MODERN MATHEMATICAL METHODS 3 (2025), No. 1, pp. 42-56 https://modernmathmeth.com/ ISSN 3023 - 5294

Research Article

New fixed point theorems for (ϕ, F) -Gregus contraction in b-rectangular metric spaces

RAKESH TIWARI®, NIDHI SHARMA®, AND DURAN TURKOGLU*®

ABSTRACT. In this paper, we introduce the notion of (ϕ, F) -Gregus contraction and (ϕ, F) -Gregus type quadratic contraction in b-rectangular metric spaces. Further, we study the existence and uniqueness of fixed point for these mappings in this spaces. Our results are legitimately validated by illustrative examples.

Keywords: Fixed point, b-metric space, b-rectangular metric spaces, (ϕ, F) -Gregus contraction, (ϕ, F) -Gregus type quadratic contraction.

2020 Mathematics Subject Classification: 47H10, 54H25.

1. INTRODUCTION

Banach contraction principle is one of the earlier and main results in fixed point theory. Banach contraction principle [1] was proved in complete metric spaces. Many generalizations of the concept of metric spaces are defined and some fixed point theorems were proved in these spaces. In particular, b-metric spaces were introduced by Bakhtin [2] and Czerwik [4], in such a way that triangle inequality is replaced by the b-triangle inequality. Various mathematician considered a lot of interesting extensions and generalizations [3, 6, 14]. Piri and Kumam [12] introduced new type of contractions called F-contraction and F-weak contraction and proved new fixed point theorems concerning F-contractions. Very recently, Kari et al. [7] introduced the notion of $(\theta - \phi)$ -contraction in these metric spaces and proved a fixed point theorem.

Definition 1.1 ([5]). Let X be a nonempty set $s \ge 1$ be a given real number and let $d : X \times X \rightarrow [0, +\infty[$ be a mapping such that for all $x, y \in X$ and all distinct points $u, v \in X$ each distinct from x and y:

(i) d(x, y) = 0 if only if x = y, (ii) d(x, y) = d(y, x), (iii) d(x, y) = d(y, x),

(iii) $d(x,y) \leq s[d(x,u) + d(u,v) + d(v,y)]$ (b-rectangular inequality).

Then, (X, d) *is called a b-rectangular metric space.*

In 1971, S. Reich [14] presented the following lemma to establish some remarks concerning contraction mappings

Lemma 1.1 ([14]). *Let* (*X*, *d*) *be a b-rectangular metric space.*

Received: 23.08.2024; Accepted: 09.04.2025; Published Online: 15.04.2025

^{*}Corresponding author: Duran Turkoglu; dturkoglu@gazi.edu.tr

(i) Suppose that sequences $\{x_n\}$ and $\{y_n\} \in X$ are such that $x_n \to x$ and $y_n \to y$ as $n \to \infty$, with $x \neq y, x_n \neq x$ and $y_n \neq y$ for all $n \in \mathbb{N}$. Then, we have

$$\frac{1}{s}d(x,y) \le \lim_{n \to \infty} \inf \ d(x_n,y_n) \le \lim_{n \to \infty} \sup d(x_n,y_n) \le sd(x,y).$$

(ii) If $y \in X$ and $\{x_n\}$ is a Cauchy sequence in X with $x_n \neq x_m$ for any $m, n \in \mathbb{N}, m \neq n$, converging to $x \neq y$, then

$$\frac{1}{s}d(x,y) \le \lim_{n \to \infty} \inf d(x_n,y) \le \lim_{n \to \infty} \sup d(x_n,y) \le sd(x,y) \quad \forall x \in X$$

Lemma 1.2 ([9]). Let (X, d) be a b-rectangular metric space and let $\{x_n\}$ be a sequence in X such that

$$\lim_{n \to \infty} d(x_n, x_{n+1}) = \lim d(x_n, x_{n+2}) = 0.$$

If $\{x_n\}$ *is not a Cauchy sequence, then there exist* $\epsilon > 0$ *and two sequences* $\{m_k\}$ *and* $\{n_k\}$ *of positive integers such that*

- (i) $\epsilon \leq \lim_{k \to \infty} \inf d(x_{m_{(k)}}, x_{n_{(k)}}) \leq \lim_{k \to \infty} \sup d(x_{m_{(k)}}, x_{n_{(k)}}) \leq s\epsilon$,
- (ii) $\epsilon \leq \lim_{k \to \infty} \inf d(x_{n_{(k)}}, x_{m_{(k)+1}}) \leq \lim_{k \to \infty} \sup d(x_{n_{(k)}}, x_{m_{(k)+1}}) \leq s\epsilon$,

 $(iii) \ \epsilon \le \lim_{k \to \infty} \inf d(x_{m_{(k)}}, x_{n_{(k)+1}}) \le \lim_{k \to \infty} \sup d(x_{m_{(k)}}, x_{n_{(k)+1}}) \le s\epsilon,$

 $(iv) \quad \frac{\epsilon}{s} \le \lim_{k \to \infty} \inf d(x_{m_{(k)+1}}, x_{n_{(k)+1}}) \le \lim_{k \to \infty} \sup d(x_{m_{(k)+1}}, x_{n_{(k)+1}}) \le s^2 \epsilon.$

Definition 1.2 ([16]). Let *F* be the family of all functions $F : \mathbb{R}^+ \to \mathbb{R}$ such that

(i) F is strictly increasing,

(ii) For each sequence $\{x_n\}_{n \in \mathbb{N}}$ of positive numbers

$$\lim_{n \to \infty} x_n = 0 \text{ if and only if } \lim_{n \to \infty} F(x_n) = -\infty,$$

(iii) There exists $k \in]0, 1[$ such that $\lim_{x\to 0} x^k F(x) = 0.$

In 2018, the following result was appeared.

Theorem 1.1 ([15]). Let (X, d, s) be a complete b-metric space and T be a self-map on X. Assume that there exist $\tau > 0$ and a function $F :]0, +\infty[\rightarrow \mathbb{R}$ satisfying a sequence $t_n \in]0, +\infty[$ such that $\tau + F(d(Tx, Ty)) \leq F(d(x, y))$ holds for all $x, y \in X$ with $Tx \neq Ty$. Then, T has a unique fixed point.

Recently, Piri and Kuman [12] extended the result of Wardowski [17, Definition 1.6] as follow:

Definition 1.3 ([12]). Let F be the family of all functions $F : \mathbb{R}^+ \to \mathbb{R}$ such that

- (*i*) *F* is strictly increasing,
- (ii) For each sequence $\{x_n\}_{n \in \mathbb{N}}$ of positive numbers

 $\lim_{n \to \infty} x_n = 0 \text{ if and only if } \lim_{n \to \infty} F(x_n) = -\infty,$

(iii) F is continuous.

