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1. INTRODUCTION

Banach contraction principle is one of the earlier and main results in fixed point theory.
Banach contraction principle [1] was proved in complete metric spaces. Many generalizations
of the concept of metric spaces are defined and some fixed point theorems were proved in these
spaces. In particular, b-metric spaces were introduced by Bakhtin [2] and Czerwik [4], in such
a way that triangle inequality is replaced by the b-triangle inequality. Various mathematician
considered a lot of interesting extensions and generalizations [3, 6, 14]. Piri and Kumam [12]
introduced new type of contractions called F-contraction and F-weak contraction and proved
new fixed point theorems concerning F-contractions. Very recently, Kari et al. [7] introduced
the notion of (θ − ϕ)-contraction in these metric spaces and proved a fixed point theorem.

Definition 1.1 ([5]). Let X be a nonempty set s ≥ 1 be a given real number and let d : X × X →
[0,+∞[ be a mapping such that for all x, y ∈ X and all distinct points u, v ∈ X each distinct from x
and y:

(i) d(x, y) = 0 if only if x = y,
(ii) d(x, y) = d(y, x),

(iii) d(x, y) ≤ s[d(x, u) + d(u, v) + d(v, y)] (b-rectangular inequality).

Then, (X, d) is called a b-rectangular metric space.

In 1971, S. Reich [14] presented the following lemma to establish some remarks concerning
contraction mappings

Lemma 1.1 ([14]). Let (X, d) be a b-rectangular metric space.
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(i) Suppose that sequences {xn} and {yn} ∈ X are such that xn → x and yn → y as n → ∞, with
x ̸= y, xn ̸= x and yn ̸= y for all n ∈ N. Then, we have

1

s
d(x, y) ≤ lim

n→∞
inf d(xn, yn) ≤ lim

n→∞
sup d(xn, yn) ≤ sd(x, y).

(ii) If y ∈ X and {xn} is a Cauchy sequence in X with xn ̸= xm for any m,n ∈ N,m ̸= n,
converging to x ̸= y, then

1

s
d(x, y) ≤ lim

n→∞
inf d(xn, y) ≤ lim

n→∞
sup d(xn, y) ≤ sd(x, y) ∀x ∈ X.

Lemma 1.2 ([9]). Let (X, d) be a b-rectangular metric space and let {xn} be a sequence in X such that

lim
n→∞

d(xn, xn+1) = lim d(xn, xn+2) = 0.

If {xn} is not a Cauchy sequence, then there exist ϵ > 0 and two sequences {mk} and {nk} of positive
integers such that

(i) ϵ ≤ limk→∞ inf d(xm(k)
, xn(k)

) ≤ limk→∞ sup d(xm(k)
, xn(k)

) ≤ sϵ,
(ii) ϵ ≤ limk→∞ inf d(xn(k)

, xm(k)+1
) ≤ limk→∞ sup d(xn(k)

, xm(k)+1
) ≤ sϵ,

(iii) ϵ ≤ limk→∞ inf d(xm(k)
, xn(k)+1

) ≤ limk→∞ sup d(xm(k)
, xn(k)+1

) ≤ sϵ,
(iv) ϵ

s ≤ limk→∞ inf d(xm(k)+1
, xn(k)+1

) ≤ limk→∞ sup d(xm(k)+1
, xn(k)+1

) ≤ s2ϵ.

Definition 1.2 ([16]). Let F be the family of all functions F : R+ → R such that
(i) F is strictly increasing,

(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,

(iii) There exists k ∈]0, 1[ such that limx→0 x
kF (x) = 0.

In 2018, the following result was appeared.

Theorem 1.1 ([15]). Let (X, d, s) be a complete b-metric space and T be a self-map on X. Assume
that there exist τ > 0 and a function F :]0,+∞[→ R satisfying a sequence tn ∈]0,+∞[ such that
τ + F (d(Tx, Ty)) ≤ F (d(x, y)) holds for all x, y ∈ X with Tx ̸= Ty. Then, T has a unique fixed
point.

Recently, Piri and Kuman [12] extended the result of Wardowski [17, Definition 1.6] as fol-
low:

Definition 1.3 ([12]). Let F be the family of all functions F : R+ → R such that
(i) F is strictly increasing,

(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,

(iii) F is continuous.
The following definition introduced by Wardowski [17] will be used to prove our result.

Definition 1.4 ([17]). Let F be the family of functions F : R+ → R and ϕ :]0,+∞[→]0,+∞[ satisfy
the following:

(i) F is strictly increasing,
(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,
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(iii) lim infs→α+ ϕ(s) > 0, ∀s > 0,
(iv) There exists k ∈]0, 1[ such that

lim
x→0+

xkF (x) = 0.

