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ABSTRACT. Let C be a subset of a Hilbert space, and let f and g be self-maps on C such that the range of f is a
convex, closed, and bounded subset of the range of g. If f does not increase distances more than g, we demonstrate
that f and g have coincidence points. This result generalizes a fixed point theorem of Browder-Petryshyn and provide
a new result for certain firmly nonexpansive-type mappings. As applications, we establish the existence of solutions
to both matrix and integral equations.
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1. INTRODUCTION AND PRELIMINARIES

The study of nonexpansive mappings, which are mappings that do not increase the dis-
tance between points, has been a central topic in fixed point theory since the mid-20th century.
The Banach Contraction Principle [4] provides a foundational result for contractive mappings;
however, nonexpansive mappings do not generally guarantee the existence of fixed points un-
der the same conditions. Major improvements were achieved independently by Browder [8],
Göhde [10], and Kirk [13], who established fixed point theorems for nonexpansive self-maps
in uniformly convex Banach spaces, showing that such maps admit fixed points in closed, con-
vex, and bounded subsets. These results marked a turning point and have since been extended
to broader contexts, such as hyperconvex metric spaces (see Aronszajn and Panitchpakdi [3])
CAT(0) spaces (see Bridson and Haefliger [6]), and more general topological vector spaces.
More recently, coincidence point theory, which initiated by Jungck [12], has provided a frame-
work to investigate when two mappings share a coincidence point, enriching fixed point theory
and leading to numerous extensions of classical results (see, for example, [1, 2, 5]).

Many important real-world problems can be framed as finding fixed or coincidence points
of certain mappings. For instance, the existence of solutions to problems in semi-definite pro-
gramming [14], digital signal processing [17] or fractional differential equations [18] frequently
involves exploring the existence of coincidence points of matrix or integral equations. For more
recent references on applications, see, for example, the study of convergence of the viscosity
generalization of Halpern’s iteration [16], the application to delay differential equations with
finite constant delays [15], and applications in split feasibility problems [11]. When the map-
ping under consideration is nonexpansive, the associated problem can be resolved in Hilbert
spaces via the Browder-Petryshyn fixed point theorem [7].
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In this work, we extend the Browder-Petryshyn theorem by exploring the existence of coin-
cidence points for two self-mappings f and g defined on a suitable set C, under the condition
that f does not increase distances more than g, or equivalently, that f is g-nonexpansive or g is
f -expansive, meaning that

∥f(u)− f(v)∥ ≤ ∥g(u)− g(v)∥ for all u, v ∈ C,

without requiring compactness or commutativity assumptions. Moreover, we provide a new
result for firmly g-nonexpansive mappings, defined subsequently. As the first application, we
establish the existence of a Hermitian solution to a matrix equation. As the second application,
we investigate the existence of a solution to an integral equation. Before concluding the intro-
duction, we recall the fixed point theorems of Browder and Petryshyn, and of Al-Thagafi and
Shahzad.

Theorem 1.1 (Browder and Petryshyn [7]). Let C be a closed, bounded, convex subset of a Hilbert
space, and let f : C → C be a nonexpansive mapping, that is,

∥f(u)− f(v)∥ ≤ ∥u− v∥ for all u, v ∈ C.

Then f has a fixed point in C.

Theorem 1.2 (Al-Thagafi and Shahzad [2]). Let (X, d) be a metric space and f, g : X → X be given
mappings such that the closure of f(X) is complete and subset of g(X). If there exists λ < 1 such that

d(f(x), f(y)) ≤ λ d(g(x), g(y)) for all x, y ∈ X,

then f and g have a coincidence point in X .

Remark 1.1. Additional insight into the uniqueness of the coincidence point is provided by [2, Theorem
2.1].

2. THE MAIN RESULT

The main result is the following theorem.

Theorem 2.3. Let C be a subset of a Hilbert space and let f, g : C → C be given maps such that f(C)
is closed, convex and bounded subset of g(C), and f is g-nonexpansive. Then f and g have a coincidence
point in C.

Proof. Since f(C) is convex, then for a fixed element v0 of C and for every λ ∈ (0, 1), the map
hλ : C → C given by

hλ(x) = λ f(x) + (1− λ)f(v0),

is well defined. We also have

∥hλ(x)− hλ(y)∥ = λ∥f(x)− f(y)∥ ≤ λ∥g(x)− g(y)∥.

