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On the general solution and stability of the functional
equation f (x− y)− f (x) f (y) = d sinx sin y

JIRAPORN KUNRATTANAWORAWONG AND WUTIPHOL SINTUNAVARAT*

ABSTRACT. This paper is concerned with the investigation of the general solution to the following functional equa-
tion:

f (x− y)− f (x) f (y) = d sinx sin y

for all x, y ∈ R, where f : R → R is an unknown function and d ∈ R \ {0} satisfying d < 1. This nonlinear
functional equation establishes an intriguing interplay between multiplicative and additive behaviors of the function
f , perturbed by a bounded trigonometric term. We provide a complete characterization of all real-valued functions
satisfying the equation, under minimal regularity assumptions. In addition, we analyze the Hyers–Ulam stability and
the so-called superstability of the equation in the sense of functional equations, establishing that approximate solutions
under certain bounded perturbations necessarily converge to exact solutions.
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1. INTRODUCTION

Functional equations constitute an important branch of mathematics. The theory of func-
tional equations is typically divided into two main areas. The first concerns the determination
of exact solutions to a given functional equation, while the second focuses on the study of
the stability of functional equations. The concept of stability arises from the following classi-
cal question: Under what conditions does a function that approximately satisfies a functional
equation ρ necessarily remain close to an exact solution of ρ? If the problem admits a solution,
we say that the equation ρ is stable.

The aforementioned question has given rise to various stability concepts, among which
Ulam [1] formulated the first notable problem in 1940 in the context of group homomorphisms.
Formally, Ulam’s problem can be stated as follows: Let G1 be a group and let G2 be a metric
group with a metric d. Given ε > 0, does there exist a δ > 0 such that if a function h : G1 → G2

satisfies the inequality
d (h (xy) , h (x)h (y)) < δ

for all x, y ∈ G1, then there is a homomorphism H : G1 → G2 with

d (h (x) , H (x)) < ε

for all x ∈ G1?
In 1941, Hyers [2] provided a partial solution to Ulam’s problem for the additive Cauchy

functional equation in Banach spaces, stated as follows:
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Theorem 1.1 ([2]). Let E1 and E2 be two Banach space and suppose that the mapping f : E1 → E2

satisfies the inequality

∥f (x+ y)− f (x)− f (y)∥ ≤ δ

for all x, y ∈ E1, where δ > 0. Then there is a unique additive mapping T : E1 → E2 satisfying

∥f (x)− T (x)∥ ≤ δ

for all x ∈ E1.

The stability result of Hyers [2] was subsequently refined by Aoki [3], who established the
case involving the existence of a unique additive Cauchy mapping. Building upon this foun-
dation, Rassias [4] significantly broadened Hyers’ theorem by introducing the concept of an
unbounded Cauchy difference endowed with a p-order norm for 0 < p < 1. In turn, the Ras-
sias theorem was further generalized by Gajda [5] for the case p > 1, and by Rassias [6] for the
case p < 1.

Over the past several decades, considerable effort has been devoted to investigating solu-
tions and stability phenomena for a wide range of functional equations. Among these contri-
butions, Butler [7] in 2003 posed the following intriguing problem concerning the solution of a
specific functional equation: prove that, for d < −1, there exist exactly two functions f : R → R
satisfying

(1.1) f (x+ y)− f (x) f (y) = d sinx sin y

for all x, y ∈ R. This problem was subsequently resolved by Rassias [8] in 2004, who proved
that the general solution is given by

f(x) = ±c sinx+ cosx

for all x ∈ R, where c =
√
−d− 1. More recently, Jung et al. [9] have obtained notable results

on the superstability and stability of the functional equation (1.1).
Motivated by the aforementioned perspective, this work introduces a new functional equa-

tion, closely related to (1.1), given by

(1.2) f (x− y)− f (x) f (y) = d sinx sin y

for all x, y ∈ R, where f : R → R is an unknown function and d is a nonzero real constant
with d < 1. The general solution of (1.2) is derived in the next section, followed by a detailed
analysis of its superstability and stability properties in Section 3.

2. GENERAL SOLUTIONS OF FUNCTIONAL EQUATION (1.2)

In this section, we establish the complete characterization of the solutions to the functional
equation (1.2), as formalized in the theorem below.