Theorem 1.2 ([17]). Each F -contraction T on a complete metric space (X, d) has a unique fixed point.
Moreover, for each x0 ∈ X, the corresponding Picard sequence {Tnx0} converges to that fixed point.

Recently, Kari and Rossafi [10] gave the following definition.

Definition 1.5 ([10]). Let F be the family of all functions F : R+ → R and ϕ :]0,+∞[→]0,+∞[
satisfy the following:

(i) F is strictly increasing,
(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,

(iii) lim infs→α+ ϕ(s) > 0, ∀s > 0,
(iv) There exists k ∈]0, 1[ such that

lim
x→0+

xkF (x) = 0,

(v) For each sequence αn ∈ R+ of positive numbers such that ϕ(αn) + F (s αn+1) ≤ F (αn) for all
n ∈ N, then ϕ(αn) + F (snαn+1) ≤ F (sn−1αn) for all n ∈ N.

Definition 1.6 ([9]). Let F be the family of all functions F : R+ → R and ϕ : ]0,+∞[ → ]0,+∞[
satisfy the following:

(i) F is strictly increasing,
(ii) For each sequence {xn}n∈N of positive numbers

lim
n→∞

xn = 0 if and only if lim
n→∞

F (xn) = −∞,

(iii) lim infs→α+ ϕ(s) > 0, ∀s > 0,
(iv) F is continuous.

Definition 1.7 ([17]). Let (X, d) be a metric space. A mapping T : X → X is called an (ϕ, F )-
contraction on (X, d), if there exists F ∈ F and ϕ such that

F (d(Tx, Ty) + ϕ(d(x, y)) ≤ F (d(x, y))

for all x, y ∈ X for which Tx ̸= Ty.

In this paper, using the idea introduced by Wardowski [17], we introduce the concept of
(ϕ, F )-Gregus contraction and Gregus type quadratic contraction in b-rectangular metric spaces
and prove some fixed point results for such spaces. Our results are validated by suitable exam-
ples.

2. MAIN RESULT

Now, we introduce the following:

Definition 2.8. Let (X, d) be a b-rectangular metric space with parameter s > 1 space and T : X → X
be a mapping. T is said to be a (ϕ, F )-Gregus contraction if there exist F ∈ F and ϕ ∈ Φ such that

(2.1) d(Tx, Ty) > 0 =⇒ F [s2d(Tx, Ty)] + ϕ(d(x, y)) ≤ F [M(x, y)]

where
M(x, y) = ad(x, y) + (1− a)max {d(x, Tx), d(y, Ty), d(y, Tx)} , 0 ≤ a ≤ 1.
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Example 2.1. Let F (x) = 1− 1
x . Then, it is easy to prove that F (x) is strictly increasing for x > 0 as

xn → 0+, F (xn) = 1 − 1
x → −∞. Also, the function F (x) = 1 − 1

x is continuous for x > 0. Again,
if we choose ϕ(s) = s which satisfies lim infs→α+ ϕ(s) > 0 for all s > 0. Therefore, F (x) = 1 − 1

x
belongs to F. Let T (x) = x

4 . We now compute

M(x, y) = ad(x, y) + (1− a)max {d(x, Tx), d(y, Ty), d(y, Tx)} , 0 ≤ a ≤ 1.

Using the metric d(x, y) = |x− y|, we have d(x, Tx) =
∣∣x− x

4

∣∣ = ∣∣ 3x
4

∣∣ , d(y, Ty) = ∣∣y − y
4

∣∣ = ∣∣ 3y
4

∣∣ ,
d(y, Tx) =

∣∣y − x
4

∣∣ = ∣∣ 4y−x
4

∣∣ . Thus, we can express M(x, y) as:

M(x, y) = a|x− y|+ (1− a)max

{
3x

4
,
3y

4
,
|4y − x|

4

}
.

Now, we have

F [s2d(Tx, Ty)] + ϕ(d(x, y)) = F [
s2

16
|x− y|] + ϕ(|x− y|)

≤ F [s2d(Tx, Ty)] + F [a|x− y|+ (1− a)max

{
3x

4
,
3y

4
,
|4y − x|

4

}
≤ F [M(x, y)].

Thus, all the conditions of Definition 2.8 are satisfied.

Remark 2.1. The above example does not satisfy corresponding Definition presented in [10] and [17].

Now, we present our main result.

Theorem 2.3. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be an (ϕ−F )-
Gregus contraction (F) i.e, there exist F ∈ F and ϕ such that for any x, y ∈ X, satisfying (2.1) then, T
has a unique fixed point.