The following definition introduced by Wardowski [17] will be used to prove our result.

Definition 1.4 ([17]). *Let F* be the family of functions $F : \mathbb{R}^+ \to \mathbb{R}$ and $\phi :]0, +\infty[\to]0, +\infty[$ satisfy *the following:*

- (*i*) *F* is strictly increasing,
- (ii) For each sequence $\{x_n\}_{n\in\mathbb{N}}$ of positive numbers

$$\lim_{n \to \infty} x_n = 0 \text{ if and only if } \lim_{n \to \infty} F(x_n) = -\infty,$$

(iii) $\liminf_{s\to\alpha^+} \phi(s) > 0, \ \forall s > 0$,

(iv) There exists $k \in]0, 1[$ such that

$$\lim_{x \to 0^+} x^k F(x) = 0$$

Theorem 1.2 ([17]). Each *F*-contraction *T* on a complete metric space (X, d) has a unique fixed point. Moreover, for each $x_0 \in X$, the corresponding Picard sequence $\{T^n x_0\}$ converges to that fixed point.

Recently, Kari and Rossafi [10] gave the following definition.

Definition 1.5 ([10]). Let F be the family of all functions $F : \mathbb{R}^+ \to \mathbb{R}$ and $\phi :]0, +\infty[\to]0, +\infty[$ satisfy the following:

- *(i) F is strictly increasing,*
- (*ii*) For each sequence $\{x_n\}_{n \in \mathbb{N}}$ of positive numbers

$$\lim_{n \to \infty} x_n = 0 \text{ if and only if } \lim_{n \to \infty} F(x_n) = -\infty,$$

- (iii) $\liminf_{s \to \alpha^+} \phi(s) > 0, \forall s > 0$,
- (iv) There exists $k \in]0, 1[$ such that

$$\lim_{x \to 0^+} x^k F(x) = 0$$

(v) For each sequence $\alpha_n \in \mathbb{R}^+$ of positive numbers such that $\phi(\alpha_n) + F(s \alpha_{n+1}) \leq F(\alpha_n)$ for all $n \in \mathbb{N}$, then $\phi(\alpha_n) + F(s^n \alpha_{n+1}) \leq F(s^{n-1} \alpha_n)$ for all $n \in \mathbb{N}$.

Definition 1.6 ([9]). Let \mathfrak{F} be the family of all functions $F : \mathbb{R}^+ \to \mathbb{R}$ and $\phi :]0, +\infty[\to]0, +\infty[$ satisfy the following:

- *(i) F is strictly increasing,*
- (ii) For each sequence $\{x_n\}_{n \in \mathbb{N}}$ of positive numbers

 $\lim_{n \to \infty} x_n = 0 \text{ if and only if } \lim_{n \to \infty} F(x_n) = -\infty,$

(iii) $\liminf_{s\to\alpha^+} \phi(s) > 0, \forall s > 0,$ (iv) F is continuous.

Definition 1.7 ([17]). Let (X, d) be a metric space. A mapping $T : X \to X$ is called an (ϕ, F) contraction on (X, d), if there exists $F \in \mathbb{F}$ and ϕ such that

$$F(d(Tx, Ty) + \phi(d(x, y)) \le F(d(x, y))$$

for all $x, y \in X$ for which $Tx \neq Ty$.

In this paper, using the idea introduced by Wardowski [17], we introduce the concept of (ϕ, F) -Gregus contraction and Gregus type quadratic contraction in b-rectangular metric spaces and prove some fixed point results for such spaces. Our results are validated by suitable examples.

2. MAIN RESULT

Now, we introduce the following:

Definition 2.8. Let (X, d) be a b-rectangular metric space with parameter s > 1 space and $T : X \to X$ be a mapping. T is said to be a (ϕ, F) -Gregus contraction if there exist $F \in \mathfrak{F}$ and $\phi \in \Phi$ such that

(2.1)
$$d(Tx,Ty) > 0 \implies F[s^2d(Tx,Ty)] + \phi(d(x,y)) \le F[M(x,y)]$$

where

$$M(x,y) = ad(x,y) + (1-a) \max \{ d(x,Tx), d(y,Ty), d(y,Tx) \}, 0 \le a \le 1.$$

Example 2.1. Let $F(x) = 1 - \frac{1}{x}$. Then, it is easy to prove that F(x) is strictly increasing for x > 0 as $x_n \to 0^+, F(x_n) = 1 - \frac{1}{x} \to -\infty$. Also, the function $F(x) = 1 - \frac{1}{x}$ is continuous for x > 0. Again, if we choose $\phi(s) = s$ which satisfies $\liminf_{s \to \alpha+} \phi(s) > 0$ for all s > 0. Therefore, $F(x) = 1 - \frac{1}{x}$ belongs to \mathfrak{F} . Let $T(x) = \frac{x}{4}$. We now compute

$$M(x,y) = ad(x,y) + (1-a) \max \left\{ d(x,Tx), d(y,Ty), d(y,Tx) \right\}, 0 \le a \le 1$$

Using the metric d(x,y) = |x-y|, we have $d(x,Tx) = |x-\frac{x}{4}| = \left|\frac{3x}{4}\right|$, $d(y,Ty) = \left|y-\frac{y}{4}\right| = \left|\frac{3y}{4}\right|$, $d(y,Tx) = \left|y-\frac{x}{4}\right| = \left|\frac{4y-x}{4}\right|$. Thus, we can express M(x,y) as:

$$M(x,y) = a|x-y| + (1-a)\max\left\{\frac{3x}{4}, \frac{3y}{4}, \frac{|4y-x|}{4}\right\}.$$

Now, we have

$$F[s^{2}d(Tx,Ty)] + \phi(d(x,y)) = F[\frac{s^{2}}{16}|x-y|] + \phi(|x-y|)$$

$$\leq F[s^{2}d(Tx,Ty)] + F[a|x-y| + (1-a)\max\left\{\frac{3x}{4},\frac{3y}{4},\frac{|4y-x|}{4}\right\}$$

$$\leq F[M(x,y)].$$

Thus, all the conditions of Definition 2.8 are satisfied.

Remark 2.1. The above example does not satisfy corresponding Definition presented in [10] and [17].

Now, we present our main result.

Theorem 2.3. Suppose (X, d) be a complete b-rectangular metric space and $T : X \to X$ be an $(\phi - F)$ -Gregus contraction (\mathfrak{F}) i.e, there exist $F \in \mathfrak{F}$ and ϕ such that for any $x, y \in X$, satisfying (2.1) then, T has a unique fixed point.

