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ABSTRACT. Human actions have accelerated changes in global temperature, precipitation patterns, and other crit-
ical Earth systems. Key markers of these changes can be linked to the dynamic of Essential Climate Variables (ECVs)
and related measures, such as Soil Moisture (SM), Above Ground Biomass (AGB), and Freeze-Thaw (FT) Dynamics.
ECVs are crucial for understanding global climate changes, including hydrological and carbon cycles. Moreover, mon-
itoring ECVs helps to validate climate models and inform policy decisions. Monitoring activities can be carried out at a
global scale by using technologies like microwave remote sensing. However, other than proper technological develop-
ments, the study of ECVs requires suitable theoretical retrieval tools, which leads to the solutions of inverse problems.
In this survey, we analyze and summarize the main retrieval techniques available in the literature for SM, AGB, and
FT, performed on data collected with microwave remote sensing sensors. Furthermore, we present the project RETINA
(REmote sensing daTa INversion with multivariate functional modeling for essential climAte variables characterization), recently
funded by the European Union under the Italian National Recovery and Resilience Plan of NextGenerationEU, under
the Italian Ministry of University and Research. The main goal of RETINA, is to create innovative techniques for
analyzing data generated by the interaction of electromagnetic waves with the Earth’s surface, applying theoretical
insights to address real-world challenges.

Keywords: Microwave remote sensing, essential climate variables, probabilistic cellular automata, neural network
operators, Bayesian inversion.

2020 Mathematics Subject Classification: 47A58, 47A63, 47A57, 41A25, 41A05.

1. INTRODUCTION

Human activities such as burning fossil fuels, deforestation, agriculture, and industrial pro-
cesses are responsible for releasing significant amounts of carbon dioxide (CO2), methane
(CH4) and other greenhouse gases, driving the rapid modifications that the Earth’s climate
is experiencing. These actions have caused long-term changes in temperature, precipitation
patterns, and other Earth system dynamics.

Key markers of these changes include variations in Essential Climate Variables (ECVs) such
as Soil Moisture (SM), Above Ground Biomass (AGB), and Freeze-Thaw (FT) Dynamics. SM
dynamics, a crucial part of the global hydrological cycle, are impacted by human-induced cli-
mate changes. These dynamics affect water availability, agricultural productivity, and even
natural disaster patterns (e.g., droughts and floods). Large-scale deforestation reduces the
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FIGURE 1. The official logo of the RETINA project

Earth’s capacity to sequester carbon, directly impacting carbon cycles and exacerbating cli-
mate change. AGB is a critical measure to monitor carbon stocks and understand the effects of
deforestation. Finally, the FT dynamics in polar and boreal regions are influenced by human
activity emissions, accelerating permafrost melting and methane release, both of which have
significant implications for climate change.

A central role to track these changes is played by Earth observation technologies such as
Microwave Remote Sensing (MW RS). The monitoring of variables, like SM, AGB, and FT,
helps to validate climate models, understand the feedback mechanisms between human activ-
ity and environmental responses, and inform policies aimed at mitigating human impacts on
the climate. MW RS utilizes active sensors (e.g., radar) and passive sensors (e.g., radiometers)
for continuous monitoring, irrespective of weather or lighting conditions. Depending on the
platform (i.e., airborne or spacebone), data collection is possible on regional and global scales
[45].

The retrieval techniques in MW RS data are based on theoretical [11], semi-empirical [39],
and empirical [46] models, increasingly enhanced by modern machine learning (ML) tech-
niques using neural networks (NN). Theoretical models leverage classical electrodynamics
theories, such as, e.g., scattering theory from rough surfaces [45], Radiative Transfer Theory
(RTT) [14], Foldy-Distorted Born Approximation (DBA) [40]. Semi-empirical models, such as
the Water Cloud Model (WCM) [10], links microwave signals to soil and vegetation parame-
ters. Empirical models, instead, use direct relationships between observed signals and ECVs,
and are therefore driven by the physical observable characterized by the microwave sensor.
ML is applied to handle complex datasets for more accurate predictions. However, the data
sets required for the training are often very large; therefore, significant effort is needed for data
annotation. In addition, data and ancillary data are often not continuously available due to
acquisition methods, the type of sensor, the spatial and temporal resolution, as well as some
practical conditions (e.g., the satellite orbit and the presence of disturbances like clouds).