Proof. Suppose x0 ∈ X be an arbitrary point in X and define a sequence {xn} by xn+1 = Txn =
Tn+1x0, for all n ∈ N. If there exists n0 ∈ N such that d(xn0

, xn0+1) = 0, then proof is finished.
We can suppose that d(xn, xn+1) > 0 for all n ∈ N. Substituting x = xn−1 and y = xn, from
(2.1), for all n ∈ N, we have

(2.2) F [d(xn, xn+1)] ≤ F [s2d(xn, xn+1)] + ϕ(d(xn−1, xn)) ≤ F (M(xn−1, xn)),∀n ∈ N,

where

M(xn−1, xn) = ad(xn−1, xn)

+ (1− a)max{d(xn−1, xn), d(xn−1, xn), d(xn, xn+1), d(xn+1, xn+1)}
= ad(xn−1, xn) + (1− a)max{d(xn−1, xn), d(xn, xn+1)}
= d(xn, xn+1).

If M(xn−1, xn) = d(xn, xn+1), by (2.2), we have
F [d(xn, xn+1)] ≤ F [d(xn, xn+1)] − ϕ(d(xn−1, xn)) < F (d(xn, xn+1)). Since F is increasing, we
have

(2.3) d(xn, xn+1) < d(xn−1, xn)

which is a contradiction. Hence, M(xn−1, xn) = d(xn−1, xn). Thus,

(2.4) F [d(xn, xn+1)] ≤ F [d(xn−1, xn)]− ϕ(d(xn−1, xn)).
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Repeating this step, we conclude that

F (d(xn, xn+1)) ≤ F (d(xn−1, xn))− ϕ(d(xn−1, xn))

≤ F (d(xn−2, xn−1))− ϕ(d(xn−1, xn))− ϕ(d(xn−2, xn−1))

≤ · · · ≤ F (d(x0, x1))−
n∑

i=0

ϕ(d(xi, xi+1)).

Since lim infα→s+ ϕ(α) > 0, we have lim infn→∞ ϕ(d(xn−1, xn)) > 0, then from the definition of
the limit, there exists n0 ∈ N and A > 0 such that for all n ≥ n0, ϕ(q(xn−1, xn)) > A, hence

F (d(xn−1, xn+1)) ≤ F (d(x0, x1))−
n0−1∑
i=0

ϕ(d(xi, xi+1))−
n∑

i=n0−1

ϕ(d(xi, xi+1))

≤ F (d(x0, x1))−
n∑

i=n0−1

A

= F (d(x0, x1))− (n− n0)A(2.5)

for all n ≥ n0. Taking the limit as n → ∞ in the above inequality, we get

(2.6) lim
n→∞

F (d(xn, xn+1)) ≤ lim
n→∞

[F (d(x0, x1))− (n− n0)A],

that is, limn→∞ F (d(xn, xn+1)) = −∞. Then, from the condition (ii) of Definition 1.3, we con-
clude that

(2.7) lim
n→∞

d(xn, xn+1) = 0.

Next, we shall prove that
lim

n→∞
d(xn, xn+2) = 0.

We assume that xn ̸= xm for every n,m ∈ N, n ̸= m. Suppose that xn = xm for some n = m+ k
with k > 0 and using (2.2)

(2.8) d(xm, xm+1) = d(xn, xn+1) < d(xn−1, xn).

Continuing this process, so that d(xm, xn+1) = d(xn, xn+1) < d(xm, xm+1). It is a contradiction.
Therefore, d(xn, xm) > 0 for every n,m ∈ N, n ̸= m. Now, applying (2.1) with x = xn−1 and
y = xn+1, we have

F (d(xn, xn+2)) = F [d(Txn−1, Txn+1)]

≤ F [s2d(Txn−1, Txn+1)]

≤ F (M(xn−1, xn+1))− ϕ(d(xn−1, xn)),(2.9)

where

M(xn−1, xn+1) = ad(xn−1, xn+1)

+ (1− a)max {d(xn−1, xn+1), d(xn−1, xn), d(xn+1, xn+2), d(xn+1, xn)}
= ad(xn−1, xn+1) + (1− a)max{d(xn−1, xn+1), d(xn−1, xn)}
= d(xn−1, xn+1).

So, we get

(2.10) F (d(xn, xn+2) ≤ F (max{d(xn−1, xn), d(xn−1, xn+1)})− ϕ(d(xn−1, xn+1)).

Take an = d(xn, xn+2) and bn = d(xn, xn+1). Thus by (2.10), one can write

(2.11) F (an) ≤ F (max(an−1, bn−1))− ϕ(d(an−1)).