According to Theorem 1.2, hλ and g have a coincidence point uλ ∈ C. Since f(C) is closed,
convex and bounded in a Hilbert space, it is weakly compact. Hence, we may find a sequence
λj → 1 as j → ∞ such that g(uλj

) = g(uj) = hλj
(uj) = f(wj) converges weakly to an

element y0 of the Hilbert space, where {wj} is a sequence of C. Now, since f(C) is closed,
y0 ∈ f(C) ⊆ g(C), so there exists x0 ∈ C such that y0 = gx0. We shall prove that x0 is a
coincidence point of f and g. Let u be any point in C, then

∥g(uj)− g(u)∥2 = ∥(g(uj)− g(x0)) + (g(u0)− g(u))∥2

= ∥g(uj)− g(x0)∥2 + ∥g(u0)− g(u)∥2

+2(g(uj)− g(x0), g(x0)− g(u)),
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where (g(uj) − g(x0), g(x0) − g(u)) → 0 as j → ∞, since g(uj) − g(x0) converges weakly to 0.
Now, since f(C) ⊆ g(C), we can take u such that g(u) = f(x0), we deduce

lim
j→∞

(
∥g(uj)− f(x0)∥2 − ∥g(uj)− g(x0)∥2

)
= ∥g(x0)− f(x0)∥2.

Now, since f is g-nonexpansive, we have

∥f(uj)− f(x0)∥ ≤ ∥g(uj)− g(x0)∥.
Thus, we obtain

∥g(uj)− f(x0)∥ ≤ ∥g(uj)− f(uj)∥+ ∥f(uj)− f(x0)∥
≤ ∥g(uj)− f(uj)∥+ ∥g(uj)− g(x0)∥.

Observe that since sj → 1, then

f(uj)− g(uj) = λjf(uj) + (1− λj)f(v0)− g(uj) + (1− λj)
(
f(uj)− f(v0)

)
= hλj (uj)− g(uj) + (1− λj)

(
f(uj)− f(v0)

)
= (1− λj)

(
f(uj)− f(v0)

)
.

Thus, lim supj→∞
(
∥g(uj)− f(x0)∥ − ∥g(uj)− g(x0)∥

)
≤ 0, and therefore

lim sup
j→∞

(
∥g(uj)− f(x0)∥2 − ∥g(uj)− g(x0)∥2

)
≤ 0.

We conclude that ∥g(x0)− f(x0)∥2 = 0, so f(x0) = g(x0). □

Remark 2.2. Note that since f(C) ⊆ g(C), Theorem 2.3 holds true even if the convexity of f(C) is
replaced by this of g(C).

The following corollaries follow immediately.

Corollary 2.1. Let C be a subset of a Hilbert space, and let f, g : C → C be given maps such that f(C)
is closed, convex and bounded, and g is surjective and f -expansive. Then f and g have a coincidence
point in C.

Corollary 2.2. Let C be a convex, closed and bounded subset of a Hilbert space, and let f, g : C → C
be given surjective maps such that f is g-nonexpansive. Then f and g have a coincidence point in C.

By selecting one of the mappings as the identity map, the following corollaries can be readily
derived.

Corollary 2.3. Let C be a closed and bounded subset of a Hilbert space, and f : C → C be a map such
that f(C) is convex and ∥f(u)− f(v)∥ ≤ ∥u− v∥ for all u, v ∈ C. Then f has a fixed point in C.

Corollary 2.4. Let C be a closed convex and bounded subset of a Hilbert space and g : C → C be a
surjective map such that ∥u− v∥ ≤ ∥g(u)− g(v)∥ for all u, v ∈ C. Then g has a fixed point in C.

Remark 2.3. The Corollary 2.3 extends Theorem 1.1. Since, it requires convexity only for f(C), mean-
ing that C itself need not be convex.

At the end of this section, we study the existence of coincidence point for certain firmly
nonexpansive-type mappings. Let C be a convex set, let f, g : C → C be a given mapping, and
for x, y ∈ C consider the function φx,y defined by

φx,y(t) =
∥∥t(f(x)− f(y)

)
+ (1− t)(g(x)− g(y))

∥∥, for all t ∈ [0, 1].