Very recently, a new research project that aims to propose new methods for the retrieval of
the ECVs has been funded, mixing both deterministic and nondeterministic procedures. This
endeavour RETINA (see Fig. 1, in which the official logo of the RETINA project is shown),
is funded by the European Union within the framework of the Italian National Recovery and
Resilience Plan (NRRP) of the NextGenerationEU program, under the Italian Ministry of Uni-
versity and Research. RETINA proposes, for the first time, the application of direct and inverse
analytical methods of Approximation Theory based on the theory of the so-called multivari-
ate neural network (NN) operators (see, e.g., [16, 18, 19]) for the modeling and estimation of
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SM, AGB, and FT, using data from space missions. In the context of analytical methods in
Approximation Theory, we can mention the following significant contributions [1]-[4].

The fundamental idea in RETINA is to combine analytic inversion techniques (based on
functional analysis tools, such as series expansions [33]) and Bayesian approaches performed in
conjunction with Monte Carlo methods. The main two (complementary) strategies of RETINA
can be summarized as follows:

(1) Data Modeling with well-known Multivariate NN Operators: Through functional anal-
ysis techniques, theoretical inversion of these operators is achieved, resulting in an ap-
proximate analytical model for the target geophysical variables that is useful for their
estimation. To address potential data disturbances, as well as take into account the
uncertainty of the model, the NN operators will be extended to have the possibility of
representing interval-valued fuzzy sets (IVFS), which allow for the representation of
(uncertain variables) situations that are more coherent with real-world situations.

(2) Bayesian Inversion with Monte Carlo Markov Chain (MCMC): These methods are used
to sample from the posterior distribution, a robust technique for Bayesian inversion.
Through MCMC techniques, Bayesian inversion complemented the NN operator ap-
proach. RETINA targets the introduction of a specific type of Markov Chain, Prob-
abilistic Cellular Automata (PCA), characterized by a parallel updating rule, which is
expected to be particularly effective for retrieving multi-component physical quantities,
such as matrix-formatted data.

To set the state of the art of the retrieval techniques, a part of the RETINA project explores
and summarizes the main algorithms available in the literature, focusing on the retrieval meth-
ods applied to the characterization of the bio-geophysical variables of interest. Providing an
overview of these algorithms is the main motivation for this paper.

The remainder of this paper is organized as follows. Section 2 present a description of exist-
ing approaches for monitoring bio-geophysical variables by using Microwave Remote Sensing.
Section 3 presents a freely accessible dataset of remote sensing data that can be used for train-
ing, testing, and benchmarking retrieval procedures for ECVs. Sections 4, 5, 6 describe recent
techniques for the retrieval of vegetation biomass, freeze-thaw, and soil moisture, respectively.
Section 7 discusses potential future developments of the theory. Finally, conclusions are drawn
in Section 8.

2. MICROWAVE REMOTE SENSING FOR MONITORING BIO-GEOPHYSICAL VARIABLES

MW RS is a powerful tool for monitoring bio-geophysical variables such as SM, AGB, and
FT. This is given by capability to operate under all weather conditions, during day and night,
and by the possibility of penetrating clouds, rain, and vegetation. Although often character-
ized by low spatial resolution (i.e., with respect to optical sensors), MW RS can generally offer
relatively high temporal resolution with revisit time in the order of days, and up to hours in
certain specific conditions (e.g., in the presence of satellite constellations).

Microwave signals are sensitive to the dielectric properties of soil, water, and vegetation, and
are capable of penetrating surface layers (in the order of centimeters, depending on the wave-
length and on the structure of the media), making them suitable for observing both superficial
and shallow phenomena.

