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Normalized solutions to the fractional Schrödinger equations
with potential and saturable nonlinearity

WEN LIAO AND QIONGFEN ZHANG*

ABSTRACT. This paper is concerned with the existence of normalized solutions to a kind of fractional Schrödinger
equations driven by a fractional operator with a parametric potential term and a saturable nonlinear term. We achieve
the minimization of the energy functional and prove the existence of normalized solutions for the equation under
specific conditions that we assume for the potential and saturable nonlinearity.
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1. INTRODUCTION

This paper studies the existence of normalized solutions for the following fractional Schrödinger
equations

ı
∂φ

∂t
= (−∆)sφ+ µV (x)φ− µ

ψ(x) + φ2

1 + ψ(x) + φ2
φ, in RN,(1.1)

where (−∆)s is the fractional Laplacian, φ = φ(t, x), s ∈ (0.25, 1), 2s < N < 4s, µ > 0, λ ∈ R
is a parameter, the potential function V : RN → [0,+∞) is continuous and bounded. The
function ψ is bounded in RN . A solution of the problem (1.1) is called a standing wave solution
if it has the form φ(t, x) = ℓiλt. Indeed, u is a time-independent and real-valued function that
satisfies the following fractional Schrödinger equation:

(1.2) (−∆)su+ µV (x)u+ λu = µ
ψ(x) + u2

1 + ψ(x) + u2
u, in RN,

is defined by

(−∆)su(x) = C(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy,

here, the symbol P.V. is the Cauchy principal value and C(N, s) is a constant that depends
on N and s. For more information, please see [19] and the reference therein. (−∆)s originates
from applied scientific fields such as obstacle problems, phase transition phenomena, fractional
quantum mechanics, and Markov processes (see [10, 19, 20, 21]). We are examining the feasi-
bility of solving the constraint minimization problem described as below:

Ia = inf
u∈S(a)

E(u),
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where a is a positive constant and

(1.3) S(a) = {u ∈W : ∥u∥22 =

∫
RN

|u|2dx = a2}.

Moreover, the weighted fractional Sobolev space W is defined as

(1.4) W = {u ∈ Hs(RN ) :

∫
RN

µV (x)|u|2dx < +∞},

with norm

(1.5) ∥u∥W =

(∫
R2N

|(−∆)
s
2u|2dx+

∫
RN

µV (x)|u|2dx
) 1

2

.

We will study the energy functional E :W → R, which is defined by

(1.6) E(u) =
1

2

∫
R2N

|(−∆)
s
2u|2dx+ 1

2

∫
RN

µV (x)|u|2dx− µ

2

∫
RN

[
u2 − ln

(
1 +

u2

1 + ψ(x)

)]
dx.

In addition, the fractional Sobolev space Hs(RN ) is given by:

(1.7) Hs(RN ) = {u ∈ L2(RN ) :

∫
R2N

|(−∆)
s
2u|2dx =

∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy <∞},

with norm

(1.8) ∥u∥Hs =

(∫
RN

|u|2dx+

∫
R2N

|(−∆)
s
2u|2dx

) 1
2

.

In recent years, the following fractional Schrödinger equation has been studied by many schol-
ars:

(−∆)su+ µu+ λV (x)u = h(u), in RN.(1.9)

When h(u) = |u|p−2u, Laskin [11] obtained a couple of normalized solution by using a fiber
map and concentration-compactness principle. Zuo [25] obtained minimization of the energy
functional associated with the problem (1.9). When h(u) = u log u2, Alves [1, 2] employed
minimization techniques and used the Lusternik-Schnirelmann category to prove existence of
multiple normalized solutions. The solution to the problem (1.9) can be studied from two as-
pects. On the one hand, one can choose the fixed frequency µ ∈ R and studied the existence
of nontrivial solution of problem (1.9). On the other hand, taking µ as unknown, then we
can look to prescribed L2-norm solutions. A large number of people have conducted compre-
hensive studies utilizing variational and topological methods, see [5, 6, 12] and the references
therein. As we all know, some previous works have explored this aspect, although they did
not incorporate a potential term, see [3, 13, 17, 23].

We want to point out that the nonlinearity f(x, u) = µ ψ(x)+u2

1+ψ(x)+u2u for µ > 0 is usually called
saturable nonlinear term, which is used to describe photo refractive media [8]. Lin [14] firstly
studied normalized solution for the Schrödinger equation with saturable nonlinearity. Later,
Lin [15] used a convexity argument to expand the result when g(x) becomes nonzero. Very
recently, Sun [22] used variational methods to prove the existence of normalized solutions for
a kind of quasilinear Schrödinger equations.