New fixed point theorems for (ϕ, F )-Gregus contraction in b-rectangular metric spaces 47

Since F is increasing, we get

an < max{an−1, bn−1}.

By (2.2), we have

bn ≤ bn−1 ≤ max(an−1, bn−1)

which implies that

max{an, bn} ≤ max{an−1, bn−1}, ∀ n ∈ N.

Therefore, the sequence max{an−1, bn−1}n∈N is non-negative decreasing sequence of real num-
bers. Thus, there exists λ ≥ 0, such that

lim
n→∞

max{an, bn} = λ.

By (2.6) assume that λ > 0, we have

λ = lim
n→∞

sup an = lim
n→∞

supmax{an, bn} = lim
n→∞

max{an, bn}.

Taking the lim supn→∞ in (2.10) and applying the continuity of F and the property of ϕ, we get

F ( lim
n→∞

sup an) ≤ F ( lim
n→∞

supmax{an−1, bn−1})− lim
n→∞

supϕ(an−1)

≤ F ( lim
n→∞

supmax{an−1, bn−1})− lim
n→∞

inf ϕ(an−1)

< F ( lim
n→∞

max{an−1, bn−1}).

Therefore,

F (λ) < F (λ)

which is a contradiction. Hence,

(2.12) lim
n→∞

d(xn, xn+2) = 0.

Next, we shall prove that {xn}n ∈ N is a Cauchy sequence, i.e, limn→∞ d(xn, xm) = 0, for all
n,m ∈ N. Suppose to the contrary. By Lemma 1.2, then there is ϵ > 0 such that for an integer k
there exists two sequences {mk} and {nk} such that

(i) ϵ ≤ limk→∞ inf d(xm(k)
, xn(k)

) ≤ limk→∞ sup d(xm(k)
, xn(k)

) ≤ sϵ,
(ii) ϵ ≤ limk→∞ inf d(xn(k)

, xm(k)+1
) ≤ limk→∞ sup d(xn(k)

, xm(k)+1
) ≤ sϵ,

(iii) ϵ ≤ limk→∞ inf d(xm(k)
, xn(k)+1

) ≤ limk→∞ sup d(xm(k)
, xn(k)+1

) ≤ sϵ,
(iv) ϵ

s ≤ limk→∞ inf d(xm(k)+1
, xn(k)+1

) ≤ limk→∞ sup d(xm(k)+1
, xn(k)+1

) ≤ s2ϵ.

From (2.2) and by setting x = xmk
and y = xnk

, we have,

lim
k→∞

M(xmk
, xnk

) =ad(xmk
, xnk

)

+(1− a)max {d(xmk
, xnk

), d(xmk
, xmk+1), d(xnk

, xnk+1), d(xnk
, xmk+1)}

≤sϵ.(2.13)

Now, using (2.1) with x = xmk
and y = xnk

, we get

(2.14) F [s2d(xmk+1, xnk+1] ≤ F (M(xmk
, xnk

))− ϕ(d(xmk
, xnk

)).
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Letting k → ∞ the above inequality and applying (2.13) and (iv), we get

F (
ϵ

s
s2) = F (ϵs)

≤ F (s2 lim
k→∞

sup d(xmk+1, xnk+1))

= lim
k→∞

supF (s2d(xmk+1, xnk+1))

≤ lim
k→∞

supF (M(xmk
, xnk

)− lim
k→∞

supϕ(d(xmk
, xnk

))

= F (M(xmk
, xnk

))− lim
k→∞

supϕ(d(xmk
, xnk

))

≤ F (M(xmk
, xnk

))− lim
k→∞

inf ϕ(d(xmk
, xnk

))

< F ( lim
k→∞

supM(xmk
, xnk

))

≤ F (sϵ).

Therefore,

F (sϵ) < F (sϵ).

Since F is increasing, we get

sϵ < sϵ

which is a contradiction. So limn,m→∞ d(xm, xn) = 0. Hence, {xn} is a Cauchy sequence in X.
By completeness of (X, d), there exists z ∈ X such that

lim
n→∞

d(xn, z) = 0.

Now, we show that d(Tz, z) = 0 arguing by contradiction, we assume that

d(Tz, z) > 0.

Since xn → z as n → ∞ for all n ∈ N, then from Lemma 1.1 so that

(2.15)
1

s
d(z, Tz) ≤ lim

n→∞
sup d(Txn, T z) ≤ sd(z, Tz).