Active sensors, including Synthetic Aperture Radar (SAR) systems, emit microwave radia-
tion and collect the reflected or scattered signals. Passive sensors, such as radiometers, measure
naturally emitted thermal radiation. MW radiation wavelengths range from 1 mm to 1 meter
and are divided into different frequency bands (e.g., L-band, C-band, X-band and P-band),
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FIGURE 2. A screenshot of the RETINA dataset web page, available at the fol-
lowing link: https://retina.sites.dmi.unipg.it/dataset.html

which correspond to decreasing wavelength. In MW RS, L-band (15–30 cm wavelength) and
C-band (4–8 cm wavelength) are commonly used thanks to their balance between penetration
depth, spatial resolution, and the technological maturity of the system. Longer wavelengths
(such as L-band or P-band, the latter planned to be used in the future ESA’s Biomass mission
[50]) are preferred for dense vegetation and high-biomass areas, even though they may suffer
signal saturation. On the other hand, shorter wavelengths (e.g., C-band) are effective for less
dense biomass or canopy surface and agricultural observations. Missions like SMAP [25] and
SMOS [35] use both active and passive microwave sensors to monitor SM globally. Moreover,
microwave sensors like AMSR-E [49] and CryoSat [60] were pivotal in polar studies and pro-
vided important data to help tracking sea surface temperatures, sea ice extent, and thickness.

Even though MWRS is a fundamental tool for measuring and monitoring many ECVs, per-
forming these tasks is not straightforward. Among others, the following challenges have to be
addressed: signal saturation that occurs in dense forests or very high biomass regions where
backscatter no longer increases with increasing biomass; spatial resolution that can be im-
proved by combining microwave data with optical, thermal, and in-situ observations for a
more comprehensive understanding of Earth’s systems; difficulty in separating contributions
from soil, vegetation, and atmospheric layers in mixed environments. To overcome these lim-
itations, satellite missions like ESA’s Biomass [50], NISAR [22], and HydroGNSS [58] aim to
improve data resolution, and extend observational capabilities. Moreover, alongside model-
based approaches, AI techniques are increasingly used to analyze complex microwave datasets
to obtain more accurate predictions and insights.

3. RETINA DATASET OF MICROWAVE REMOTE SENSING DATA

One of the main goals of the RETINA project is to release a freely accessible dataset of remote
sensing data that can be used for training, testing, and benchmarking retrieval procedures
for the considered ECVs. All the selected images have been collected in a dedicated open-
access repository available from the RETINA website (see Fig. 2) at the following link: https:
//retina.sites.dmi.unipg.it/dataset.html.

The source of all the images (which can be downloaded for free, as stated in the copyright
section of this paper) is the Sentinel-1 ([43, 56]) satellite constellation, the first of the ESA’s
Copernicus Program. The images are available in GeoTIFF format with VV and VH bands. To
handle these images, it is possible to use any GIS software, such as QGIS or SNAP. Examples
of RS images that can be found in the RETINA dataset are shown in Fig. 3.

https://retina.sites.dmi.unipg.it/dataset.html
https://retina.sites.dmi.unipg.it/dataset.html
https://retina.sites.dmi.unipg.it/dataset.html
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FIGURE 3. Four RS images extracted from the RETINA dataset. On the top
(from left to right): Berlin (Germany) and Granada (Spain) areas. On the bot-
tom: (from left to right): Rome (Italy) and Lisbon (Portugal) areas

To help users of the dataset, a Python script for reading the images is available on the
RETINA website. The script allows the user to clip the pixel intensities between user-chosen
minimum and maximum threshold values to customize how images are displayed.

Fig. 4 shows the functional scheme of the Python script for reading the .tif files in the Official
RETINA Dataset. The input file is processed to produce two new images, one for Band 1
(clipped and normalized) and one for Band 2 (clipped and normalized). In addition to the
Python script, also a MATLAB script is available on the RETINA website.

Below, we provide a short review of the main algorithms available in the literature for each
one of the target ECVs considered in RETINA.