Inspired by the above paper, our objective is to expand the current findings to the frac-
tional Schrödinger equations and investigate the existence of normalized solutions of fractional
Schrödinger equations with a saturable nonlinear term µ ψ(x)+u2

1+ψ(x)+u2u and an external potential
V . However, due to the presence of the saturable nonlinear term and the potential function,
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we have to face several difficulties, such as the scaling result of the energy functional E(·) and
the strong convergence of the minimizing sequence in the weighted fractional Sobolev space
W . In view of this, it is necessary to introduce some inequality and new ideas.

In order to present our main result, we require the following assumptions on V (x) and ψ(x).
(V1) There exists a positive constant C0 > 0 such that the following measure of the set Ω is

finite, where

(1.10) Ω = {x ∈ RN : V (x) < C0}.

(V2) V ∈ L∞(R).
(Ψ1) The function ψ(x) is radially symmetric with −1 < ψ1 ≤ ψ(|x|) ≤ ψ2 for x ∈ RN , where

ψ1, ψ2 are two constants.
In conclusion, we will now present our primary result.

Theorem 1.1. Assume that the condition (V1), (V2) and (Ψ1) holds, and let 2s < N < 4s, p ∈
(2,min{ N

N−2s , 2 + 4s
N }). Then, for each a > 0, there exist a sufficiently large positive µ∗ > 0 and

Υ = Υ(µ∗, a) > 0 such that Ia < 0 for all µ > µ∗ satisfying µ∥V ∥∞ < Υ. Moreover, the infimum Ia
is attained by a function u ∈ S(a), which is a normalized solution of (1.1) with λ = λa as a Lagrange
multiplier.

2. AUXILIARY LEMMAS AND PROOF OF THEOREM 1.1

In this section, we give out some auxiliary lemmas, and then we give the proof of Theorem
1.1.

Lemma 2.1 ([16], Lemma 2.2). For each 2 < p ≤ min{4, 2∗} (2∗ = ∞ if N = 1, 2; 2∗ = 2N
N−2 if

N ≥ 3), there exists a positive constant

Ap =


1
2 , if p = 4;

p
p−2
2 (4−p)

4−p
2

2p , if 2 < p ≤ min{4, 2∗} and p ̸= 4,

such that

(2.11) t2 − ln(1 +
t2

1 + ψ(x)
) ≤ ψ(x)

1 + ψ(x)
t2 +

Ap

(1 + ψ(x))
p
2

tp for all ≥ 0.

Lemma 2.2 ([9], Fractional Gagliardo-Nirenberg Inequality). For each p ∈ (2, 2N
N−2s ), there exists

a constant C(s,N, p), such that

(2.12)
∫
RN

|u|pdx ≤ C(s,N, p)(

∫
RN

|u|2dx)
p
2−

N(p−2)
4s (

∫
R2N

|(−∆)
s
2u|2dx)

N(p−2)
4s .

Lemma 2.3. Assuming that condition (Ψ1) is satisfied, it can be concluded that the energy functional
E(u) is both coercive and bounded from below on S(a) for all a > 0.

Proof. For any u ∈ S(c), observe that condition (Ψ1) guarantees 1 + ψ(x) ≥ 1 + ψ1(x) > 0 for
all x ∈ RN , this make the logarithmic term well defined. And controlling the range of the ψ(x)
make the function 1

1+ψ(x) bounded. It follow from Lemmas 2.1 and 2.2 that

E(u) =
1

2

∫
R2N

|(−∆)
s
2u|2dx+

1

2

∫
RN

µV (x)|u|2dx− µ

2

∫
RN

[
u2 − ln

(
1 +

u2

1 + ψ(x)

)]
dx

≥ 1

2

∫
R2N

|(−∆)
s
2u|2dx− C(s,N, p,Ap)

µ

2

∫
R2N

|(−∆)
s
2u|

N(p−2)
4s dx− µa2

2
.
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Since p ∈ (2, 2 + 4s
N ), we infer that 0 < N(p−2)

4s < 1. We can therefore conclude that the energy
functional E(u) is coercive and bounded from below on S(a). We complete the proof. □

Even if it is not explicitly stated, in the following series of lemmas we always make the
assumption that (un)n∈N ⊂ S(a) is a minimizing sequence for Ia.

Lemma 2.4. The sequence (un)n∈N is bounded in W .