Now, we are using (2.1) with x = xn and y = z, we have

F (s2d(Txn, T z)) ≤ F (M(xn, z))− ϕ(d(xn, z)),∀ n ∈ N,

where

M(xn, z) = a d(xn, z) + (1− a)max {d(xn, z), d(xn, Txn), d(z, Tz), d(z, Txn)}

and

(2.16) lim
n→∞

supmax {d(xn, z), d(xn, Txn), d(z, Tz), d(z, Txn)} = d(z, Tz).

Therefore,

(2.17) F (s2d(Txn, T z)) ≤ F (max {d(xn, z), d(xn, Txn), d(z, Tz), d(z, Txn)})− ϕ(d(xn, z)).
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By letting n → ∞ in inequality (2.17), using (2.15), (2.16) and continuity of F , we obtain

F (s2
1

s
d(z, Tz)) = F (sd(z, Tz))

≤ F (s2 lim
n→∞

sup d(Txn, T z))

= lim
n→∞

supF (s2d(Txn, T z))

≤ lim
n→∞

supF (M(xn, z))− lim
n→∞

ϕ(d(xn, z))

= F (d(Tz, z))− lim
n→∞

ϕ(d(xn, z))

< F (d(z, Tz)).

Since F is increasing, we get
sd(z, Tz) < d(z, Tz),

which implies that d(z, Tz)(s− 1) < 0 implies s < 1, which is contradiction. Hence, Tz = z.
Therefore, we have

d(z, u) = d(Tz, Tu) > 0.

Applying (2.1) with x = z and y = u, we have

F (d(z, u)) = F (d(Tz, Tu)) ≤ F (s2d(Tz, Tu)) ≤ F (M(z, u))− ϕ(d(z, u)),

where

M(z, u) = a d(z, u) + (1− a)max {d(z, u), d(z, Tz), d(u, Tu), d(u, Tz)}
= d(z, u).

Therefore, we have

F (d(z, u)) ≤ F (d(z, u))− ϕ(d(z, u))

< F (d(z, u))

which implies that d(z, u) < d(z, u), which is a contradiction. Therefore, u = z. □

Now, we introduce a (ϕ, F )-Gregus type quadratic contraction as follows:

Definition 2.9. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be an
(ϕ − F )-Gregus type quadratic type contraction (F), i.e, there exist F ∈ F and ϕ such that for any
x, y ∈ X, we have

(2.18) d(Tx, Ty) > 0 =⇒ F [s2d2(Tx, Ty) + ϕ(d2(x, y))] ≤ F [M(x, y)],

where
M(x, y) = ad2(x, y) + (1− a)max

{
d2(x, Tx), d2(y, Ty), d2(y, Tx)

}
.

Example 2.2. Let X = R+ be a usual metric and T : R+ → R be the function defined by T (x) = x
2 .

Let F (x) = log x and ϕ(x) = 1
x . We need to verify the condition in (2.18). We have d2(Tx, Ty) =

1
4d

2(x, y). Again, we have

M(x, y) = ad2(x, y) + (1− a)max
{
d2(x, y), d2(x, Tx), d2(y, Ty), d2(Tx, y)

}
= a|x− y|2 + (1− a)max

{
1

4
x2,

1

4
y2,

∣∣∣y − x

2

∣∣∣2} .



50 Rakesh Tiwari, Nidhi Sharma and Duran Turkoglu

On the other hand,

F [M(x, y)] = log

(
ad2(x, y) + (1− a)max

{
1

4
x2,

1

4
y2,

∣∣∣y − x

2

∣∣∣2})
≤ F [M(x, y)].

Thus, all the conditions of Definition 2.9 are satisfied. Now, we present our next result.

Theorem 2.4. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be a (ϕ− F )-
Gregus type quadratic (F) contraction. Then, T has a unique fixed point.

Proof. Suppose x0 ∈ X be an arbitrary point in X and define a sequence {xn} by xn+1 = Txn =
Tn+1x0, for all n ∈ N. If there exists n0 ∈ N such that d(xn0

, xn0+1) = 0, then proof is finished.
We can suppose that d(xn, xn+1) > 0 for all n ∈ N. Substituting x = xn−1 and y = xn, from
(2.1), for all n ∈ N, we have

(2.19) F [d2(xn, xn+1)] ≤ F [s2d2(xn, xn+1)] + ϕ(d2(xn−1, xn)) ≤ F (M(xn−1, xn)),

where
M(xn−1, xn) = ad2(xn−1, xn)

+ (1− a)max{d2(xn−1, xn), d
2(xn−1, xn), d

2(xn, xn+1), d
2(xn+1, xn+1)}

= ad2(xn−1, xn) + (1− a)max{d2(xn−1, xn), d
2(xn, xn+1)}

= d2(xn, xn+1).