4. VEGETATION BIOMASS RETRIEVAL: AN OVERWIEW

Retrieving vegetation biomass, specifically AGB, is crucial for understanding carbon cycles,
forest dynamics, and the role of vegetation in climate change mitigation. MW RS, particularly
radar systems, has emerged as a key method for estimating AGB due to its ability to penetrate
vegetation layers and provide detailed structural information [30].

Longer Wavelengths (L-band, P-band) penetrate deeper into vegetation, interacting with
trunks and larger branches, making them ideal for high-biomass regions. Shorter Wavelengths
(e.g.,C-band) are sensitive to canopy features like leaves and smaller branches.

Techniques for Biomass Retrieval include:

• Theoretical approaches, such as the Radiative Transfer Theory (RTT) and the Wave
Theory. RTT focuses on the principles of energy conservation and the transfer of en-
ergy through disordered media (i.e., layers of vegetation, see, e.g., [15, 38]). A notable
example is the Michigan Microwave Canopy Scattering model (MIMICS) [57], which
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FIGURE 4. The functional scheme of the Python script for reading the Official
RETINA Dataset

divides the vegetation into crown, trunk, and ground components, and solves the vec-
tor radiative transfer equation (VRTE) iteratively. The Wave Theory, on the other hand,
approximates solutions to Maxwell’s equations to describe scattered electromagnetic
fields. An example of this class is the Distorted Born Approximation (DBA), which
uses electromagnetic wave theories of scattering to simulate how microwaves interact
with vegetation structures. DBA represents the vegetation layer as a random collection
of individual scatterers (see, e.g., [41]). These models are highly accurate but computa-
tionally intensive, also requiring a large collection of input data.

• Semi-empirical, such as the Water Cloud Model (WCM), models are simplified models
that relate the measured radar backscattering coefficient to biomass using empirical
relationships. WCM combines contributions from vegetation and ground backscatter
(see, e.g., [42, 47]). These methods are adjusted for vegetation density and structure
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using parameters like canopy height and attenuation and are often used with regression
techniques to estimate AGB from radar data. As the backscattering coefficient easily
saturates at very high biomass densities, limiting the retrieval of AGB beyond a certain
threshold, interferometric techniques are also often adopted as coherence appears to be
effective to identify forested/nonforested areas and the height of the canopy [8]. The
main observable is the complex degree of coherence (CDC), determining the potential
of two electromagnetic signals to interfere [12], which can be extracted from the data
and compared with models (based on the WCM) accounting for stem volumes, tree
height, and fill-factor, i.e., the fraction of ground covered by trees [53].

• ML techniques utilize algorithms like NN and support vector machines to model com-
plex relationships between radar signals and biomass (see [6] for a complete review
on this topic). They can integrate multi-source data (e.g., optical and microwave) to
improve AGB retrieval accuracy.

SM, surface roughness, and vegetation water content can complicate signal interpretation. In
general, retrieval models must account for different vegetation types, structures, and climates
to ensure accuracy.

Current and upcoming radar missions for vegetation biomass studies are: ESA Biomass
Mission (P-band SAR), designed specifically for global forest AGB mapping; NISAR (L- and S-
band SAR), which targets forest structure and biomass dynamics; Sentinel-1 (C-band SAR) that
provides data for biomass monitoring with limited penetration depth; GNSS Reflectometry,
that is a more recent technique using reflected GPS signals (e.g., CYGNSS, TDS-1) to assess the
AGB distribution at global scale ([51]).

5. FREEZE-THAW RETRIEVAL: AN OVERVIEW

FT retrieval focuses on monitoring seasonal transitions in the soil’s thermal state, particu-
larly between frozen and unfrozen conditions. These transitions are critical for understanding
the water cycle, energy balance, and greenhouse gas dynamics, especially in high-latitude re-
gions where permafrost melting can release significant amounts of methane [29, 48].