Proof. Suppose $x_0 \in X$ be an arbitrary point in X and define a sequence $\{x_n\}$ by $x_{n+1} = Tx_n = T^{n+1}x_0$, for all $n \in \mathbb{N}$. If there exists $n_0 \in \mathbb{N}$ such that $d(x_{n_0}, x_{n_0+1}) = 0$, then proof is finished. We can suppose that $d(x_n, x_{n+1}) > 0$ for all $n \in \mathbb{N}$. Substituting $x = x_{n-1}$ and $y = x_n$, from (2.1), for all $n \in \mathbb{N}$, we have

$$(2.2) F[d(x_n, x_{n+1})] \le F[s^2 d(x_n, x_{n+1})] + \phi(d(x_{n-1}, x_n)) \le F(M(x_{n-1}, x_n)), \forall n \in \mathbb{N},$$

where

$$M(x_{n-1}, x_n) = ad(x_{n-1}, x_n) + (1-a) \max\{d(x_{n-1}, x_n), d(x_{n-1}, x_n), d(x_n, x_{n+1}), d(x_{n+1}, x_{n+1})\} = ad(x_{n-1}, x_n) + (1-a) \max\{d(x_{n-1}, x_n), d(x_n, x_{n+1})\} = d(x_n, x_{n+1}).$$

If $M(x_{n-1}, x_n) = d(x_n, x_{n+1})$, by (2.2), we have $F[d(x_n, x_{n+1})] \le F[d(x_n, x_{n+1})] - \phi(d(x_{n-1}, x_n)) < F(d(x_n, x_{n+1}))$. Since F is increasing, we have

(2.3)
$$d(x_n, x_{n+1}) < d(x_{n-1}, x_n)$$

which is a contradiction. Hence, $M(x_{n-1}, x_n) = d(x_{n-1}, x_n)$. Thus,

(2.4)
$$F[d(x_n, x_{n+1})] \le F[d(x_{n-1}, x_n)] - \phi(d(x_{n-1}, x_n)).$$

Repeating this step, we conclude that

$$F(d(x_n, x_{n+1})) \leq F(d(x_{n-1}, x_n)) - \phi(d(x_{n-1}, x_n))$$

$$\leq F(d(x_{n-2}, x_{n-1})) - \phi(d(x_{n-1}, x_n)) - \phi(d(x_{n-2}, x_{n-1}))$$

$$\leq \dots \leq F(d(x_0, x_1)) - \sum_{i=0}^n \phi(d(x_i, x_{i+1})).$$

Since $\liminf_{\alpha \to s^+} \phi(\alpha) > 0$, we have $\liminf_{n \to \infty} \phi(d(x_{n-1}, x_n)) > 0$, then from the definition of the limit, there exists $n_0 \in \mathbb{N}$ and A > 0 such that for all $n \ge n_0$, $\phi(q(x_{n-1}, x_n)) > A$, hence

$$F(d(x_{n-1}, x_{n+1})) \le F(d(x_0, x_1)) - \sum_{i=0}^{n_0-1} \phi(d(x_i, x_{i+1})) - \sum_{i=n_0-1}^n \phi(d(x_i, x_{i+1}))$$
$$\le F(d(x_0, x_1)) - \sum_{i=n_0-1}^n A$$
$$= F(d(x_0, x_1)) - (n - n_0)A$$

$$(a(a)) = (a(a)) + ($$

for all $n \ge n_0$. Taking the limit as $n \to \infty$ in the above inequality, we get

(2.6)
$$\lim_{n \to \infty} F(d(x_n, x_{n+1})) \le \lim_{n \to \infty} [F(d(x_0, x_1)) - (n - n_0)A],$$

that is, $\lim_{n\to\infty} F(d(x_n, x_{n+1})) = -\infty$. Then, from the condition (ii) of Definition 1.3, we conclude that

(2.7)
$$\lim_{n \to \infty} d(x_n, x_{n+1}) = 0.$$

Next, we shall prove that

$$\lim_{n \to \infty} d(x_n, x_{n+2}) = 0.$$

We assume that $x_n \neq x_m$ for every $n, m \in \mathbb{N}, n \neq m$. Suppose that $x_n = x_m$ for some n = m + k with k > 0 and using (2.2)

(2.8)
$$d(x_m, x_{m+1}) = d(x_n, x_{n+1}) < d(x_{n-1}, x_n).$$

Continuing this process, so that $d(x_m, x_{n+1}) = d(x_n, x_{n+1}) < d(x_m, x_{m+1})$. It is a contradiction. Therefore, $d(x_n, x_m) > 0$ for every $n, m \in \mathbb{N}, n \neq m$. Now, applying (2.1) with $x = x_{n-1}$ and $y = x_{n+1}$, we have

$$F(d(x_n, x_{n+2})) = F[d(Tx_{n-1}, Tx_{n+1})]$$

$$\leq F[s^2 d(Tx_{n-1}, Tx_{n+1})]$$

$$\leq F(M(x_{n-1}, x_{n+1})) - \phi(d(x_{n-1}, x_n)),$$

(2.9) where

$$\begin{aligned} M(x_{n-1}, x_{n+1}) &= ad(x_{n-1}, x_{n+1}) \\ &+ (1-a) \max \left\{ d(x_{n-1}, x_{n+1}), d(x_{n-1}, x_n), d(x_{n+1}, x_{n+2}), d(x_{n+1}, x_n) \right\} \\ &= ad(x_{n-1}, x_{n+1}) + (1-a) \max \left\{ d(x_{n-1}, x_{n+1}), d(x_{n-1}, x_n) \right\} \\ &= d(x_{n-1}, x_{n+1}). \end{aligned}$$

So, we get

$$(2.10) F(d(x_n, x_{n+2}) \le F(\max\{d(x_{n-1}, x_n), d(x_{n-1}, x_{n+1})\}) - \phi(d(x_{n-1}, x_{n+1})).$$

Take $a_n = d(x_n, x_{n+2})$ and $b_n = d(x_n, x_{n+1})$. Thus by (2.10), one can write
(2.11) F(a_n) \le F(\max(a_{n-1}, b_{n-1})) - \phi(d(a_{n-1})).