If M(xn−1, xn) = d2(xn, xn+1), by (2.19), we have
F [d2(xn, xn+1)] ≤ F [d2(xn, xn+1)] − ϕ(d2(xn−1, xn)) < F (d2(xn, xn+1)). Since F is increasing,
we have

(2.20) d2(xn, xn+1) < d2(xn−1, xn)

which is a contradiction. Hence, M(xn−1, xn) = d2(xn−1, xn). Thus,

(2.21) F [d2(xn, xn+1)] ≤ F [d2(xn−1, xn)]− ϕ(d2(xn−1, xn)).

Repeating this step, we conclude that

F (d2(xn, xn+1)) ≤ F (d2(xn−1, xn))− ϕ(d2(xn−1, xn))

≤ F (d2(xn−2, xn−1))− ϕ(d2(xn−1, xn))− ϕ(d2(xn−2, xn−1))

≤ · · · ≤ F (d2(x0, x1))−
n∑

i=0

ϕ(d2(xi, xi+1)).

Since lim infα→s+ ϕ(α) > 0, we have lim infn→∞ ϕ(d2(xn−1, xn)) > 0, then from the definition
of the limit, there exists n0 ∈ N and A > 0 such that for all n ≥ n0, ϕ(q(xn−1, xn)) > A, hence

F (d2(xn−1, xn+1)) ≤ F (d2(x0, x1))−
n0−1∑
i=0

ϕ(d2(xi, xi+1))−
n∑

i=n0−1

ϕ(d2(xi, xi+1))

≤ F (d2(x0, x1))−
n∑

i=n0−1

A

= F (d2(x0, x1))− (n− n0)A

for all n ≥ n0. Taking the limit as n → ∞ in the above inequality, we get

lim
n→∞

F (d2(xn, xn+1)) ≤ lim
n→∞

[F (d2(x0, x1))− (n− n0)A],
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that is, limn→∞ F (d2(xn, xn+1)) = −∞, then from the condition (ii) of Definition 1.3, we con-
clude that

(2.22) lim
n→∞

d2(xn, xn+1) = 0.

Next, we shall prove that
lim
n→∞

d2(xn, xn+2) = 0.

We assume that xn ̸= xm for every n,m ∈ N, n ̸= m. Indeed, suppose that xn = xm for some
n = m+ k with k > 0 and using (2.2)

(2.23) d2(xm, xm+1) = d2(xn, xn+1) < d2(xn−1, xn).

Continuing this process, we can that d2(xm, xn+1) = d2(xn, xn+1) < d2(xm, xm+1) which is a
contradiction. Therefore, d2(xn, xm) > 0 for every n,m ∈ N, n ̸= m. Now, applying (2.1) with
x = xn−1 and y = xn+1, we have

F (d2(xn, xn+2)) = F [d2(Txn−1, Txn+1)]

≤ F [s2d2(Txn−1, Txn+1)]

≤ F (M(xn−1, xn+1))− ϕ(d2(xn−1, xn)),

where

M(xn−1, xn+1) = ad2(xn−1, xn+1)

+ (1− a)max
{
d2(xn−1, xn+1), d

2(xn−1, xn), d
2(xn+1, xn+2), d

2(xn+1, xn)
}

= ad2(xn−1, xn+1) + (1− a)max{d2(xn−1, xn+1), d
2(xn−1, xn)}

= d2(xn−1, xn+1).

So, we get

(2.24) F (d2(xn, xn+2)) ≤ F (max{d2(xn−1, xn), d
2(xn−1, xn+1)})− ϕ(d2(xn−1, xn+1))

Suppose an = d2(xn, xn+2) and bn = d2(xn, xn+1). Thus, by (2.24), one can write

(2.25) F (an) ≤ F (max{an−1, bn−1)} − ϕ(d2(an−1)).

Since F is increasing, we get
an < max{an−1, bn−1}.

By (2.2), we have
bn ≤ bn−1 ≤ max{an−1, bn−1}

which implies that
max{an, bn} ≤ max{an−1, bn−1}, ∀n ∈ N.

Therefore, the sequence max{an−1, bn−1}n∈N is decreasing sequence of real non-negative num-
bers. Thus, there exists λ ≥ 0 such that

lim
n→∞

max{an, bn} = λ.