MW RS has proven particularly well-suited for FT detection due to its high sensitivity to
phase changes of water in soil, as the permittivity of water decreases dramatically between liq-
uid and solid states [45]. Both active and passive MW remote sensing techniques are currently
employed in the field, addressing the problem from different perspectives. SAR and radiome-
ter systems (e.g., Sentinel 1 and SMAP) provide high-resolution spatial data by capturing the
dynamic temporal variations of the corresponding physical observable, which are associated
with seasonal changes in FT states [23, 37]. However, these systems are constrained by lim-
ited temporal resolution, typically on the order of days [13]. Passive MW RS instruments, like
SMAP, measure naturally emitted microwave radiation, wherein the measured power is ex-
pressed in terms of blackbody equivalent radiometric temperature (or radiometer brightness
temperature). Radiometers provide FT-related data with high temporal resolution compared
to radar systems, ∼ 3 days, at the expense of a low spatial resolution [23]. This limitation arises
from the relatively weak electromagnetic signal emitted by the natural media, thus requiring
a vast observation region to detect meaningful signals. Very recently, GNSS Reflectometry
(GNSS-R) has been successfully adopted in the field, addressing the limitations of traditional
active and passive measurement techniques and providing sensible data with both high tem-
poral and spatial resolution ([52]). This method involves detecting signals transmitted by a
constellation of GNSS satellites and scattered off Earth’s surface. Since it exploits signals origi-
nally designed for GPS purposes, it is often referred to as a signal of opportunity technique. In
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this framework, the measured observable is the surface reflectivity for left-hand circularly po-
larized fields, related to the dielectric function, in turn connected to climate variables, through
the Fresnel’s coefficients.

FT retrieval methods include:

• Theoretical models, mostly developed for passive radiometric measurements. This ap-
proach aims to estimate the brightness temperature from the physical properties of the
medium by means of radiative transport theories. A notable example is the Helsinki
University of Technology (HUT) model [44], which solves the scalar radiative transfer
equation for multilayered systems.

• Empirical approaches, wherein thresholding is a commonly adopted method. For ac-
tive measurements, the collected backscattering coefficient is compared with its ref-
erence values for the thaw and freeze state, with the goal of determining the present
water phase [23]. For GNSS systems the same method is adopted wherein the seasonal
threshold algorithm now involves reference reflectivity values and measurements. Ra-
diometric systems also employ a thresholding technique, but in this case, freeze/thaw
discrimination is based on the difference between the vertical and horizontal polariza-
tions of the brightness temperature.

• ML algorithms like Random Forest or NN process large datasets to detect patterns in
FT transitions. These techniques are useful for integrating multi-sensor and auxiliary
data (e.g., temperature and vegetation cover).

Problematics related to FT retrieval can include: vegetation and snow layers can obscure FT
signals; rapid transitions may be missed without frequent observations; factors like soil rough-
ness, composition, and moisture can complicate FT retrieval accuracy. New systems like ESA
Biomass will enhance FT monitoring capabilities.

6. SOIL MOISTURE RETRIEVAL: AN OVERVIEW

SM is a key bio-geophysical variable influencing global water cycles via evapotranspiration
processes, exchange of heat between land and near-surface atmosphere, energy balance, and
biochemical/carbon cycles [55]. Recently, MW RS has emerged as a valuable tool for real-time
SM monitoring due to its sensitivity to the soil-water ratio, which alters both the medium’s
emissivity and the backscattering properties of signals, opening the possibility for active and
passive RS measurements. Key missions and instruments for SM study are: SMAP that com-
bines SAR and radiometer data for global soil moisture monitoring; SMOS that uses passive
L-band radiometer for large-scale SM and salinity observations; Sentinel-1 C-band SAR that
provides high-resolution SM data, especially useful for agricultural applications.

Techniques for SM retrieval include:

• Theoretical models are particularly relevant in radar active measurements. Among
them, the Integral Equation Method (IEM), based on electromagnetic scattering the-
ory, has gained prominence over time and is now the most widely used [26]. As active
measurements are particularly affected by surface roughness conditions, the theory sta-
tistically accounts for the random variations of scattering surfaces, estimating the aver-
age values of scattered power as a function of surface roughness and the soil dielectric
function.