Definition 2.1. Let C be a convex set, a mapping f : C → C is said to be firmly g-nonexpansive if for
all x, y ∈ C the function φx,y is nonincreasing on [0, 1].
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Notice that φx,y is a convex function of t. To compute the derivative of φx,y at t = 1, set

u := g(x)− g(y), v := f(x)− f(y), w := v − u.

Then φx,y(t) = ∥u+ tw∥. Whenever u+ tw ̸= 0, the function φx,y is differentiable and

φ′
x,y(t) =

(u+ tw, w)

∥u+ tw∥
.

In particular, if v = f(x)− f(y) ̸= 0, then φx,y is differentiable at t = 1 and

φ′
x,y(1) =

(v, w)

∥v∥
=

(
f(x)− f(y), (f(x)− f(y))− (g(x)− g(y))

)
∥f(x)− f(y)∥

.

Thus φ′
x,y(1) ≤ 0 is equivalent to the numerator being nonpositive(

f(x)− f(y), (f(x)− f(y))− (g(x)− g(y))
)
≤ 0,

or equivalently, (
f(x)− f(y), g(x)− g(y)

)
≥ ∥f(x)− f(y)∥2.

Thus, we obtain the following equivalence

φ′
x,y(1) ≤ 0 ⇐⇒

(
f(x)− f(y), g(x)− g(y)

)
≥ ∥f(x)− f(y)∥2.

The equivalence remains valid in case f(x) = f(y).
Let us present some examples of firmly g-nonexpansive mapping based on the following

definition of projection.

Definition 2.2 (g-projection). Let H be a real Hilbert space and C ⊆ H a nonempty closed convex
set. Let g : H → H be a mapping satisfying:

(i) The restriction g|C : C → g(C) is injective
(
so that the inverse is well-defined on g(C)

)
,

(ii) g(C) is a nonempty closed and convex subset of H .
Then, for every x ∈ H , the g-projection of x onto C is the mapping P g

C : H → C defined by

P g
C(x) := (g|C)−1

(
Pg(C)(g(x))

)
,

where Pg(C) denotes the standard metric projection onto the closed convex set g(C).

Remark 2.4. Under (i)–(ii), Pg(C)(g(x)) exists and is unique for all x ∈ H , and injectivity of g|C
ensures that P g

C(x) ∈ C is uniquely defined. Moreover, a point y = P g
C(x) if and only if it satisfies the

variational inequality

(2.1) y ∈ C and
(
g(x)− g(y), g(z)− g(y)

)
≤ 0 ∀ z ∈ C,

or equivalently, the minimization problem

(2.2) P g
C(x) = argmin

z∈C

∥∥g(x)− g(z)
∥∥.

Thus, P g
C(x) is the point in C whose image under g is closest to g(x) in the Hilbert norm.

Definition of g-projection unifies several important notions of projection used in optimization, vari-
ational inequalities, and numerical analysis. Below are some examples of firmly g-nonexpansive map-
pings:
1. Metric projection. Take g = idH , the identity mapping on H . Then g is injective, and g(C) = C is

closed and convex. Hence the conditions of the definition are satisfied, and

P id
C (x) = id−1

(
PC(id(x))

)
= PC(x),

the classical nearest point projection. Moreover, (2.2) reduces to minz∈C ∥x− z∥.
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2. Weighted projection. Let M : H → H be a bounded linear isomorphism (bijective with bounded
inverse), self-adjoint, and positive definite, i.e., (Mx, x) ≥ α∥x∥2 for all x ∈ H and some α > 0.
Define g(x) = Mx. Then g is injective and g(C) = M(C) is closed and convex. The g-projection is

P g
C(x) = M−1

(
PM(C)(Mx)

)
,

equivalently solving
min
z∈C

∥Mx−Mz∥ = min
z∈C

∥x− z∥M ,

where ∥u∥M :=
√

(Mu, u) = ∥M1/2u∥. This construction is widely used in variable-metric and
preconditioned optimization algorithms; see, e.g., [9].