Proof. It can be deduced from the definition of a minimizing sequence that

(2.13) Ia = lim
n→∞

E(un).

According to Lemma 2.3, it is established that (
∫
R2N |(−∆)

s
2un|2)n∈N is a bounded sequence for

Ia. As a result, the sequence (
∫
RN µV (x)|un|2dx)n∈N is also bounded. In a word, (un)n∈N is a

bounded sequence in W . This concludes the proof. □

Lemma 2.5. Assuming that conditions (V1) and (V2) are satisfied, then for any µ2 > µ > 0 there
exists Υ = Υ(µ2, a) > 0 such that Ia < 0 if λ∥V ∥∞ < Υ.

Proof. Let (un) ⊂ S(a) be a minimizing sequence for Ia = inf
u∈S(a)

E(u). Then (un) is bounded

on S(a) by Lemma 2.3. It is evident that the embedding W (RN ) ↪→ Lh(RN ) is compact for any
h ∈ [2, 2∗s] (see Wang et al. [4]). Since there exists u ∈ H such that un ⇀ u weakly in W (RN ),
un ⇀ u strongly in Lh(RN ). According to the Lagrange multipliers rule, there exists λn ∈ RN
such that

(2.14) (−∆)sun + µV (x)un + λnun = µ
ψ(x) + u2n

1 + ψ(x) + u2n
un, in RN.

In particular, we have

λna
2 = −1

2

∫
R2N

|(−∆)
s
2un|2dx− 1

2

∫
RN

µV (x)|un|2dx+

∫
RN

µ
ψ(x) + u2n

1 + ψ(x) + u2n
u2ndx+ o(1)

≤
∫
RN

µ
ψ(x) + u2n

1 + ψ(x) + u2n
u2ndx+ o(1) < µa+ o(1),

which implies that {λn} is bounded, thus allows us to use Bolzano-Weierstrass to extract a
convergent subsequence of λn, then restrict all further analysis to this subsequence. And then
we make the assumption that λnr → λ as n→ ∞.

For a fixed u ∈ S(a), we choose a constant µ1 > 0 such that for µ > µ1,

(2.15)
1

2

∫
R2N

|(−∆)
s
2u|2dx+

1

2

∫
RN

µV (x)|u|2dx− µ

2

∫
RN

[u2 − ln(1 +
u2

1 + ψ(x)
)]dx < 0,

which implies that Ia < 0. Furthermore, there exists µ2 ≥ µ1 > 0 such that

(2.16)
1

2

∫
R2N

|(−∆)
s
2u|2dx− µ2

2

∫
RN

[u2 − ln(1 +
u2

1 + ψ(x)
)]dx = Bµ2 < 0,

hence, fixed the number Υ =
−Bµ2

a2 and in light of the assumption λ∥V ∥∞ < Υ, we infer that
E(un) < 0, which implies that Ia < 0. Consequently, we complete the proof. □

Lemma 2.6. Assuming that condition (V2) is satisfied, then for any a > 0, there exist Υ(a) > 0 and
η > 0 such that

lim inf
n→∞

∫
RN

|un|pdx ≥ η if µ∥V∥∞ < Υ.(2.17)
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Proof. From Lemma 2.5, it is easy to find Υ(a) > 0 and η > 0 such that Ia < −η if µ∥V ∥∞ < Υ.
Now, since(un) ⊂ S(a) is a minimizing sequence for Ia, then we have

Ia + o(1) =E(un)

=
1

2

∫
R2N

|(−∆)
s
2un|2dx+

1

2

∫
RN

µV (x)|un|2dx

−
∫
RN

µψ(x)

2(1 + ψ(x))
|un|2dx−

∫
RN

µAp

2(1 + ψ(x))
p
2

|un|pdx.

Furthermore, we obtain that

(2.18) −η + o(1) ≥ −µa
2

2
−
∫
RN

µAp

2(1 + ψ(x))
p
2

|un|pdx.

Hence (2.17) holds. We complete the proof. □

In the following lemma, we establish a quantitative relationship between the two ordered
values of a and the corresponding values of Ia.

Lemma 2.7. Assuming that condition (V2) is satisfied and if 0 < a1 < a2 is achieved, then Ia2

a22
<

Ia1

a21
.

Proof. To prove this lemma, we borrow the ideas form Lv and Li [18]. Let ξ > 1 such that
a2 = ξa1, and let (un) ⊂ S(a1) be a minimizing sequence with respect to Ia1 , that is

(2.19) E(un) → Ia1 , as n → ∞.

