n ∈ N. By Remark 3.2, see also

(3.35), we have that

(5.68) ∥Ψr
n (f)− f∥∞ ≤ r ∥Ψn (f)− f∥∞ , ∀ n ∈ N.

Corollary 5.5. Let f ∈ CB (R), r ∈ N. Then

(5.69) ∥Ar
n (f)− f∥∞ ≤ r ∥An (f)− f∥∞ ≤ 2rω1 (f, ρ1n (1)) < +∞, ∀ n ∈ N.

If f is also uniformly continuous, we get that lim
n→+∞

Ar
n (f) = f , pointwise and uniformly. And the

speed of convergence of Ar
n to the unit operator is not worse than of An to the unit.

Proof. By (5.64) and (5.68). □

Corollary 5.6. Let f ∈ CB (R), r ∈ N. Then{ ∥∥A∗r

n (f)− f
∥∥
∞∥∥∥Ar

n (f)− f
∥∥∥
∞

}
≤ r

{
∥A∗

n (f)− f∥∞∥∥An (f)− f
∥∥
∞

}
≤ 2rω1 (f, ρ2n (1)) < +∞, ∀ n ∈ N.(5.70)

If f is also uniformly continuous, we get that lim
n→+∞

A∗r

n (f) = lim
n→+∞

A
r

n (f) = f , pointwise and

uniformly. And the speed of convergence of A∗r

n , A
r

n to the unit operator is not worse than of A∗
n, An to

the unit, respectively.

Proof. By (5.65) and (5.68). □

We finish with more general iterated approximation results.

Remark 5.5. Let f ∈ CB (R), r ∈ N, and m1,m2, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr. Here Ψmi
is

any of Ami
, A∗

mi
, Ami

. By Remark 3.2, see also (3.37), we have that

(5.71)
∥∥Ψmr

(
Ψmr−1

(...Ψm2
(Ψm1

f))
)
− f

∥∥
∞ ≤

r∑
i=1

∥Ψmi
f − f∥∞ .

Corollary 5.7. Let f ∈ CB (R), r ∈ N, and m1,m2, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr. Then∥∥Amr

(
Amr−1

(...Am2
(Am1

f))
)
− f

∥∥
∞ ≤

r∑
i=1

∥Ami
f − f∥∞ ≤ 2

(
r∑

i=1

ω1 (f, ρ1mi
(1))

)
≤ 2rω1 (f, ρ1m1

(1)) .

The speed of convergence to the unit operator of the above activated multiply iterated operators is not
worse than the speed of convergence to the unit of Am1

.
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Proof. By (5.71), (5.64) and (5.58). □

Corollary 5.8. Let f ∈ CB (R), r ∈ N, and m1,m2, ...,mr ∈ N : m1 ≤ m2 ≤ ... ≤ mr. Then∥∥∥A∗
mr

(
A∗

mr−1

(
...A∗

m2

(
A∗

m1
f
)))

− f
∥∥∥
∞

≤
r∑

i=1

∥∥A∗
mi

f − f
∥∥
∞ ≤ 2

(
r∑

i=1

ω1 (f, ρ2mi (1))

)
≤ 2rω1 (f, ρ2m1 (1)) ,

and ∥∥Amr

(
Amr−1

(
...Am2

(
Am1f

)))
− f

∥∥
∞ ≤

r∑
i=1

∥∥Amif − f
∥∥
∞ ≤ 2

(
r∑

i=1

ω1 (f, ρ2mi (1))

)
≤ 2rω1 (f, ρ2m1 (1)) .

The speed of convergence to the unit operator of the above activated multiply iterated operators is not
worse than the speed of convergence to the unit of A∗

m1
, Am1 , respectively.

Proof. By (5.71), (5.70) and (5.59). □
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