3. Bregman-type projection. Let ϕ : H → R be strictly convex and Fréchet differentiable, and assume
that ∇ϕ(C) is closed and convex. Define g = ∇ϕ. Then the g-projection is

P g
C(x) = (∇ϕ|C)−1

(
P∇ϕ(C)(∇ϕ(x))

)
= argmin

z∈C

∥∥∇ϕ(x)−∇ϕ(z)
∥∥.

The g-projection satisfies(
P g
C(x)− P g

C(y), ∇ϕ(x)−∇ϕ(y)
)
≥ ∥P g

C(x)− P g
C(y)∥

2

if and only if ϕ is quadratic, that is, ϕ(x) = 1
2 (Mx, x) + (b, x) + c with M is positive definite. In

this case, ∇ϕ(z)−∇ϕ(x) = M(z− x) and the g-projection is a firmly nonexpansive operator in the
M -inner product. For general strictly convex ϕ, the g-projection need not be firmly g-nonexpansive.

Next, we have the following result:

Corollary 2.5. Let C be a subset of a Hilbert space and let f, g : C → C be given maps such that h(C)
is closed, convex and bounded subset of g(C) where h = 2f − g, and f is firmly g-nonexpansive. Then
f and g have a coincidence point in C.

Proof. For x, y ∈ C,

∥h(x)− h(y)∥2 = ∥ (2f(x)− g(x))− (2f(y)− g(y)) ∥2

= ∥ 2(f(x)− f(y))− (g(x)− g(y)) ∥2

= 4∥f(x)− f(y)∥2 − 4
(
f(x)− f(y), g(x)− g(y)

)
+ ∥g(x)− g(y)∥2

≤ ∥g(x)− g(y)∥2.

Hence, by Theorem 2.3, h and g have a coincidence point, and so f and g. □

Example 2.1. Let C = [0, 1] ⊂ R. Choose the constants

r = 1
5 , A = 1

20 , B = 1
4 .

Define the mappings

g(x) = 1
2 + r cos(2πx), ϕ(s) = 1

2s+A sin(2πs) +B, f(x) = ϕ
(
g(x)

)
.

1. Well-definedness: Since cos(2πx) ∈ [−1, 1], we obtain

g(C) =
[
1
2 − r, 1

2 + r
]
=
[
1
2 − 1

5 ,
1
2 + 1

5

]
=
[

3
10 ,

7
10

]
⊂ C.

The derivative of ϕ satisfies

ϕ′(s) = 1
2 + 2πA cos(2πs) ∈

[
1
2 − 2πA, 1

2 + 2πA
]
.

Since 2πA = π
10 < 1

2 , it follows that

0 < ϕ′(s) < 1 ∀ s ∈ g(C),
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so ϕ is strictly increasing. Hence

f(C) = ϕ(g(C)) ⊂ [0, 1] = C.

Thus f, g : C → C are well defined.
2. Firm g-nonexpansiveness: By the mean-value theorem, for any s, t ∈ g(C) there exists ξ such that

ϕ(s)− ϕ(t) = ϕ′(ξ)(s− t).

Multiplying by (s− t)

(ϕ(s)− ϕ(t))(s− t) = ϕ′(ξ)(s− t)2.

Since 0 < ϕ′(ξ) < 1, we have

ϕ′(ξ)(s− t)2 ≥ (ϕ′(ξ))2(s− t)2 = (ϕ(s)− ϕ(t))2.

Thus,
(ϕ(s)− ϕ(t))(s− t) ≥ (ϕ(s)− ϕ(t))2.

Setting s = g(x) and t = g(y), we obtain

(f(x)− f(y))(g(x)− g(y)) ≥ (f(x)− f(y))2,

so f is firmly g-nonexpansive.
3. The mapping h = 2f − g: Using the definition of f ,

h(x) = 2ϕ(g(x))− g(x) = 2A sin(2πg(x)) + 2B.

Observe that h is continuous and C is an interval, h(C) is a connected interval in R, hence convex.
Precisely, since sin(2πg(x)) ∈ [−1, 1], thus

h(C) = [ 2B − 2A, 2B + 2A ] =
[
1
2 − 1

10 ,
1
2 + 1

10

]
=
[
2
5 ,

3
5

]
.