Theorem 2.2. Let d be a nonzero constant with d < 1. The functional equation (1.2) has exactly two
solutions in the class of functions f : R → R. More precisely, if a function f : R → R is a solution of
functional equation (1.2), then f has one of the forms

f (x) = c sinx+ cosx and f (x) = −c sinx+ cosx,

where c =
√
1− d.
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Proof. It follows from (1.2) that

df (x) sin y sin z + d sinx sin (y − z)− d sin z sin (y − x)− df (z) sin y sinx

= f (x) [ f (y − z)− f (y) f (z) ] + [ f (x− y + z)− f (x) f (y − z) ]

− [ f (z − y + x)− f (z) f (y − x) ]− f (z) [ f (y − x)− f (y) f (x) ]

= 0(2.3)

for all x, y, z ∈ R. If we set y = z =
π

2
in the above equality, then

df (x)− d sin
(π
2
− x

)
− df

(π
2

)
sinx = 0

df (x)− d cos (x)− df
(π
2

)
sinx = 0

f (x)− f
(π
2

)
sinx− cosx = 0(2.4)

for all x ∈ R. Substituting 0 for x in (2.4) yields f (0) = 1. If we put x = y = π
2 in (1.2), then we

obtain

(2.5)
[
f
(π
2

)]2
= 1− d

and hence

(2.6) f
(π
2

)
= c or f

(π
2

)
= −c,

where c :=
√
1− d. Consequently, by (2.4), we have

(2.7) f (x) = c sinx+ cosx or f (x) = −c sinx+ cosx

for all x ∈ R, where each expression satisfies (1.2). □

3. STABILITY AND SUPERSTABILITY RESULTS FOR (1.2)

First, we prove a theorem concerning the superstability of the functional equation

f (x− y) = f (x) f (y)

for all x, y ∈ R, where f : R → C is an unknown function.

Theorem 3.3. Let an arbitrary constant ε > 0 be fixed. If a function f : R → C satisfies the inequality

(3.8) |f (x− y)− f (x) f (y)| ≤ ε

for all x, y ∈ R, then either for each x ∈ R, |f (x)| ≤ 1+
√
1+4ε
2 or |f (−x)| ≤ 1+

√
1+4ε
2 or f (x− y) =

f (x) f (y) for all x, y ∈ R.

Proof. If we set δ := 1+
√

1+4ε
2 , then δ2 − δ = ε and δ > 1. Suppose that there exists an a ∈ R

such that |f (a)| > δ and |f (−a)| > δ, say |f (a)| = δ + p and |f (−a)| = δ + q for some p, q > 0.
It follows from (3.8) that

|f (2a)| = |f (a) f (−a)− f (a) f (−a) + f (2a)|
≥ |f (a) f (−a)| − |f (a) f (−a)− f (2a)|
≥ (δ + p) (δ + q)− ε

= δ + (p+ q) δ + pq

> δ + (p+ q) .

By using the same process, we get |f (−2a)| > δ + (p+ q).
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Now, we will show that

(3.9) |f (2na)| > δ + 2n−1 (p+ q) and |f (−2na)| > δ + 2n−1 (p+ q)

for all n ∈ N. To claim the above fact by using mathematical induction, we suppose that (3.9)
holds for some n ∈ N. From (3.8), we get∣∣f (

2n+1a
)∣∣ = ∣∣f (2na) f (−2na)− f (2na) f (−2na) + f

(
2n+1a

)∣∣
≥ |f (2na) f (−2na)| − ε

>
(
δ + 2n−1 (p+ q)

)2 − (
δ2 − δ

)
> δ + 2n (p+ q) .

Similarly, we get ∣∣f (
−2n+1a

)∣∣ > δ + 2n (p+ q) .

Hence, (3.9) is established for all n ∈ N via mathematical induction. For every x, y, z ∈ R, it
follows from (3.8) that

|f (z − x+ y)− f (z) f (x− y)| ≤ ε

and
|f (y − x+ z)− f (y) f (x− z)| ≤ ε.