Setting vn = ξun, we have that (vn) ⊂ S(a2), and so

(2.20) Ia2 ≤ E(vn) = ξ2E(un)−
µξ2

2

∫
RN

ln(1 +
u2n

1 + ψ(x)
)dx+

µ

2

∫
RN

ln(1 +
(ξun)

2

1 + ψ(x)
)dx.

Letting n→ ∞, it follows from ξ > 1 that

(2.21)
µ

2

∫
RN

ln(1 +
(ξun)

2

1 + ψ(x)
)dx− µξ2

2

∫
RN

ln(1 +
u2n

1 + ψ(x)
)dx < 0,

which implies that

(2.22) Ia2 ≤ ξ2E(un)−
µξ2

2

∫
RN

ln(1 +
u2n

1 + ψ(x)
)dx+

µ

2

∫
RN

ln(1 +
(ξun)

2

1 + ψ(x)
)dx < ξ2E(un),

that is

(2.23) Ia2a
2
1 < Ia1a

2
2.

The proof is completed. □

Lemma 2.8. Assuming that condition (V2) is satisfied and if un ⇀ u in W , un(x) → u(x) a.e. in RN
and u ̸= 0, then u ∈ S(a), E(u) = Ia and un → u in W .

Proof. We note that if ∥u∥2 = m ̸= a, in light of Fatou’s lemma and the assumption u ̸= 0, then
we get that m ∈ (0, a). From the continuity of embedding W ↪→ Lh(RN ) for any h ∈ [2, 2∗s] and
two kinds of Brézis-Lieb lemmas in [7, 24], we get that∫

R2N

|(−∆)
s
2un|2dx =

∫
R2N

|(−∆)
s
2 (un − u)|2dx+

∫
R2N

|(−∆)
s
2u|2dx+ o(1),∫

RN

|un|2dx =

∫
RN

|un − u|2dx+

∫
RN

|u|2dx+ o(1).(2.24)
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Let vn = un − u, ∥vn∥2 = rn and assume that ∥vn∥2 → r, by (2.14), we infer that a2 = m2 + r2

and rn ∈ (0, a) for sufficiently big n, which implies that

Ia + o(1) = E(un)

= E(vn) + E(u) + o(1)

≥ Irn + Im + o(1)

≥ r2n
a2
Ia + Im + o(1).

Letting n→ ∞, we can derive the inequality

(2.25) Ia ≥ r2

a2
Ia + Im.

Using the fact that m ∈ (0, a) and Lemma 2.7 in the above inequality, we can infer that

(2.26) Ia >
r2

a2
Ia +

m2

a2
Ia = Ia.

This inequality presents a contradiction. Therefore ∥u∥2 = a, namely, u ∈ S(a). It can be
deduced from the premises ∥un∥2 = ∥u∥2 = a and un ⇀ u in L2(RN ) (since W ↪→ L2(RN )
is a continuous embedding) that un → u in L2(RN ). Furthermore, the combination of this
deduction with the interpolation inequality allows us to conclude that un → u in Lp(RN ). In
addition, since

∫
R2N |(−∆)

s
2un|2dx +

∫
RN µV (x)|un|2dx is convex and continuous in W , it can

be inferred that it is a weak lower semicontinuous, namely
(2.27)

lim inf
n→+∞

(

∫
R2N

|(−∆)
s
2un|2dx+

∫
RN

µV (x)|un|2dx) ≥
∫
R2N

|(−∆)
s
2u|2dx+

∫
RN

µV (x)|u|2dx.

According to Ia = lim
n→∞

E(un), we infer that Ia ≥ E(u), reuse the definition of Ia and u ∈ S(a),

we get that Ia = E(u), and hence

(2.28) lim
n→∞

E(un) = E(u).

Finally, based on the convergence un → u in L2(RN ) and un → u in Lp(RN ), we can get that
un → u in W . Thus, we have successfully completed the proof. □

Lemma 2.9. Let p ∈ [1, N
N−2 ]. Assuming that conditions (V1) and (V2) are satisfied, and let R > 0

and µ∗ > 0 are given, for any µ > µ∗, we could get

lim sup
n→+∞

∫
Bc

R(0)

|un|p ≤
η

2
,

where BcR(0) = {x ∈ RN : |x| > R}, a > 0 is as given in Lemma 2.5.