(2.5)

Since F is increasing, we get

$$a_n < \max\{a_{n-1}, b_{n-1}\}$$

By (2.2), we have

$$b_n \le b_{n-1} \le \max(a_{n-1}, b_{n-1})$$

which implies that

$$\max\{a_n, b_n\} \le \max\{a_{n-1}, b_{n-1}\}, \ \forall n \in \mathbb{N}.$$

Therefore, the sequence $\max\{a_{n-1}, b_{n-1}\}_{n \in \mathbb{N}}$ is non-negative decreasing sequence of real numbers. Thus, there exists $\lambda \ge 0$, such that

$$\lim_{n \to \infty} \max\{a_n, b_n\} = \lambda.$$

By (2.6) assume that $\lambda > 0$, we have

$$\lambda = \lim_{n \to \infty} \sup a_n = \lim_{n \to \infty} \sup \max\{a_n, b_n\} = \lim_{n \to \infty} \max\{a_n, b_n\}.$$

Taking the $\limsup_{n\to\infty}$ in (2.10) and applying the continuity of *F* and the property of ϕ , we get

$$F(\lim_{n \to \infty} \sup a_n) \leq F(\lim_{n \to \infty} \sup \max\{a_{n-1}, b_{n-1}\}) - \lim_{n \to \infty} \sup \phi(a_{n-1})$$
$$\leq F(\lim_{n \to \infty} \sup \max\{a_{n-1}, b_{n-1}\}) - \lim_{n \to \infty} \inf \phi(a_{n-1})$$
$$< F(\lim_{n \to \infty} \max\{a_{n-1}, b_{n-1}\}).$$

Therefore,

$$F(\lambda) < F(\lambda)$$

which is a contradiction. Hence,

(2.12)
$$\lim_{n \to \infty} d(x_n, x_{n+2}) = 0.$$

Next, we shall prove that $\{x_n\}_n \in \mathbb{N}$ is a Cauchy sequence, i.e, $\lim_{n\to\infty} d(x_n, x_m) = 0$, for all $n, m \in \mathbb{N}$. Suppose to the contrary. By Lemma 1.2, then there is $\epsilon > 0$ such that for an integer k there exists two sequences $\{m_k\}$ and $\{n_k\}$ such that

(i) $\epsilon \leq \lim_{k \to \infty} \inf d(x_{m_{(k)}}, x_{n_{(k)}}) \leq \lim_{k \to \infty} \sup d(x_{m_{(k)}}, x_{n_{(k)}}) \leq s\epsilon,$ (ii) $\epsilon \leq \lim_{k \to \infty} \inf d(x_{n_{(k)}}, x_{m_{(k)+1}}) \leq \lim_{k \to \infty} \sup d(x_{n_{(k)}}, x_{m_{(k)+1}}) \leq s\epsilon,$ (iii) $\epsilon \leq \lim_{k \to \infty} \inf d(x_{m_{(k)}}, x_{n_{(k)+1}}) \leq \lim_{k \to \infty} \sup d(x_{m_{(k)}}, x_{n_{(k)+1}}) \leq s\epsilon,$ (iv) $\frac{\epsilon}{s} \leq \lim_{k \to \infty} \inf d(x_{m_{(k)+1}}, x_{n_{(k)+1}}) \leq \lim_{k \to \infty} \sup d(x_{m_{(k)+1}}, x_{n_{(k)+1}}) \leq s^2\epsilon.$

From (2.2) and by setting $x = x_{m_k}$ and $y = x_{n_k}$, we have,

$$\lim_{k \to \infty} M(x_{m_k}, x_{n_k}) = ad(x_{m_k}, x_{n_k}) + (1 - a) \max \{ d(x_{m_k}, x_{n_k}), d(x_{m_k}, x_{m_k+1}), d(x_{n_k}, x_{n_k+1}), d(x_{n_k}, x_{m_k+1}) \}$$
(2.13)
$$\leq s\epsilon.$$

Now, using (2.1) with $x = x_{m_k}$ and $y = x_{n_k}$, we get

(2.14)
$$F[s^2d(x_{m_k+1}, x_{n_k+1}] \le F(M(x_{m_k}, x_{n_k})) - \phi(d(x_{m_k}, x_{n_k})).$$

Letting $k \to \infty$ the above inequality and applying (2.13) and (iv), we get

$$F(\frac{\epsilon}{s}s^{2}) = F(\epsilon s)$$

$$\leq F(s^{2} \lim_{k \to \infty} \sup d(x_{m_{k}+1}, x_{n_{k}+1}))$$

$$= \lim_{k \to \infty} \sup F(s^{2}d(x_{m_{k}+1}, x_{n_{k}+1}))$$

$$\leq \lim_{k \to \infty} \sup F(M(x_{m_{k}}, x_{n_{k}}) - \lim_{k \to \infty} \sup \phi(d(x_{m_{k}}, x_{n_{k}})))$$

$$= F(M(x_{m_{k}}, x_{n_{k}})) - \lim_{k \to \infty} \sup \phi(d(x_{m_{k}}, x_{n_{k}})))$$

$$\leq F(M(x_{m_{k}}, x_{n_{k}})) - \lim_{k \to \infty} \inf \phi(d(x_{m_{k}}, x_{n_{k}})))$$

$$< F(\lim_{k \to \infty} \sup M(x_{m_{k}}, x_{n_{k}})))$$

$$\leq F(s\epsilon).$$

Therefore,

$$F(s\epsilon) < F(s\epsilon).$$

Since F is increasing, we get

 $s\epsilon < s\epsilon$

which is a contradiction. So $\lim_{n,m\to\infty} d(x_m, x_n) = 0$. Hence, $\{x_n\}$ is a Cauchy sequence in X. By completeness of (X, d), there exists $z \in X$ such that

 $\lim_{n \to \infty} d(x_n, z) = 0.$

Now, we show that d(Tz, z) = 0 arguing by contradiction, we assume that

d(Tz, z) > 0.

Since $x_n \to z$ as $n \to \infty$ for all $n \in \mathbb{N}$, then from Lemma 1.1 so that

(2.15)
$$\frac{1}{s}d(z,Tz) \le \lim_{n \to \infty} \sup d(Tx_n,Tz) \le sd(z,Tz).$$

Now, we are using (2.1) with $x = x_n$ and y = z, we have

$$F(s^2d(Tx_n, Tz)) \le F(M(x_n, z)) - \phi(d(x_n, z)), \forall n \in \mathbb{N},$$

where

$$M(x_n, z) = a \ d(x_n, z) + (1 - a) \max \left\{ d(x_n, z), d(x_n, Tx_n), d(z, Tz), d(z, Tx_n) \right\}$$

and

(2.16)
$$\lim_{n \to \infty} \sup \max \left\{ d(x_n, z), d(x_n, Tx_n), d(z, Tz), d(z, Tx_n) \right\} = d(z, Tz).$$

Therefore,

$$(2.17) \quad F(s^2 d(Tx_n, Tz)) \le F(\max\{d(x_n, z), d(x_n, Tx_n), d(z, Tz), d(z, Tx_n)\}) - \phi(d(x_n, z))$$

By letting $n \to \infty$ in inequality (2.17), using (2.15), (2.16) and continuity of *F*, we obtain

$$F(s^{2} \frac{1}{s} d(z, Tz)) = F(sd(z, Tz))$$

$$\leq F(s^{2} \lim_{n \to \infty} \sup d(Tx_{n}, Tz))$$

$$= \lim_{n \to \infty} \sup F(s^{2} d(Tx_{n}, Tz))$$

$$\leq \lim_{n \to \infty} \sup F(M(x_{n}, z)) - \lim_{n \to \infty} \phi(d(x_{n}, z))$$

$$= F(d(Tz, z)) - \lim_{n \to \infty} \phi(d(x_{n}, z))$$

$$< F(d(z, Tz)).$$

Since F is increasing, we get

which implies that d(z,Tz)(s-1) < 0 implies s < 1, which is contradiction. Hence, Tz = z. Therefore, we have

$$d(z,u) = d(Tz,Tu) > 0$$

Applying (2.1) with x = z and y = u, we have

$$F(d(z, u)) = F(d(Tz, Tu)) \le F(s^2 d(Tz, Tu)) \le F(M(z, u)) - \phi(d(z, u)),$$

where

$$M(z, u) = a d(z, u) + (1 - a) \max \{ d(z, u), d(z, Tz), d(u, Tu), d(u, Tz) \}$$

= d(z, u).