This yields that
|f (z) f (x− y)− f (y) f (x− z)| ≤ 2ε

for all x, y, z ∈ R. Hence,

|f (z) f (x− y)− f (x) f (y) f (z)| ≤ |f (z) f (x− y)− f (y) f (x− z)|
+ |f (y) f (x− z)− f (x) f (y) f (z)|
≤ 2ε+ |f (y)| ε,

that is,
|f (x− y)− f (x) f (y)| |f (z)| ≤ 2ε+ |f (y)| ε

for all x, y, z ∈ R. In particular,

(3.10) |f (x− y)− f (x) f (y)| ≤ 2ε+ |f (y)| ε
|f (2na)|

for all x, y ∈ R and any n ∈ N. Letting n → ∞ in (3.10) and considering (3.9), we conclude that
f (x− y) = f (x) f (y) for all x, y ∈ R. □

From the above result, we obtain the following theorem.

Theorem 3.4. Let d be a nonzero constant with d < 1 and ε be a real constant with 0 < ε < |d|. If a
function f : R → R satisfies the following inequality

(3.11) |f (x− y)− f (x) f (y)− d sinx sin y| ≤ ε

for all x, y ∈ R, then for each x ∈ R, we have

(3.12) |f (x)| ≤
1 +

√
1 + 8 |d|
2

or |f (−x)| ≤
1 +

√
1 + 8 |d|
2

.
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Proof. As 0 < ε < |d|, it follows from (3.11) that

|f (x− y)− f (x) f (y)| ≤ 2 |d|

for all x, y ∈ R. According to Theorem 3.3, f (x− y) = f (x) f (y) for all x, y ∈ R or (3.12) holds.
If (3.12) does not hold, then it would follow from (3.11) that |d sinx sin y| ≤ ε for all x, y ∈ R,
which is contrary to our hypothesis, ε < |d|. Therefore, for each x ∈ R, we get

|f (x)| ≤
1 +

√
1 + 8 |d|
2

or |f (−x)| ≤
1 +

√
1 + 8 |d|
2

.

□

Next, we shall prove the stability of Equation (1.2). We start with the following lemma.

Lemma 3.1. Let d be a nonzero constant with d < 1 and ε be a real constant with 0 < ε < |d|. If a
function f : R → R satisfies the inequality (3.11) for all x, y ∈ R, then f is bounded.

Proof. If we replace x, y by z and y − x in (3.11) respectively, then we have

(3.13) |f (z − y + x)− f (z) f (y − x)− d sin z sin (y − x)| ≤ ε

for all x, y, z ∈ R. If we replace y by y − z in (3.11), then we get

(3.14) |f (x− y + z)− f (x) f (y − z)− d sinx sin (y − z)| ≤ ε

for all x, y, z ∈ R. Using (3.13) and (3.14), we obtain

|f (x) f (y − z)− f (z) f (y − x) + d sinx sin (y − z)− d sin z sin (y − x)|
= |[f (z − y + x)− f (z) f (y − x)− d sin z sin (y − x)]

− [f (x− y + z)− f (x) f (y − z)− d sinx sin (y − z)]|
= |f (z − y + x)− f (z) f (y − x)− d sin z sin (y − x)|
+ |f (x− y + z)− f (x) f (y − z)− d sinx sin (y − z)|
≤ 2ε(3.15)

for all x, y, z ∈ R. It follows from (3.15) that

|f (x) [f (y − z)− f (y) f (z)− d sin y sin z] + f (x) f (y) f (z) + df (x) sin y sin z

− f (z) [f (y − x)− f (x) f (y)− d sinx sin y]− f (x) f (y) f (z)− df (z) sinx sin y

+d sinx sin (y − z)− d sin z sin (y − x)|
= |f (x) f (y − z)− f (z) f (y − x) + d sinx sin (y − z)− d sin z sin (y − x)|
≤ 2ε(3.16)
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for all x, y, z ∈ R. Hence, in view of (3.11) and (3.16), we can now get

|df (x) sin y sin z + d sinx sin (y − z)− df (z) sinx sin y − d sin z sin (y − x)|
= |f (x) [f (y − z)− f (y) f (z)− d sin y sin z] + f (x) f (y) f (z) + df (x) sin y sin z