• Semi-empirical models, which are widely preferred due to their effectiveness and rel-
atively simple implementation. For active systems, we distinguish two types of semi-
empirical approaches. The first is based on the experimental calibration of the IEM,
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which corrects deviation of the theory from measurements correcting roughness ef-
fects [9]. The second exploits knowledge of scattering behavior in specific limiting
cases, combined with experimental observations, to create ready-to-use formulas de-
rived through data fitting. The most used frameworks are the Oh and the Dubois mod-
els [24, 54], both directly relating radar backscattering with volimetric soil moisture and
roughness. For passive measurements, semi-empirical models are based on the scalar
radiative transfer equation, solved at zeroth order and adjusted using experimental pa-
rameters to account for surface roughness, the mixing of different polarization compo-
nents, and the influence of vegetation and atmospheric layers [36, 59]. Semi-empirical
models have also been used for GNSS-based SM retrieval, revealing the potential of
this novel technology to provide excellent results even at global scale [7].

• ML and Data Assimilation: ML algorithms analyze complex, multi-sensor datasets to
improve accuracy; data assimilation integrates satellite observations with hydrological
models for comprehensive SM monitoring. For instance, Convolutional Neural Net-
works (CNNs) are useful for processing SAR data [32], as they can extract spatial fea-
tures from radar images, providing enhanced accuracy. More complex NN architecture
can describe spatial features along with also temporal evolution.

Dense vegetation and uneven surfaces can obscure SM signals, so ground-truth data are
often requested to ensure accuracy in various terrains and climates.

7. FUTURE DEVELOPMENTS: NEURAL NETWORK OPERATORS AND BAYESIAN INVERSION

NNs have become highly popular due to their utility across numerous fields, including Ar-
tificial Intelligence (AI), ML, and Approximation Theory (ATh). Within the RETINA project,
NNs will be applied in the context of ATh to develop approximate analytical models and their
inversions for specific ECVs. In relation to the theory of NNs, in [19], the authors explored
the functional properties of the NN operators. This research highlights the potential of these
operators in modeling general two-dimensional structures, such as SAR satellite images ([27])
or, more in general, RS data.

For the sake of completeness, we recall the definition of such operators in both their classical
and Kantorovich form. The multivariate discrete NN operators can be defined as follows:

(7.1) F d
n(f, x) :=

∑
k∈Jn

f

(
k

n

)
Ψσ(nx− k)∑

j∈Jn

Ψσ(nx− k)
, x ∈ Qd := [a1, b1]× · · · × [ad, bd],

where the function

(7.2) Ψσ(x) := ϕσ(x1) · ϕσ(x2) · · ·ϕσ(xd), x := (x1, ..., xd) ∈ Rs

is the multivariate (tensor-product) density function defined by means of suitable sigmoidal
function σ : R → R ([20]), the set of indexes

Jn :=
{
k ∈ Zd : ⌊nai⌋ ≤ ki ≤ ⌈nbi⌉

}
and

ϕσ(x) :=
1

2
[σ(x+ 1)− σ(x− 1)] , x ∈ R.

We recall that, by Cybenko’s definition in [20], σ : R → R is called a sigmoidal function if
limx→−∞ σ(x) = 0 and limx→+∞ σ(x) = 1.



66 Laura Angeloni, Domenico Daniele Bloisi, Paolo Burghignoli, Davide Comite, Danilo Costarelli, Michele Piconi et al.

While, the Kantorovich NN operators are:

(7.3) Kd
n(f, x) :=

∑
k∈Jn

[
nd

∫
Rn

k

f (u) du

]
Ψσ(nx− k)∑

j∈Jn

Ψσ(nx− k)
, x ∈ Qd,

where

(7.4) Rn
k :=

[
k1
n
,
k1 + 1

n

]
× · · · ×

[
kd
n
,
kd + 1

n

]
are suitable multidimensional rectangles in which we will compute certain mean values of the
considered function f : Qd → R.

We stress that, with respect to the classical (non-deterministic) theory of shallow and deep
NNs, the NN operators are instead widely studied (see. e.g., [16, 17]) mathematical oper-
ators that are suitable to pursue a deterministic modeling approach, and also an enhance-
ment/rescaling one.