Therefore, we have

$$F(d(z,u)) \le F(d(z,u)) - \phi(d(z,u))$$

< $F(d(z,u))$

which implies that d(z, u) < d(z, u), which is a contradiction. Therefore, u = z.

Now, we introduce a (ϕ, F) -Gregus type quadratic contraction as follows:

Definition 2.9. Suppose (X, d) be a complete b-rectangular metric space and $T : X \to X$ be an $(\phi - F)$ -Gregus type quadratic type contraction (\mathfrak{F}) , i.e, there exist $F \in \mathfrak{F}$ and ϕ such that for any $x, y \in X$, we have

(2.18)
$$d(Tx,Ty) > 0 \implies F[s^2d^2(Tx,Ty) + \phi(d^2(x,y))] \le F[M(x,y)],$$

where

$$M(x,y) = ad^{2}(x,y) + (1-a) \max\left\{d^{2}(x,Tx), d^{2}(y,Ty), d^{2}(y,Tx)\right\}.$$

Example 2.2. Let $X = \mathbb{R}^+$ be a usual metric and $T : \mathbb{R}^+ \to \mathbb{R}$ be the function defined by $T(x) = \frac{x}{2}$. Let $F(x) = \log x$ and $\phi(x) = \frac{1}{x}$. We need to verify the condition in (2.18). We have $d^2(Tx, Ty) = \frac{1}{4}d^2(x, y)$. Again, we have

$$\begin{split} M(x,y) &= ad^2(x,y) + (1-a) \max\left\{d^2(x,y), d^2(x,Tx), d^2(y,Ty), d^2(Tx,y)\right\} \\ &= a|x-y|^2 + (1-a) \max\left\{\frac{1}{4}x^2, \frac{1}{4}y^2, \left|y-\frac{x}{2}\right|^2\right\}. \end{split}$$

On the other hand,

$$F[M(x,y)] = \log\left(ad^2(x,y) + (1-a)\max\left\{\frac{1}{4}x^2, \frac{1}{4}y^2, \left|y - \frac{x}{2}\right|^2\right\}\right)$$

$$\leq F[M(x,y)].$$

Thus, all the conditions of Definition 2.9 are satisfied. Now, we present our next result.

Theorem 2.4. Suppose (X, d) be a complete b-rectangular metric space and $T : X \to X$ be a $(\phi - F)$ -Gregus type quadratic (\mathfrak{F}) contraction. Then, T has a unique fixed point.

Proof. Suppose $x_0 \in X$ be an arbitrary point in X and define a sequence $\{x_n\}$ by $x_{n+1} = Tx_n = T^{n+1}x_0$, for all $n \in \mathbb{N}$. If there exists $n_0 \in \mathbb{N}$ such that $d(x_{n_0}, x_{n_0+1}) = 0$, then proof is finished. We can suppose that $d(x_n, x_{n+1}) > 0$ for all $n \in \mathbb{N}$. Substituting $x = x_{n-1}$ and $y = x_n$, from (2.1), for all $n \in \mathbb{N}$, we have

(2.19)
$$F[d^2(x_n, x_{n+1})] \le F[s^2 d^2(x_n, x_{n+1})] + \phi(d^2(x_{n-1}, x_n)) \le F(M(x_{n-1}, x_n))$$

where

$$M(x_{n-1}, x_n) = ad^2(x_{n-1}, x_n) + (1-a) \max\{d^2(x_{n-1}, x_n), d^2(x_{n-1}, x_n), d^2(x_n, x_{n+1}), d^2(x_{n+1}, x_{n+1})\} = ad^2(x_{n-1}, x_n) + (1-a) \max\{d^2(x_{n-1}, x_n), d^2(x_n, x_{n+1})\} = d^2(x_n, x_{n+1}).$$

If $M(x_{n-1}, x_n) = d^2(x_n, x_{n+1})$, by (2.19), we have $F[d^2(x_n, x_{n+1})] \le F[d^2(x_n, x_{n+1})] - \phi(d^2(x_{n-1}, x_n)) < F(d^2(x_n, x_{n+1}))$. Since F is increasing, we have

(2.20)
$$d^2(x_n, x_{n+1}) < d^2(x_{n-1}, x_n)$$

which is a contradiction. Hence, $M(x_{n-1}, x_n) = d^2(x_{n-1}, x_n)$. Thus,

(2.21)
$$F[d^2(x_n, x_{n+1})] \le F[d^2(x_{n-1}, x_n)] - \phi(d^2(x_{n-1}, x_n)).$$

Repeating this step, we conclude that

$$F(d^{2}(x_{n}, x_{n+1})) \leq F(d^{2}(x_{n-1}, x_{n})) - \phi(d^{2}(x_{n-1}, x_{n}))$$

$$\leq F(d^{2}(x_{n-2}, x_{n-1})) - \phi(d^{2}(x_{n-1}, x_{n})) - \phi(d^{2}(x_{n-2}, x_{n-1}))$$

$$\leq \dots \leq F(d^{2}(x_{0}, x_{1})) - \sum_{i=0}^{n} \phi(d^{2}(x_{i}, x_{i+1})).$$

Since $\liminf_{\alpha \to s^+} \phi(\alpha) > 0$, we have $\liminf_{n \to \infty} \phi(d^2(x_{n-1}, x_n)) > 0$, then from the definition of the limit, there exists $n_0 \in \mathbb{N}$ and A > 0 such that for all $n \ge n_0$, $\phi(q(x_{n-1}, x_n)) > A$, hence

$$F(d^{2}(x_{n-1}, x_{n+1})) \leq F(d^{2}(x_{0}, x_{1})) - \sum_{i=0}^{n_{0}-1} \phi(d^{2}(x_{i}, x_{i+1})) - \sum_{i=n_{0}-1}^{n} \phi(d^{2}(x_{i}, x_{i+1}))$$
$$\leq F(d^{2}(x_{0}, x_{1})) - \sum_{i=n_{0}-1}^{n} A$$
$$= F(d^{2}(x_{0}, x_{1})) - (n - n_{0})A$$

for all $n \ge n_0$. Taking the limit as $n \to \infty$ in the above inequality, we get

$$\lim_{n \to \infty} F(d^2(x_n, x_{n+1})) \le \lim_{n \to \infty} [F(d^2(x_0, x_1)) - (n - n_0)A],$$

that is, $\lim_{n\to\infty} F(d^2(x_n, x_{n+1})) = -\infty$, then from the condition (ii) of Definition 1.3, we conclude that

