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1. INTRODUCTION

Banach contraction principle is one of the earlier and main results in fixed point theory.
Banach contraction principle [1] was proved in complete metric spaces. Many generalizations
of the concept of metric spaces are defined and some fixed point theorems were proved in these
spaces. In particular, b-metric spaces were introduced by Bakhtin [2] and Czerwik [4], in such
a way that triangle inequality is replaced by the b-triangle inequality. Various mathematician
considered a lot of interesting extensions and generalizations [3, 6, 14]. Piri and Kumam [12]
introduced new type of contractions called F-contraction and F-weak contraction and proved
new fixed point theorems concerning F-contractions. Very recently, Kari et al. [7] introduced
the notion of (§ — ¢)-contraction in these metric spaces and proved a fixed point theorem.

Definition 1.1 ([5]). Let X be a nonempty set s > 1 be a given real number and let d : X x X —
[0, +o00] be a mapping such that for all x,y € X and all distinct points u,v € X each distinct from x
and y:

(i) d(z,y) =0ifonlyifz =y,
(i) d(z,y) = d(y, ),
(iii) d(z,y) < s[d (x u) + d(u, v) + d(v, y)] (b-rectangular inequality).

Then, (X, d) is called a b-rectangular metric space.

In 1971, S. Reich [14] presented the following lemma to establish some remarks concerning
contraction mappings

Lemma 1.1 ([14]). Let (X, d) be a b-rectangular metric space.
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(i) Suppose that sequences {x,,} and {y,,} € X are such that x,, — x and y,, — y as n — oo, with
T # Y, Ty # xand y, # y for all n € N. Then, we have

1
gd(ﬂ%y) < 11_)111 inf d(xnayn) < 11_>H1 sup d(xnayn) < sd(x,y).

(i) If y € X and {x,} is a Cauchy sequence in X with x,, # x,, for any m,n € Nym # n,
converging to x # y, then

1
—d(z,y) < lim infd(z,,y) < lim supd(z,,y) < sd(z,y) Vx € X.
S n—o0 n—00

Lemma 1.2 ([9]). Let (X, d) be a b-rectangular metric space and let {x.,,} be a sequence in X such that

lim d(xy, Tp41) = Umd(z,, 2p42) = 0.
n— o0

If {x,,} is not a Cauchy sequence, then there exist € > 0 and two sequences {my} and {n;,} of positive
integers such that
(0) € < limyso0 inf d(Tyy )5 Tngyy) < iMoo SUP A(Tingyy s Tngyy ) < SE,
(ii) € <limp oo inf d(@n ), Tingyyy) < liMgso0 SUP A(Tiy) s Tingyy,r ) < SE,
(iii) € < limy_,oo inf d(xm(k)mn(kHl) < limg_ oo SUp d(xm(k),xn(k_Hl) < se,
(iv) £ <limy_,o inf d( ) < limg o0 sup d( ) < 5%

Lmy 410 Treya LTmy 410 Ty

Definition 1.2 ([16]). Let F be the family of all functions F : R* — R such that
(i) F is strictly increasing,
(ii) For each sequence {xy, }nen Of positive numbers

nh~>ngo xn, = 0 if and only zfnlin;o F(z,) = —o0,
(iii) There exists k €0, 1] such that lim,_,o 2" F(z) = 0.
In 2018, the following result was appeared.

Theorem 1.1 ([15]). Let (X,d,s) be a complete b-metric space and T be a self-map on X. Assume
that there exist T > 0 and a function F' :]0,+oco[— R satisfying a sequence t,, €]0,+oo[ such that
T+ F(d(Tz,Ty)) < F(d(z,y)) holds for all z,y € X with Tx # Ty. Then, T has a unique fixed
point.

Recently, Piri and Kuman [12] extended the result of Wardowski [17, Definition 1.6] as fol-
low:
Definition 1.3 ([12]). Let F be the family of all functions F : R*™ — R such that
(i) F is strictly increasing,
(ii) For each sequence {x, }nen of positive numbers
nhﬂngo xn = 0 if and only zntLH;O F(z,) = —o0,

(iii) F is continuous.
The following definition introduced by Wardowski [17] will be used to prove our result.
Definition 1.4 ([17]). Let F' be the family of functions F' : Rt — Rand ¢ :]0, +oo[—]0, +oo| satisfy
the following:
(i) F is strictly increasing,
(ii) For each sequence {xy, }nen Of positive numbers

nh_)ngo x, = 0if and only zfnh_{glo F(z,) = —oo,
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(iii) liminf,_,,+ ¢(s) >0, Vs >0,
(iv) There exists k €]0, 1] such that
lim z"F(z) = 0.
z—0+t
Theorem 1.2 ([17]). Each F-contraction T on a complete metric space (X, d) has a unique fixed point.
Moreover, for each xy € X, the corresponding Picard sequence {T™xz¢} converges to that fixed point.