Finally, since
h(C) =

[
2
5 ,

3
5

]
⊂
[

3
10 ,

7
10

]
= g(C)

the inclusion h(C) ⊂ g(C) holds. We conclude that the mappings f , g and h satisfy all the hypotheses

of Corollary 2.5, and therefore f and g have a coincidence point in C.

3. EXISTENCE OF HERMITIAN SOLUTIONS TO A CLASS OF MATRIX EQUATIONS

Let M(n),H(n),P(n) and P(n) be respectively the sets of all n × n arbitrary, Hermitian,
positive-definite and positive semi-definite matrices. The spectral norm of a matrix A is the
largest singular value of A and it is denoted by ∥A∥2. The notation X ≤ Y means that Y −X ∈
P(n). If X,Y ∈ H(n) such that X ≤ Y , then the order interval is defined by

[X,Y ] := (X + P(n)) ∩ (Y − P(n)).

Then H(n), endowed with Hilbert-Schmidt inner product ⟨X,Y ⟩ = tr(Y ∗X) is a real Hilbert
space, whereas H(n) with the spectral norm ∥ · ∥2 is not a Hilbert space, since this norm is
not induced by any inner product. The associated norm is the Hilbert-Schmidt norm, which
coincides with the Frobenius norm

∥X∥2F = tr(X∗X).

It is worthy to note that ∥XY ∥F ≤ ∥X∥2∥Y ∥F for all X,Y ∈ H(n).
We next provide sufficient conditions for the existence of a Hermitian non trivial solution to

the following matrix equation

(3.3) (AB)∗XAB = A∗XA,

where A and B are n× n commuting matrices.
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Let M,N ∈ P(n) such that M ≤ N (M ̸= N ) and C = [M,N ] an order interval. Consider
the following assumptions:
(A1) M ≤ (AB)∗MAB and (AB)∗NAB ≤ N ,
(A2) M ≤ B∗MB and B∗NB ≤ N ,
(A3) ∥B∥2 = 1.

Proposition 3.1. Under the assumptions (A1)-(A3), the matrix equation (3.3) has a solution in C.

Proof. Firstly, observe that C is a compact convex set. Take

f(X) = (AB)∗XAB and g(X) = A∗XA.

From (A1) and (A2), we deduce easily that f, g : C → C are well defined.
We shall show that f(C) is convex, closed, bounded, and subset of g(C). Clearly, from (A1),

we deduce that g(C) is bounded. Let Y1, Y2 ∈ f(C) such that (Y1, Y2) = (f(X1), f(X2)) for
some X1, X2 ∈ C, we deduce by definition of f and the convexity of C that

λY1 + (1− λ)Y2 = λf(X1) + (1− λ)f(X2)

= f(λX1 + (1− λ)X2) ∈ f(C),

for all λ ∈ (0, 1) which proves that f(C) is convex. Now, since f is linear between finite-
dimensional vector spaces, it is continuous and thus maps the compact C to a compact set,
which implies that f(C) is closed and bounded.

We have that f(C) ⊆ g(C), since from the commutativity of A and B, we have for every
X ∈ C, f(X) = g(h(X)) , where h(X) = B∗XB with h(C) ⊂ C comes from (A2).

Finally, from (A3), we have

∥f(X)− f(Y )∥F = ∥B∗(g(X)− g(Y ))B∥F
≤ ∥B∥22 ∥g(X)− g(Y )∥F
= ∥g(X)− g(Y )∥F ,

for all X,Y ∈ C, which proves that f is g-nonexpansive.
We conclude by Theorem 2.3, that f and g have a coincidence point in C, that is, the matrix

equation (3.3) has a solution in C. □

Example 3.2. Consider the following matrices:

A =

 1 0 0
−1 2 0
−1 1 1

 , B =
1

2

 2 0 0
1 1 0
1 −1 2

 ,

M =

 2 −1 1
−1 1 −1
1 −1 1

 , N = 2

 3 −2 1
−2 2 −1
1 −1 1

 .

Since (A1)-(A3) hold, we conclude by Proposition 3.1 that (3.3) has a solution in C = [M,N ]. Note
that X = M is a solution of (3.3) in C.

Consider now the following matrices:

A = B = M =

 0 0 0
0 1 0
0 0 1

 , N =

 1 0 0
0 1 0
0 0 2

 .