The task of inverting the above NN operators will be based on an analytical strategy, such
as the possibility of exploiting Laurent’s series, particularly when working with operators in
Hilbert spaces, or methods of Approximation Theory. To address 2D data affected by measure-
ment errors or other disturbances, interval-valued fuzzy sets (IVFS) have been proposed as a
robust modeling tool (see [5]).

The NN operators approach will be enhanced through the integration of Bayesian inver-
sion, which leverages advanced Monte Carlo Markov Chain (MCMC) techniques. These new
techniques utilize a parallelized transition kernel to enable efficient sampling from the poste-
rior distribution. In the Bayesian framework, the variable to retrieve is treated as a random
variable. With this approach, the retrieval procedure aims to determine the probability distri-
bution of this variable given the observed data (posterior probability distribution). Then, the
outcome of the retrieval procedure is the value that maximizes the posterior probability distri-
bution. A standard way to estimate such probability distribution is to simulate the evolution of
a Markov chain designed so that its stationary distribution is the posterior probability distribu-
tion of the variable to retrieve. Since the empirical distribution of the Markov chain converges
to its stationary distribution, if the chain is run for a sufficiently long time, its empirical dis-
tribution is an estimate of the posterior probability distribution of the variables to retrieve. In
this context, algorithms commonly used to simulate the Markov chain include the Metropolis
algorithm, the Metropolis-Hastings algorithm, and the Gibbs sampler. If the Markov chain has
multi-component states, such as in the case of 2D data, the previous algorithms sample the next
state of the chain from a set of neighbors of the current state differing in only one component.
This strategy is referred to as single-flip dynamics [31]. An alternative to single-flip dynamics
is the use of Probabilistic Cellular Automata (PCA) [28]. In PCA, all components of the state
are updated simultaneously and independently at each step. This approach expands the set of
neighbors to include the entire state space, resulting in higher motility and potentially faster
convergence to equilibrium.

More formally, a PCA, is a Markov chain (Xn)n∈N defined on X = {1, . . . , k}N , where N is
the number of components of the system, and whose transition matrix is such that

(7.5) P{Xn = τ |Xn−1 = σ} =

N∏
i=1

P{(Xn)i = τi|Xn−1 = σ}.
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A transition matrix of this type is obtained by defining a function H : X × X → R of type
H(σ, τ) = −

∑
1≤i≤N hi(σ)τi and transition probabilities as

(7.6) P(σ, τ) =
e−βH(σ,τ)

Zσ
=

∏
1≤i≤N

eβhi(σ)τi

(Zσ)i

where β is a positive parameter called the inverse temperature and Zσ is a normalizing constant
whose knowledge is not known to simulate the evolution of the chain. Then, if h(·) satisfies
certain suitable conditions, the stationary measure of the chain can be proven to be π(σ) =∑

τ P(σ,τ)∑
σ,τ P(σ,τ) [21, 34]. The knowledge of the stationary measure of the chain allows to tune the

algorithm so to favor the sampling of the more useful configurations [21, 34].
PCA’s inherent parallelism offers significant computational advantages, particularly when

leveraging massively parallel processing hardware such as GPUs or TPUs. These processors
enable simultaneous updates of all components at each step, greatly enhancing efficiency.

8. CONCLUSIONS

Climate change is one of the biggest challenges Mankind is called to face. The precise es-
timation and monitoring of the ECVs on a global scale is a fundamental step to describing
and understanding the rapid changes the Earth’s climate is experiencing and, consequently, to
determine the more appropriate actions to mitigate the adverse effects of these changes.

Microwave remote sensing is a cornerstone of modern Earth observation, enabling critical
insights into climate dynamics, environmental monitoring, and resource management at local,
regional, and global scales. This paper highlights advancements in microwave sensing tech-
nologies and their integration with ML to enhance the monitoring of Earth’s bio-geophysical
processes.

Particular emphasis is given to those retrieval techniques that will be exploited to estimate
the target ECVs in the context RETINA project.
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