Recently, Kari and Rossafi [10] gave the following definition.

Definition 1.5 ([10]). Let F be the family of all functions F : RT™ — R and ¢ :]0, +00[—]0, +o0]
satisfy the following:

(i) F is strictly increasing,

(ii) For each sequence {xy, }nen Of positive numbers

nlgr;o xy, = 0if and only szIEI;O F(z,) = —oo,

(i) Timinf, o+ ¢(s) > 0, Vs > 0,
(iv) There exists k €]0, 1] such that
lim zFF(z) =0,

xz—0t
(v) For each sequence «,, € R of positive numbers such that ¢(c,) + F(s ant1) < F(aw,) for all
n € N, then ¢(ay,) + F(s" 1) < F(s" tay,) foralln € N,
Definition 1.6 ([9]). Let § be the family of all functions F : Rt — Rand ¢ : |0, +oo[ — ]0,+o00|
satisfy the following:
(i) F is strictly increasing,
(ii) For each sequence {x, }nen of positive numbers

lim z, = 0ifand only if li_>m F(z,) = —o0,

n— o0
(iii) liminf, , + ¢(s) > 0, Vs > 0,
(iv) F is continuous.

Definition 1.7 ([17]). Let (X, d) be a metric space. A mapping T : X — X is called an (¢, F')-
contraction on (X, d), if there exists F € F and ¢ such that

F(d(Tz, Ty) + ¢(d(z,y)) < F(d(z,y))
forall z,y € X for which Tx # Ty.

In this paper, using the idea introduced by Wardowski [17], we introduce the concept of
(¢, F)-Gregus contraction and Gregus type quadratic contraction in b-rectangular metric spaces
and prove some fixed point results for such spaces. Our results are validated by suitable exam-
ples.

2. MAIN RESULT
Now, we introduce the following:

Definition 2.8. Lef (X, d) be a b-rectangular metric space with parameter s > 1 spaceand T : X — X
be a mapping. T is said to be a (¢, F')-Gregus contraction if there exist F' € § and ¢ € ® such that

2.1 d(Tx,Ty) >0 = F[s*d(Tx,Ty)] + ¢(d(z,y)) < F[M(z,y)]

where
M(z,y) = ad(z,y) + (1 — a) max {d(z, Tz),d(y, Ty),d(y, Tx)} ,0 < a < 1.
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Example 2.1. Let F(z) = 1— 1. Then, it is easy to prove that F(x) is strictly increasing for x > 0 as
zn, = 07, F(z,) =1—1 — —oco. Also, the function F(z) = 1 — L is continuous for x > 0. Again,
if we choose ¢(s) = s which satisfies liminf,_,q+ ¢(s) > 0 for all s > 0. Therefore, F(z) = 1 — -
belongs to §. Let T'(z) = %. We now compute

1
ad(z,

M(z,y y) + (1 — a)max {d(w, Tx), d(y, Ty),d(y, T2)} ,0 < a < 1.

|z — y|, we have d(x, Tx) = |z — 2| = |22, d(y, Ty) = |y — 4| = |
2| . Thus, we can express M (x,y) as:

3z 3y |4y — x|
M(z,y) = alz — 1- or 2y .
(x,y) =alz —y| + ( a)max{ TRV 1

=g

K

-

)=
Using the metric d(x,y)
d(y, Ta) = |y — 5| = | %4

Now, we have

Fls*d(Tx, Ty)] + ¢(d(z,y)) = F[%Iiﬂ —yll+ oz —yl)

3z 3y |4y — z|
47 47 4

< F[s?d(Tx, Ty)] + Fla|lz — y| + (1 — a) max { —=
< F[M(z,y)].
Thus, all the conditions of Definition 2.8 are satisfied.
Remark 2.1. The above example does not satisfy corresponding Definition presented in [10] and [17].
Now, we present our main result.