− [f (y − x)− f (x) f (y)− d sinx sin y] f (z)− f (x) f (y) f (z)− df (z) sinx sin y

+ d sinx sin (y − z)− d sin z sin (y − x)− f (x) [f (y − z)− f (y) f (z)− d sin y sin z]

+ [f (y − x)− f (x) f (y)− d sinx sin y] f (z)|
≤ |f (x) [f (y − z)− f (y) f (z)− d sin y sin z] + f (x) f (y) f (z) + df (x) sin y sin z

− [f (y − x)− f (x) f (y)− d sinx sin y] f (z)− f (x) f (y) f (z)− df (z) sinx sin y

+d sinx sin (y − z)− d sin z sin (y − x)|+ |f (x)| |[f (y − z)− f (y) f (z)− d sin y sin z]|
+ |[f (y − x)− f (x) f (y)− d sinx sin y]| |f (z)|
≤ |f (x) f (y − z)− f (z) f (y − x) + d sinx sin (y − z)− d sin z sin (y − x)|+ |f (x)| ε+ |f (z)| ε
= |[f (x− y + z)− f (z) f (y − x)− d sin z sin (y − x)]

− [f (x− y + z)− f (x) f (y − z)− d sinx sin (y − z)]|
+ |f (x)| ε+ |f (z)| ε
≤ 2ε+ |f (x)| ε+ |f (z)| ε
≤ (2 + |f (x)|+ |f (z)|) ε

for all x, y, z ∈ R. If we set y = z = π
2 in the above inequality, then

(3.17)
∣∣∣df (x)− df

(π
2

)
sinx− d cosx

∣∣∣ ≤ (
2 + |f (x)|+

∣∣∣f (π
2

)∣∣∣) ε

for all x ∈ R.
Next, we assume that f is unbounded. Then there exists a sequence {xn} ⊆ R such that

f (xn) ̸= 0 for every n ∈ N and |f (xn)| → ∞ as n → ∞. Replacing x by {xn} in (3.17),
and dividing both sides of the resulting inequality by |f (xn)|, and then let n close to infinity,
we obtain |d| ≤ ε which is contrary to our hypothesis, say ε < |d|. Therefore, f must be
bounded. □

Theorem 3.5. Let d be a nonzero constant with d < 1 and ε be a real constant with 0 < ε < |d|. If a
function f : R → R satisfies the inequality (3.11) for all x, y ∈ R, then∣∣∣f (x)− f

(π
2

)
sinx− cosx

∣∣∣ ≤ 2 (1 +Mf )

|d|
ε

for all x ∈ R, where Mf := supx∈R |f (x)|.

Proof. It follows from Lemma 3.1 that f is bounded, and hence, Mf := supx∈R |f (x)| has to be
finite. From the proof of Lemma 3.1, we obtain (3.17) holds. It follows from (3.17) that

(3.18)
∣∣∣f (x)− f

(π
2

)
sinx− cosx

∣∣∣ ≤ 2 (1 +Mf )

|d|
ε

for all x ∈ R. □

Remark 3.1. Based on Theorems 2.2 and 3.4, it has been established that the newly proposed functional
equation (1.2) is stable.
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4. CONCLUSION

To summarize, this paper has determined the general solution f : R → R of the functional
equation

f (x− y)− f (x) f (y) = d sinx sin y

for all x, y ∈ R, where d is a nonzero constant with d < 1. The solution is given by

f (x) = c sinx+ cosx or f (x) = −c sinx+ cosx,

where c =
√
1− d . In addition, the stability of this functional equation has been examined

through a theorem addressing its superstability. Specifically, it has been established that for
a nonzero constant d with d < 1 and a real constant ε satisfying 0 < ε < |d|, if a function
f : R → R fulfills the functional inequality

|f (x− y)− f (x) f (y)− d sinx sin y| ≤ ε

for all x, y ∈ R, then for each x ∈ R, we have

|f (x)| ≤
1 +

√
1 + 8 |d|
2

or |f (−x)| ≤
1 +

√
1 + 8 |d|
2

,

and the following estimate holds

| f(x)− f
(π
2

)
sinx− cosx | ≤ 2 (1 +Mf )

|d|
ε,

where Mf := supx∈R |f(x)|.
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