(2.22)
$$\lim_{n \to \infty} d^2(x_n, x_{n+1}) = 0.$$

Next, we shall prove that

$$\lim_{n \to \infty} d^2(x_n, x_{n+2}) = 0.$$

We assume that $x_n \neq x_m$ for every $n, m \in \mathbb{N}, n \neq m$. Indeed, suppose that $x_n = x_m$ for some n = m + k with k > 0 and using (2.2)

(2.23)
$$d^{2}(x_{m}, x_{m+1}) = d^{2}(x_{n}, x_{n+1}) < d^{2}(x_{n-1}, x_{n}).$$

Continuing this process, we can that $d^2(x_m, x_{n+1}) = d^2(x_n, x_{n+1}) < d^2(x_m, x_{m+1})$ which is a contradiction. Therefore, $d^2(x_n, x_m) > 0$ for every $n, m \in \mathbb{N}, n \neq m$. Now, applying (2.1) with $x = x_{n-1}$ and $y = x_{n+1}$, we have

$$F(d^{2}(x_{n}, x_{n+2})) = F[d^{2}(Tx_{n-1}, Tx_{n+1})]$$

$$\leq F[s^{2}d^{2}(Tx_{n-1}, Tx_{n+1})]$$

$$\leq F(M(x_{n-1}, x_{n+1})) - \phi(d^{2}(x_{n-1}, x_{n})).$$

where

$$M(x_{n-1}, x_{n+1}) = ad^2(x_{n-1}, x_{n+1}) + (1-a) \max \left\{ d^2(x_{n-1}, x_{n+1}), d^2(x_{n-1}, x_n), d^2(x_{n+1}, x_{n+2}), d^2(x_{n+1}, x_n) \right\} = ad^2(x_{n-1}, x_{n+1}) + (1-a) \max \{ d^2(x_{n-1}, x_{n+1}), d^2(x_{n-1}, x_n) \} = d^2(x_{n-1}, x_{n+1}).$$

So, we get

$$(2.24) F(d^2(x_n, x_{n+2})) \le F(\max\{d^2(x_{n-1}, x_n), d^2(x_{n-1}, x_{n+1})\}) - \phi(d^2(x_{n-1}, x_{n+1}))$$

Suppose $a_n = d^2(x_n, x_{n+2})$ and $b_n = d^2(x_n, x_{n+1})$. Thus, by (2.24), one can write

(2.25)
$$F(a_n) \le F(\max\{a_{n-1}, b_{n-1}\}\} - \phi(d^2(a_{n-1}))$$

Since F is increasing, we get

$$a_n < \max\{a_{n-1}, b_{n-1}\}.$$

By (2.2), we have

$$b_n \le b_{n-1} \le \max\{a_{n-1}, b_{n-1}\}$$

which implies that

$$\max\{a_n, b_n\} \le \max\{a_{n-1}, b_{n-1}\}, \ \forall n \in \mathbb{N}$$

Therefore, the sequence $\max\{a_{n-1}, b_{n-1}\}_{n \in \mathbb{N}}$ is decreasing sequence of real non-negative numbers. Thus, there exists $\lambda \ge 0$ such that

$$\lim_{n \to \infty} \max\{a_n, b_n\} = \lambda.$$

By (2.6), assume that $\lambda > 0$, we have

$$\lambda = \lim_{n \to \infty} \sup a_n = \lim_{n \to \infty} \sup \max\{a_n, b_n\} = \lim_{n \to \infty} \max\{a_n, b_n\}.$$

Taking the $\limsup_{n\to\infty}$ in (2.24) and applying the continuity of *F* and the property of ϕ , we get

$$F(\lim_{n \to \infty} \sup a_n) \leq F(\lim_{n \to \infty} \sup \max\{a_{n-1}, b_{n-1}\}) - \lim_{n \to \infty} \sup \phi(a_{n-1})$$
$$\leq F(\lim_{n \to \infty} \sup \max\{a_{n-1}, b_{n-1}\}) - \lim_{n \to \infty} \inf \phi(a_{n-1})$$
$$< F(\lim_{n \to \infty} \max\{a_{n-1}, b_{n-1}\}).$$

Therefore, $F(\lambda) < F(\lambda)$, which is a contradiction. Hence,

(2.26)
$$\lim_{n \to \infty} d^2(x_n, x_{n+2}) = 0$$

Next, we shall prove that $\{x_n\}_n \in \mathbb{N}$ is a Cauchy sequence.

$$\lim_{k \to \infty} M(x_{m_k}, x_{n_k}) = ad^2(x_{m_k}, x_{n_k}) + (1-a) \max\left\{ d^2(x_{m_k}, x_{n_k}), d^2(x_{m_k}, x_{m_k+1}), d^2(x_{n_k}, x_{n_k+1}), d^2(x_{n_k}, x_{m_k+1}) \right\} (2.27) < s\epsilon.$$

Now, applying (2.1) with $x = x_{m_k}$ and $y = x_{n_k}$, we get

(2.28)
$$F[s^2d^2(x_{m_k+1}, x_{n_k+1}] \le F(M(x_{m_k}, x_{n_k})) - \phi(d^2(x_{m_k}, x_{n_k})).$$