Theorem 2.3. Suppose (X, d) be a complete b-rectangular metric spaceand T : X — X bean (¢ — F)-
Gregus contraction () i.e, there exist F' € § and ¢ such that for any x,y € X, satisfying (2.1) then, T
has a unique fixed point.

Proof. Suppose zy € X be an arbitrary point in X and define a sequence {xz,,} by z,+1 = Tz, =
Ty, for all n € N. If there exists ng € N such that d(z,,, Zn,+1) = 0, then proof is finished.
We can suppose that d(z,, zn+1) > 0 for all n € N. Substituting = z,—1 and y = z,,, from
(2.1), for all n € N, we have

(2.2) Fld(zn, Tpi1)] < F[s*d(20, Tng1)] + (d(@n_1,2,)) < F(M(2y-1,2,)),Vn € N,
where
M(zp—1,2n) = ad(p_1,Ty)
+ (1 — a)max{d(xn—1,%n), d(Tn—1,%n), d(Tn, Tni1), d(Tpnt1, Tni1)}
= ad(xp—_1,2n) + (1 — a) max{d(xn—1,2n), d(Tn, Tnt1)}
=d(zn, Tny1)-

If M(zp—1,2n) = d(@n, Tnt1), by (2.2), we have
Fld(zn, xnt1)] < Fld(zn, Znt1)] — ¢(d(@n-1,2n)) < F(d(2n,Tnt1)). Since F is increasing, we
have

(2.3) d<xn7 $n+1) < d(xnfla xn)
which is a contradiction. Hence, M (x,,_1, z,,) = d(zp—_1, x,). Thus,

(24) Fld(zy, 2n41)] < Fld(zn-1,20)] — ¢(d(@n-1,2n)).
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Repeating this step, we conclude that
F(d(zn, 2ng1)) < F(d(zn-1,70)) — ¢(d(n_1,2n))
S F(d(xn 2, Tp— 1)) (b(d(xn laxn)) - ¢(d($n,2,$n,1))

n
<o < Fd(xo, 1)) — Y ¢(d(wi, wi41))
=0

Since liminf,_, + ¢(a) > 0, we have liminf,,_, o, ¢(d(zy—1,x,)) > 0, then from the definition of
the limit, there exists ngp € Nand A > 0 such that for all n > ng, ¢(¢(zn—1,2,)) > A, hence

no—1 n
F(d(zn—1,2n41)) < F(d(z0,21)) Z P(d(zi, iv1)) Z o(d(z, wiy1))
1=nog—1

SF SU(),.”L'l Z A

i=ng—1
(2.5) = F(d(zg,21)) — (n —ng)A

for all n > ny. Taking the limit as n — oo in the above inequality, we get

2.6) lim Fd(xy, 2001)) < lim [F(d(zo, 1)) — (n — no) A,

that is, lim,, oo F'(d(2p, xn+1)) = —00. Then, from the condition (ii) of Definition 1.3, we con-
clude that

(2.7) lim d(xn,zp41) = 0.

n—oo

Next, we shall prove that
ILm d(Xp, Tpy2) = 0.

We assume that z,, # x,, for every n, m € N, n # m. Suppose that z,, = z,, for somen =m+k
with k£ > 0 and using (2.2)

(2.8) ATy Trp1) = A(Xpy Tpy1) < d(XTp—1,T0).

Continuing this process, so that d(z,, Zn+1) = d(n, Tnt1) < (T, Tm+1). It is a contradiction.
Therefore, d(x,, z,,) > 0 for every n,m € N,n # m. Now, applying (2.1) with z = z,,_; and
Y = Tpt1, We have

F(d(l‘n,xn_;'_g)) = F[ (Txn—lyTxn-‘rl)]
F[s?d(Txy_1, Tony1)]
F(M(xnfhxwrl)) - ¢(d(xn,1, mn))a

VARVAN

(2.9)
where
M(zp—1,2Znt1) = ad(Tp—1,Tnt1)

+ (1 —a)max{d(zp—1,Tn+1), AXTpn-1,%n), d(Tni1, Tni2), d(Tnt1,2Zn)}
= ad(Tp-1,Zn+1) + (1 — @) max{d(zpn_1,Tnt1), AXTpn—1,2,)}
=d(Tp_1,Tnt+1)-