Again, since (A1)-(A3) hold, we conclude by Proposition 3.1 that (3.3) has a solution in C = [M,N ].
Observe that X = 1

2 (M +N) is a solution of (3.3) in C.
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4. EXISTENCE OF SOLUTIONS TO A CLASS OF INTEGRAL EQUATIONS

Let a, b be two real constants. The set of square integrable functions of L2([a, b]) is a Hilbert
space endowed with the inner product ⟨f, g⟩ :=

∫ b

a
f(s)g(s)ds, where f and g are real functions.

The L2-norm is given by ∥f∥2L2 := ⟨f, f⟩. We study the existence of a nontrivial solution x of
the following integral equation:

(4.4)
∫ b

a

K(t, s)x(s) ds =

∫ b

a

∫ b

a

K(t, s)K(s, r)x(r) dr ds,

for all t ∈ [a, b], where K is a continuous non-negative function defined on [a, b]2.
Let

(fx)(t) =

∫ b

a

∫ b

a

K(t, s)K(s, r)x(r)dr ds,

(gx)(t) =

∫ b

a

K(t, s)x(s)ds.

A mapping h : C → C is said to be nondecreasing, if x ≤ y implies hx ≤ hy where the notation
x≤ y means x(t)≤ y(t) for all t∈ [a, b].

Assume now that there exist two functions u, v ∈C[a, b] (u ̸= v) such that u≤ v. Define a set
C to be the closure of Cu,v , where

Cu,v :=
{
x ∈ C[a, b] : u≤x≤ v

}
,

and consider the following assumptions:
(B1) u ≤ fu and fv ≤ v,
(B2) u ≤ gu and gv ≤ v,
(B3)

∫ b

a

∫ b

a
K(t, s)2dsdt = 1.

Proposition 4.2. Under the assumptions (B1)-(B3), the integral equation (4.4) has a solution in C.

Proof. Firstly, observe that f and g are nondecreasing, then from (B1) and (B2) the maps
f, g : C→C are well defined.

We now claim that f(C) is closed, convex and bounded. To see this, observe that the set Cu,v

is convex, then so is its closer which is obviously closed.
Let now y1, y2 ∈ f(C), so there exist x1, x2 ∈ C such that y1 = f(x1) and y2 = f(x2). Let

λ∈ (0, 1), then by definition of g it follows that

λy1 + (1− λ)y2 = λf(x1) + (1− λ)f(x2)

= f(λx1 + (1− λ)x2),

which implies λy1+(1−λ)y2 ∈ f(C), so f(C) is convex. Moreover, from the fact that u, v ∈C[a, b],
it follows by the extreme value theorem that Cu,v is bounded, and so it is its closer. We deduce
that our claim holds.

Next, by using the Cauchy-Schwarz inequality and (B3), we get for all x, y ∈ C,

∥fx− fy∥2L2 =

∫ b

a

∣∣∣∣∣
∫ b

a

K(t, s)

(∫ b

a

K(s, r)(x(r)− y(r))dr

)
ds

∣∣∣∣∣
2

dt

≤
∫ b

a

∫ b

a

K(t, s)2dsdt

∫ b

a

∣∣∣∣∣
∫ b

a

K(s, r)(x(r)− y(r))dr

∣∣∣∣∣
2

ds

≤ ∥gx− gy∥2L2 ,
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which implies that f is g-nonexpansive.
Finally, note that f = g ◦ g, which implies by (B2) that f(C) ⊆ g(C). We conclude the result

by Theorem 2.3. □

Example 4.3. Consider the following integral equation

(4.5) 8

∫ b

a

s x(s)ds = 3

∫ b

a

∫ b

a

s2r x(r) dr ds,

where a=0 and b=2 with K(t, s)= 3
8 ts for all t, s∈ [a, b]. Clearly, K is non-negative, continuous and

satisfies (B3). It is easy to see that the conditions (B1) and (B2) hold for the functions u and v defined by
u(t) = 0 and v(t) = 3

2 t for all t ∈ [a, b]. Hence, according to Proposition 4.2 the integral equation (4.5)
has a solution in C. It is not difficult to see that the function x defined by x(t) = 3

4 t for all t ∈ [a, b] is
in C and it is a solution of the integral equation (4.5).
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