Letting $k \to \infty$ the above inequality and using (2.26) and (iv), we obtain

$$F(\frac{\epsilon}{s}s^2) = F(\epsilon s)$$

$$\leq F(s^2 \lim_{k \to \infty} \sup d^2(x_{m_k+1}, x_{n_k+1}))$$

$$= \lim_{k \to \infty} \sup F(s^2 d(x_{m_k+1}, x_{n_k+1}))$$

$$\leq \lim_{k \to \infty} \sup F(M(x_{m_k}, x_{n_k}) - \lim_{k \to \infty} \sup \phi(d^2(x_{m_k}, x_{n_k})))$$

$$= F(M(x_{m_k}, x_{n_k})) - \lim_{k \to \infty} \sup \phi(d^2(x_{m_k}, x_{n_k}))$$

$$\leq F(M(x_{m_k}, x_{n_k})) - \lim_{k \to \infty} \inf \phi(d^2(x_{m_k}, x_{n_k})))$$

$$< F(\lim_{k \to \infty} \sup M(x_{m_k}, x_{n_k}))$$

$$\leq F(s\epsilon).$$

Therefore, $F(s\epsilon) < F(s\epsilon)$. Since F is increasing, we get $s\epsilon < s\epsilon$ which is a contradiction. Then,

$$\lim_{n,m\to\infty} d^2(x_m,x_n) = 0.$$

Hence, $\{x_n\}$ is a Cauchy sequence in X. By completeness of (X, d) there exists $z \in X$ such that

$$\lim_{n \to \infty} d^2(x_n, z) = 0$$

Now, we show that $d^2(Tz, z) = 0$ arguing by contradiction, assume that

$$d^2(Tz,z) > 0.$$

Since $x_n \to z$ as $n \to \infty$ for all $n \in \mathbb{N}$, then from Lemma 1.2, we conclude that $d^2(x_n, x_m) = 0$, for all $n, m \in \mathbb{N}$. Suppose to the contrary. By Lemma 1.2, then there is $\epsilon > 0$ such that for an integer *k* there exists two sequences $\{m_k\}$ and $\{n_k\}$ such that

- (i) $\epsilon \leq \lim_{k \to \infty} \inf d^2(x_{m_{(k)}}, x_{n_{(k)}}) \leq \lim_{k \to \infty} \sup d^2(x_{m_{(k)}}, x_{n_{(k)}}) \leq s\epsilon,$
- (ii) $\epsilon \leq \lim_{k \to \infty} \inf d^2(x_{n_{(k)}}, x_{m_{(k)+1}}) \leq \lim_{k \to \infty} \sup d^2(x_{n_{(k)}}, x_{m_{(k)+1}}) \leq s\epsilon$,
- (iii) $\epsilon \leq \lim_{k \to \infty} \inf d^2(x_{m_{(k)}}, x_{n_{(k)+1}}) \leq \lim_{k \to \infty} \sup d^2(x_{m_{(k)}}, x_{n_{(k)+1}}) \leq s\epsilon$,

(iv) $\frac{\epsilon}{s} \leq \lim_{k \to \infty} \inf d^2(x_{m_{(k)+1}}, x_{n_{(k)+1}}) \leq \lim_{k \to \infty} \sup d^2(x_{m_{(k)+1}}, x_{n_{(k)+1}}) \leq s^2 \epsilon$. From (2.1) and by setting $x = x_{m_k}$ and $y = x_{n_k}$, we have

$$\lim_{k \to \infty} M(x_{m_k}, x_{n_k}) = ad^2(x_{m_k}, x_{n_k}) + (1-a) \max\left\{ d^2(x_{m_k}, x_{n_k}), d^2(x_{m_k}, x_{m_k+1}), d^2(x_{n_k}, x_{n_k+1}), d^2(x_{n_k}, x_{m_k+1}) \right\} (2.29) \leq s\epsilon.$$

Now, applying (2.1) with $x = x_{m_k}$ and $y = x_{n_k}$, we get

(2.30)
$$F[s^2d^2(x_{m_k+1}, x_{n_k+1}] \le F(M(x_{m_k}, x_{n_k})) - \phi(d^2(x_{m_k}, x_{n_k})).$$

Letting $k \to \infty$ the above inequality and using (2.27) and (iv), we get

$$F(\frac{\varepsilon}{s}s^2) = F(\epsilon s)$$

$$\leq F(s^2 \lim_{k \to \infty} \sup d^2(x_{m_k+1}, x_{n_k+1}))$$

$$= \lim_{k \to \infty} \sup F(s^2 d(x_{m_k+1}, x_{n_k+1}))$$

$$\leq \lim_{k \to \infty} \sup F(M(x_{m_k}, x_{n_k}) - \lim_{k \to \infty} \sup \phi(d^2(x_{m_k}, x_{n_k})))$$

$$= F(M(x_{m_k}, x_{n_k})) - \lim_{k \to \infty} \sup \phi(d^2(x_{m_k}, x_{n_k}))$$

$$\leq F(M(x_{m_k}, x_{n_k})) - \lim_{k \to \infty} \inf \phi(d^2(x_{m_k}, x_{n_k})))$$

$$< F(\lim_{k \to \infty} \sup M(x_{m_k}, x_{n_k}))$$

$$\leq F(s\epsilon).$$

Therefore,

$$F(s\epsilon) < F(s\epsilon).$$

Since F is increasing, we get

 $s\epsilon < s\epsilon$

which is a contradiction. Then

$$\lim_{n,m\to\infty} d^2(x_m,x_n) = 0$$

Hence, $\{x_n\}$ is a Cauchy sequence in X. By completeness of (X, d) there exists $z \in X$ such that

$$\lim_{n \to \infty} d^2(x_n, z) = 0.$$

Now, we show that $d^2(Tz, z) = 0$ arguing by contradiction, we assume that

$$d^2(Tz, z) > 0$$

Since $x_n \to z$ as $n \to \infty$ for all $n \in \mathbb{N}$, then from Lemma 1.1, we conclude that

(2.31)
$$\frac{1}{s}d^2(z,Tz) \le \lim_{n \to \infty} \sup d^2(Tx_n,Tz) \le s d^2(z,Tz).$$

Now, we applying (2.1) with $x = x_n$ and y = z, we have

$$F(s^2d^2(Tx_n, Tz)) \le F(M(x_n, z)) - \phi(d^2(x_n, z)), \forall n \in \mathbb{N},$$

where

$$M(x_n, z) = a d^2(x_n, z) + (1 - a) \max\left\{d^2(x_n, z), d^2(x_n, Tx_n), d^2(z, Tz), d^2(z, Tx_n)\right\}$$

and

(2.32)
$$\lim_{n \to \infty} \sup \max \left\{ d^2(x_n, z), d^2(x_n, Tx_n), d^2(z, Tz), d^2(z, Tx_n) \right\} = d^2(z, Tz).$$

Therefore,

(2.33) $F(s^2d^2(Tx_n, Tz)) \leq F(\max\{d^2(x_n, z), d^2(x_n, Tx_n), d^2(z, Tz), d^2(z, Tx_n)\}) - \phi(d^2(x_n, z)).$ By letting $n \to \infty$ in inequality (2.33), using (2.32), (2.31) and continuity of F, we obtain

$$\begin{split} F[s^2 \frac{1}{s} d^2(z, Tz)] &= F[sd^2(z, Tz)] \\ &\leq F[s^2 \lim_{n \to \infty} \sup d^2(Tx_n, Tz)] \\ &= \lim_{n \to \infty} \sup F[s^2 d^2(Tx_n, Tz)] \\ &\leq \lim_{n \to \infty} \sup F(M(x_n, z)) - \lim_{n \to \infty} \phi(d^2(x_n, z)) \\ &= F(d^2(Tz, z)) - \lim_{n \to \infty} \phi(d^2(x_n, z)) \\ &< F(d^2(z, Tz)). \end{split}$$