So, we get

(2.10) F(d(zpn, Tnt2) < F(max{d(zn—1,2n), d(Xn-1,Znt1)}) — ¢(d(Zp—1, Tnt1))-

Take a,, = d(xn, Tpy2) and b, = d(zy, Tpn41). Thus by (2.10), one can write

(2.11) F(a,) < F(max(an—1,bp-1)) — ¢(d(an-1)).
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Since F'is increasing, we get
an < max{an—_1,bn_1}-
By (2.2), we have
by, < bp—1 < max(ap—1,bp—1)
which implies that
max{an, b, } < max{a,_1,bn_1}, VneN.
Therefore, the sequence max{a,—_1, bp—1 }nen is non-negative decreasing sequence of real num-

bers. Thus, there exists A > 0, such that

nh_)n;o max{an,b,} = A

By (2.6) assume that A > 0, we have

A= lim supa, = lim supmax{a,,b,} = lim max{a,,b,}.
n—00 n—00 n—00

Taking the lim sup,,_, . in (2.10) and applying the continuity of /" and the property of ¢, we get

F(RILII;O sup a,) < F(nllrr;o sup max{a,—1,bp—1}) — nlgr;@ sup ¢(an—1)

< F(nh—EI;o supmax{a,_1,bp_1}) — nh_)rr;o inf ¢(an—1)

< F( lim max{an—1,bn-1}).

n—oo
Therefore,
F(\) < F(\)
which is a contradiction. Hence,
(2.12) li_>m d(Xp, Tpi2) = 0.

Next, we shall prove that {z,,}, € Nis a Cauchy sequence, i.e, lim,, . d(z,,xm) = 0, for all
n, m € N. Suppose to the contrary. By Lemma 1.2, then there is € > 0 such that for an integer k&
there exists two sequences {my,} and {n;} such that

(1) € <limpyo0 inf d(Tyny) s Tngyy) < iMoo SUP A(Tingyy s Tngyy ) < SE

(11) €< hmk%oo lnf d(mn(k) ) xm(k)_H) < hmk:—)oo sup d(xn(k) 3 mm(k)_H) < sg,
(iii)) € < limp_,o Inf d(xm(k),xn(k”l) < limy 00 SUP A(Tin gy s Ty, ) < 86
(iv) £ <limg_; oo inf d(xm<k)+17xn(k>+1) < limg_ oo SUp d(xm<k)+l,xn(k>+l) < s2e.
From (2.2) and by setting « = 2,,, and y = x,,, we have,

Um M (Zm,, Tn, ) =ad(Tmm,,, Tn,)
k—o0

+(1 - a’) max {d(mmk ) Ly, )7 d(xmk ) xkarl)v d(xnk ) wnk+1)’ d(xnk ) xkarl)}
(2.13) <se.

Now, using (2.1) with ¢ = z,,, and y = z,,,, we get

(2'14) F[52d(zmk+1’ mnk-‘rl] < F(M(xmwx"k)) - ¢(d(xmwxnk))'
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Letting k — oo the above inequality and applying (2.13) and (iv), we get

€ 2

F(-5°) = F(es)

IN

F(s? lim sup d(@my 41, Tnyt1))
k—oo
= lim sup F(s%d(Zm, 11, Tnpt1))
k—o00
< lim sup F(M (2, Tn,, ) — lim sup ¢(d(@m,, , Tn,, )
k—o00 k—o0
= F(M(xmk’mnk)) — lim sup ¢(d(xmk’xnk))
k—o00
< F(M (2, Tn,,)) — lim inf ¢(d(2m,, , Zn,, )
k—o00
< F(lim sup M (zp,,, Zn,))
k—o00
< F(se).
Therefore,
F(se) < F(se).
Since F' is increasing, we get
se < S€

which is a contradiction. So lim,, 1,00 d(Zm, ) = 0. Hence, {z,,} is a Cauchy sequence in X.
By completeness of (X, d), there exists z € X such that

lim d(x,,z)=0.

n—oo

Now, we show that d(T'z, z) = 0 arguing by contradiction, we assume that
d(Tz,z) > 0.