Proof. We now prove this lemma by a contradiction. We borrow the ideas from Bartsch and
Wang [4], for R > 0, we consider two sets

(2.29) Φ(R) := {x ∈ RN : |x| > R, V (x) ≥ C0} and Θ(R) := {x ∈ RN : |x| > R, V (x) < C0}.
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Let C > 0 represent a constant with a variable value that may change from line to line. By
Lemma 2.4, we know that ∥un∥2W ≤ C for all n ∈ N, hence we get that∫

Φ(R)

u2ndx ≤ 1

µC0 + 1

∫
RN

(µV (x) + 1)u2ndx

≤ 1

µC0 + 1

( ∫
RN

(µV (x) + 1)u2n +

∫
R2N

|(−∆)
s
2un|2

)
dx

=
1

µC0 + 1
∥un∥2W

≤ C

µC0 + 1
.(2.30)

Clearly, the term on the right-hand side of the above inequality can be arbitrarily small when
µ > µ∗ (large enough). According to the Hölder inequality, the continuous embeddingHs(RN ) ↪→
L2p(RN ) for any p ∈ [1, N

N−2 ] (see ([19], Theorem 6.5)) and condition (V1), we obtain

∫
Θ(R)

u2ndx ≤

(∫
Θ(R)

|un|2pdx

) 1
p
(∫

Θ(R)

dx

) 1
q

≤
(∫

RN

|un|2pdx
) 1

p

(∫
Θ(R)

dx

) 1
q

= C∥un∥2Hs |Θ(R)|
1
q

≤ C|Θ(R)|
1
q .(2.31)

With the help of condition (V1), the term on the right-hand side of the above inequality can also
be arbitrarily small if R is sufficiently large since |Θ(R)| → 0 as R → +∞, where 1

p + 1
q = 1. It

follows from Lemma 2.2 that∫
Bc

R(0)

|un|pdx ≤ C(s,N, p)

(∫
Bc

R(0)

|un|2dx

) p
2−

N(p−2)
4s

(∫
Bc

R(0)

|(−∆)
s
2un|2dx

)N(p−2)
4s

≤ C(s,N, p)C
N(p−2)

4s ∥un∥
N(p−2)

4s

W

(∫
Φ(R)

u2ndx+

∫
Θ(R)

u2ndx

) p
2−

N(p−2)
4s

≤ C

(∫
Φ(R)

u2ndx+

∫
Θ(R)

u2ndx

) p
2−

N(p−2)
4s

.(2.32)

To sum up, we prove the lemma. □

Lemma 2.10. Assuming the conditions (V1) and (V2) are satisfied, and let µ∗∗ > 0 is given, for any
µ > µ∗∗ the sequence (un)n∈N admits a nontrivial weak limit u in W .

Proof. By Lemma 2.4, it is know that there exists u ∈ W and a subsequence of (un)n∈N, which
is still denoted as itself, such that

(2.33) un ⇀ u in W,un(x) → u(x) a.e. in RN .

Now, employing the method of argument by contradiction, we make the assumption that u = 0
for some µ > µ∗ as given in Lemma 2.9. Because the compactness of the embedding over the
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bounded domain, we have un → 0 in Lp(BR(0)) for any R > 0. In light of Lemmas 2.6 and 2.9,
we have

η ≤ lim inf
n→+∞

∫
RN

|un|pdx

= lim inf
n→+∞

∫
Bc

R(0)

|un|pdx

≤ lim sup
n→+∞

∫
Bc

R(0)

|un|pdx

≤ η

2
,(2.34)

this inequality presents a contradiction. Therefore, we can conclude that there exists µ∗ ≤ µ∗∗

such that u is nontrivial for any µ > µ∗∗. □

In the end, we present the proof of our main result.

Proof of Theorem 1.1. By Lemmas 2.4 and 2.10, we know that there exists a minimizing sequence
(un)n∈N ⊂ S(a) for Ia, which is bounded in W and its weak limit u is nontrivial. According to
the Lemma 2.8, we have that u ∈ S(a), E(u) = Ia and un → u inW . Then, we use the Lagrange
multiplier method, there exists λa ∈ R solving the equation

E′(u) + λaJ
′(u) = 0 in W∗,(2.35)

where W ∗ is the dual space of W and J :W → R is defined by

(2.36) J(u) = ∥u∥2, u ∈W.

By (2.13), we deduce that

(2.37) (−∆)su+ λau+ µV (x)u− µ
ψ(x) + u2

1 + ψ(x) + u2
u = 0 in RN.

We complete the proof of Theorem 1.1. □
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