By (2.6), assume that λ > 0, we have

λ = lim
n→∞

sup an = lim
n→∞

supmax{an, bn} = lim
n→∞

max{an, bn}.
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Taking the lim supn→∞ in (2.24) and applying the continuity of F and the property of ϕ, we get

F ( lim
n→∞

sup an) ≤ F ( lim
n→∞

supmax{an−1, bn−1})− lim
n→∞

supϕ(an−1)

≤ F ( lim
n→∞

supmax{an−1, bn−1})− lim
n→∞

inf ϕ(an−1)

< F ( lim
n→∞

max{an−1, bn−1}).

Therefore, F (λ) < F (λ), which is a contradiction. Hence,

(2.26) lim
n→∞

d2(xn, xn+2) = 0.

Next, we shall prove that {xn}n ∈ N is a Cauchy sequence.

lim
k→∞

M(xmk
, xnk

) = ad2(xmk
, xnk

)

+ (1− a)max
{
d2(xmk

, xnk
), d2(xmk

, xmk+1), d
2(xnk

, xnk+1), d
2(xnk

, xmk+1)
}

≤ sϵ.(2.27)

Now, applying (2.1) with x = xmk
and y = xnk

, we get

(2.28) F [s2d2(xmk+1, xnk+1] ≤ F (M(xmk
, xnk

))− ϕ(d2(xmk
, xnk

)).

Letting k → ∞ the above inequality and using (2.26) and (iv), we obtain

F (
ϵ

s
s2) = F (ϵs)

≤ F (s2 lim
k→∞

sup d2(xmk+1, xnk+1))

= lim
k→∞

supF (s2d(xmk+1, xnk+1))

≤ lim
k→∞

supF (M(xmk
, xnk

)− lim
k→∞

supϕ(d2(xmk
, xnk

))

= F (M(xmk
, xnk

))− lim
k→∞

supϕ(d2(xmk
, xnk

))

≤ F (M(xmk
, xnk

))− lim
k→∞

inf ϕ(d2(xmk
, xnk

))

< F ( lim
k→∞

supM(xmk
, xnk

))

≤ F (sϵ).

Therefore, F (sϵ) < F (sϵ). Since F is increasing, we get sϵ < sϵ which is a contradiction. Then,

lim
n,m→∞

d2(xm, xn) = 0.

Hence, {xn} is a Cauchy sequence in X. By completeness of (X, d) there exists z ∈ X such that

lim
n→∞

d2(xn, z) = 0.

Now, we show that d2(Tz, z) = 0 arguing by contradiction, assume that

d2(Tz, z) > 0.

Since xn → z as n → ∞ for all n ∈ N, then from Lemma 1.2, we conclude that d2(xn, xm) = 0,
for all n,m ∈ N. Suppose to the contrary. By Lemma 1.2, then there is ϵ > 0 such that for an
integer k there exists two sequences {mk} and {nk} such that

(i) ϵ ≤ limk→∞ inf d2(xm(k)
, xn(k)

) ≤ limk→∞ sup d2(xm(k)
, xn(k)

) ≤ sϵ,
(ii) ϵ ≤ limk→∞ inf d2(xn(k)

, xm(k)+1
) ≤ limk→∞ sup d2(xn(k)

, xm(k)+1
) ≤ sϵ,

(iii) ϵ ≤ limk→∞ inf d2(xm(k)
, xn(k)+1

) ≤ limk→∞ sup d2(xm(k)
, xn(k)+1

) ≤ sϵ,
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(iv) ϵ
s ≤ limk→∞ inf d2(xm(k)+1

, xn(k)+1
) ≤ limk→∞ sup d2(xm(k)+1

, xn(k)+1
) ≤ s2ϵ.

From (2.1) and by setting x = xmk
and y = xnk

, we have

lim
k→∞

M(xmk
, xnk

) = ad2(xmk
, xnk

)

+ (1− a)max
{
d2(xmk

, xnk
), d2(xmk

, xmk+1), d
2(xnk

, xnk+1), d
2(xnk

, xmk+1)
}

≤ sϵ.(2.29)

Now, applying (2.1) with x = xmk
and y = xnk

, we get

(2.30) F [s2d2(xmk+1, xnk+1] ≤ F (M(xmk
, xnk

))− ϕ(d2(xmk
, xnk

)).

Letting k → ∞ the above inequality and using (2.27) and (iv), we get

F (
ϵ

s
s2) = F (ϵs)

≤ F (s2 lim
k→∞

sup d2(xmk+1, xnk+1))

= lim
k→∞

supF (s2d(xmk+1, xnk+1))

≤ lim
k→∞

supF (M(xmk
, xnk

)− lim
k→∞

supϕ(d2(xmk
, xnk

))

= F (M(xmk
, xnk

))− lim
k→∞

supϕ(d2(xmk
, xnk

))

≤ F (M(xmk
, xnk

))− lim
k→∞

inf ϕ(d2(xmk
, xnk

))

< F ( lim
k→∞

supM(xmk
, xnk

))

≤ F (sϵ).