Since F is increasing, we get

$$s d^2(z, Tz) < d^2(z, Tz)$$

which implies that

$$d^{2}(z, Tz)(s-1) < 0$$
 implies $s < 1$

which is contradiction. Hence, Tz = z. Therefore,

$$d^2(z,u) = d^2(Tz,Tu) > 0$$

Applying (2.2) with x = z and y = u, we have

$$F(d^{2}(z,u)) = F(d^{2}((Tz,Tu))) \leq F(s^{2}d^{2}(Tz,Tu)) \leq F(M(z,u)) - \phi(d^{2}(z,u)),$$

where

$$\begin{split} M(z,u) &= ad^2(z,u) + (1-a) \max \left\{ d^2(z,u), d^2(z,Tz), d^2(u,Tu), d^2(u,Tz) \right\} \\ &= d^2(z,u). \end{split}$$

We have

$$F(d^{2}(z, u)) \leq F(d^{2}(z, u)) - \phi(d^{2}(z, u))$$

< $F(d^{2}(z, u))$

which implies that

$$d^2(z, u) < d^2(z, u)$$

which is a contradiction. Hence, u = z.

Corollary 2.1. Suppose (X, d) be a complete b-rectangular metric space and $T : X \to X$ be given mapping. Suppose that there exist $F \in \mathfrak{F}$ and $\tau \in]0, \infty[$ such that for any $x, y \in X$, we have

$$d^2(Tx,Ty)>0\implies F[s^2d^2(Tx,Ty)]+\tau\leq [F(M(x,y))],$$

where

$$M(x,y) = a d^{2}(x,y) + (1-a) \max \left\{ d^{2}(x,y), d^{2}(x,Tx), d^{2}(y,Ty), d^{2}(Tx,y) \right\}.$$

T has a unique fixed point.

If we take a = 0 we have the following result.

Corollary 2.2. Suppose (X, d) be a complete b-rectangular metric space and $T : X \to X$ be given mapping. Suppose that there exist $F \in \mathfrak{F}$ and $\tau \in]0, \infty[$ such that for any $x, y \in X$, we have

$$d^2(Tx,Ty) > 0 \implies F[s^2d^2(Tx,Ty)] + \tau \le [F(M(x,y))]$$

where

$$M(x,y) = (1-a) \max \left\{ d^2(x,y), d^2(x,Tx), d^2(y,Ty), d^2(Tx,y) \right\}$$

T has a unique fixed point.

For a = 1 we have the following:

Corollary 2.3. Suppose (X, d) be a complete b-rectangular metric space and $T : X \to X$ be given mapping. Suppose that there exist $F \in \mathfrak{F}$ and $\tau \in]0, \infty[$ such that for any $x, y \in X$, we have

 $d^2(Tx,Ty) > 0 \implies F[s^2d^2(Tx,Ty)] + \tau \le [F(M(x,y))],$

where

$$M(x,y) = a d^2(x,y).$$

T has a unique fixed point.

REFERENCES

- S. Banach: Sur les operations dans les ensembles abstraits et leur application aux equations integrals, Fundam. Math., 3 (1922), 133–181.
- [2] I. A. Bakhtin: The contraction mapping principle in almost metric spaces, Funct. Anal., 30 (1989), 26–37.
- [3] F. E. Browder: On the convergence of successive approximations for nonlinear functional equations, Nederl. Akad. Wetensch. Proc. Ser. A Indag. Math., 30 (1968), 27–35.
- [4] S. Czerwik: Contraction mapping in b-metric spaces, Acta Math. Inform. Univ. Ostraviensis, 1 (1993), 5–11.
- [5] R. George, S. Radenovic, K. P. Reshm and S. Shukla: Rectangular b-metric spaces and contraction principle, J. Nonlinear Sci. Appl., 8 (2015), 1005–1013.
- [6] R. Kannan: Some results on fixed points-II, Amer. Math. Mon., 76 (1969), 405-408.
- [7] A. Kari, M. Rossafi, E. Marhrani and M. Aamri: Fixed point theorems for (θ φ)-contraction on complete b-metric spaces, Int. J. Math. Sci., 2020 (2020), 1–9.
- [8] A. Kari, M. Rossafi, E. Marhrani and M. Aamri: New fixed point theorems for (θ-φ)-contraction on complete rectangular b-metric spaces, Abst. Appl. Anal., 2020 (2020), Article ID: 8833214,.
- [9] A. Kari, M. Rossafi, E. Marhrani and M. Aamri: *Fixed-point theorem for nonlinear F-contraction via w Distance*, Adv. Math. Phys., 2020 (2020), Article ID: 6617517.
- [10] A. Kari, M. Rossafi: New fixed point theorems for (Φ, F) -contraction on rectangular b-metric spaces, Afr. Mat., 34 (2023), 1–26.
- [11] E. Karapinar, A. Fulga and R. P. Agarwal: A survey: F-contractions with related fixed point results, J. Fixed Point Theory Appl., 22 (2020), 22–69.
- [12] H. Piri, P. Kumam: Some fixed point theorems concerning F-contraction in complete metric spaces, Fixed Point Theory Appl., 2014 (2014), 210–215.
- [13] H. Piri, P. Kumam: Wardowski type fixed point theorems in complete metric spaces, Fixed Point Theory Appl., 2016 (2016), 1–12.
- [14] S. Reich: Some remarks concerning contraction mappings, Can. Math. Bull., 14 (1971), 121–124.
- [15] T. Suzuki: Fixed point theorems for single- and set-valued F-contractions in b-metric spaces, J. Fixed Point Theory Appl., 20 (35) (2018), 1–12.
- [16] D. Wardowski: Fixed points of a new type of contractive mappings in complete metric spaces, J. Fixed Point Theory Appl., 2012 (2012) 94–100.
- [17] D. Wardowski, N. Van Dung: Fixed points of F-weak contractions on complete metric spaces, Demonstr. Math., 47 (2014), 146–155.
- [18] D. Wardowski: Solving existence problems via F-contractions, Proc. Am. Math. Soc., 146 (2018), 1585–1598.

RAKESH TIWARI GOVT. V. Y. T. P. G. AUTONOMOUS COLLEGE 491001 DURG (C. G.) INDIA *Email address*: rakeshtiwari66@gmail.com

NIDHI SHARMA GOVT. V. Y. T. P. G. AUTONOMOUS COLLEGE 491001 DURG (C. G.) INDIA *Email address*: nidhipiyushsharma87@gmail.com

Duran Turkoglu Gazı University Department of Mathematics 06500, Teknikokullar, Ankara, Türkiye *Email address*: dturkoglu@gazi.edu.tr