Therefore,
F (sϵ) < F (sϵ).

Since F is increasing, we get
sϵ < sϵ

which is a contradiction. Then
lim

n,m→∞
d2(xm, xn) = 0.

Hence, {xn} is a Cauchy sequence in X. By completeness of (X, d) there exists z ∈ X such that

lim
n→∞

d2(xn, z) = 0.

Now, we show that d2(Tz, z) = 0 arguing by contradiction, we assume that

d2(Tz, z) > 0.

Since xn → z as n → ∞ for all n ∈ N, then from Lemma 1.1, we conclude that

(2.31)
1

s
d2(z, Tz) ≤ lim

n→∞
sup d2(Txn, T z) ≤ s d2(z, Tz).

Now, we applying (2.1) with x = xn and y = z, we have

F (s2d2(Txn, T z)) ≤ F (M(xn, z))− ϕ(d2(xn, z)),∀n ∈ N,

where

M(xn, z) = a d2(xn, z) + (1− a)max
{
d2(xn, z), d

2(xn, Txn), d
2(z, Tz), d2(z, Txn)

}
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and

(2.32) lim
n→∞

supmax
{
d2(xn, z), d

2(xn, Txn), d
2(z, Tz), d2(z, Txn)

}
= d2(z, Tz).

Therefore,
(2.33)

F (s2d2(Txn, T z)) ≤ F (max
{
d2(xn, z), d

2(xn, Txn), d
2(z, Tz), d2(z, Txn)

}
)− ϕ(d2(xn, z)).

By letting n → ∞ in inequality (2.33), using (2.32), (2.31) and continuity of F , we obtain

F [s2
1

s
d2(z, Tz)] = F [sd2(z, Tz)]

≤ F [s2 lim
n→∞

sup d2(Txn, T z)]

= lim
n→∞

supF [s2d2(Txn, T z)]

≤ lim
n→∞

supF (M(xn, z))− lim
n→∞

ϕ(d2(xn, z))

= F (d2(Tz, z))− lim
n→∞

ϕ(d2(xn, z))

< F (d2(z, Tz)).

Since F is increasing, we get
s d2(z, Tz) < d2(z, Tz)

which implies that
d2(z, Tz)(s− 1) < 0 implies s < 1

which is contradiction. Hence, Tz = z.
Therefore,

d2(z, u) = d2(Tz, Tu) > 0.

Applying (2.2) with x = z and y = u, we have

F (d2(z, u)) = F (d2((Tz, Tu))) ≤ F (s2d2(Tz, Tu)) ≤ F (M(z, u))− ϕ(d2(z, u)),

where

M(z, u) = ad2(z, u) + (1− a)max
{
d2(z, u), d2(z, Tz), d2(u, Tu), d2(u, Tz)

}
= d2(z, u).

We have

F (d2(z, u)) ≤ F (d2(z, u))− ϕ(d2(z, u))

< F (d2(z, u))

which implies that
d2(z, u) < d2(z, u)

which is a contradiction. Hence, u = z. □

Corollary 2.1. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be given
mapping. Suppose that there exist F ∈ F and τ ∈]0,∞[ such that for any x, y ∈ X, we have

d2(Tx, Ty) > 0 =⇒ F [s2d2(Tx, Ty)] + τ ≤ [F (M(x, y))],

where

M(x, y) = a d2(x, y) + (1− a)max
{
d2(x, y), d2(x, Tx), d2(y, Ty), d2(Tx, y)

}
.

T has a unique fixed point.
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If we take a = 0 we have the following result.

Corollary 2.2. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be given
mapping. Suppose that there exist F ∈ F and τ ∈]0,∞[ such that for any x, y ∈ X, we have

d2(Tx, Ty) > 0 =⇒ F [s2d2(Tx, Ty)] + τ ≤ [F (M(x, y))],

where

M(x, y) = (1− a)max
{
d2(x, y), d2(x, Tx), d2(y, Ty), d2(Tx, y)

}
.

T has a unique fixed point.

For a = 1 we have the following:

Corollary 2.3. Suppose (X, d) be a complete b-rectangular metric space and T : X → X be given
mapping. Suppose that there exist F ∈ F and τ ∈]0,∞[ such that for any x, y ∈ X, we have

d2(Tx, Ty) > 0 =⇒ F [s2d2(Tx, Ty)] + τ ≤ [F (M(x, y))],

where

M(x, y) = a d2(x, y).

T has a unique fixed point.
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