Since xz,, — zasn — oo for all n € N, then from Lemma 1.1 so that

(2.15) 1d(z,Tz) < lim supd(Tz,,Tz) < sd(z,Tz).
s

n—oo

Now, we are using (2.1) with = z,, and y = 2, we have

F(s?d(Tx,,Tz?)) < F(M(z,,2)) — ¢(d(x,, 2)),Vn €N,

where

M(zpn,2) = ad(xn,z) + (1 — a) max {d(zy, 2), d(zn, Txy), d(z,T2),d(z, Tx,)}
and
(2.16) nlgr;o supmax {d(xy, 2), d(xn, Txy),d(z,Tz),d(z,Tx,)} = d(z,Tz).
Therefore,

(217)  F(s*d(Tz,,T2)) < F(max {d(zy,,2),d(xn, Tx,),d(2,T2),d(z, Tzn)}) — ¢(d(2n, 2)).
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By letting n — oo in inequality (2.17), using (2.15), (2.16) and continuity of F', we obtain

F(s2§d(z,Tz)) = F(sd(z,Tz))
< F(s? nlgr;o supd(Tx,,Tz))
= lim sup F(s?d(Tx,,Tz))
(M(2p,2)) = lim_(d(zs,2))
( (T«Z z)) — lim ¢(d (fcm ))
< F(d(z,Tz)).

< hm sup F

Since F' is increasing, we get
sd(z,Tz) < d(z,Tz),

which implies that d(z,Tz)(s — 1) < 0 implies s < 1, which is contradiction. Hence, Tz = z.
Therefore, we have

d(z,u) =d(Tz,Tu) > 0.
Applying (2.1) with x = z and y = u, we have
F(d(z,u)) = F(d(Tz,Tu)) < F(s?d(Tz,Tu)) < F(M(z,u)) — ¢(d(z,u)),
where
M(z,u) =ad(z,u) + (1 —a)max {d(z,u),d(z,Tz),d(u, Tu),d(u,Tz)}
=d(z,u).
Therefore, we have
Fd(z,u)) < F(d(z,u)) — ¢(d(z,u))
< F(d(z,u))

which implies that d(z,u) < d(z,w), which is a contradiction. Therefore, u = z. O

Now, we introduce a (¢, F')-Gregus type quadratic contraction as follows:

Definition 2.9. Suppose (X,d) be a complete b-rectangular metric space and T : X — X be an
(¢ — F)-Gregus type quadratic type contraction (§), i.e, there exist F' € § and ¢ such that for any
x,y € X, we have

(2.18) d(Tz,Ty) >0 = F[s*d*(Tz, Ty) + ¢(d*(x,y))] < F[M(z,v)],
where
M(z,y) = ad?(z,y) + (1 — a) max {dz(x,Tx),dZ(y,Ty),dZ(y,Tx)} )

Example 2.2. Let X = R* be a usual metric and T : R — R be the function defined by T'(z) =
Let F(x) = logx and ¢(z) = L. We need to verify the condition in (2.18). We have d*(Tx,Ty)
1d?(z,y). Again, we have

x
5"

M(z,y) = ad®(z,y) + (1 — a) max {d*(z,y), d*(z, Tx),d*(y, Ty), d*(Tx,y) }

212
i)

1 1
=alz — y[* + (1 — a) max {4x2 —y% ly —

4
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On the other hand,

1 1 2
FM(o,3)] = o (ad?(o.9) + (1= 0 max { 302 0 o = 5 )
< F[M(z,y)].
Thus, all the conditions of Definition 2.9 are satisfied. Now, we present our next result.

Theorem 2.4. Suppose (X, d) be a complete b-rectangular metric space and T : X — X bea (¢ — F)-
Gregus type quadratic (§) contraction. Then, T has a unique fixed point.

Proof. Suppose zy € X be an arbitrary point in X and define a sequence {x,,} by z,,+1 = Tz, =
Tz, for all n € N. If there exists ng € N such that d(z,,,, Zn,+1) = 0, then proof is finished.
We can suppose that d(z,, z,4+1) > 0 for all n € N. Substituting ¢ = z,_1 and y = z,,, from
(2.1), for all n € N, we have

(2.19) Fld*(xp, ng1)] < F[s2d*(2n, Tni1)] + S(d* (2n_1,20)) < F(M(2p_1,2,)),
where
M(zp—1,25) = adz(xn,l,xn)
+ (1 —a) max{d*(zn_1,%n), d*(Tn_1,70),d*(Tn, Tni1), A (Tni1, Tns1)}
= ad*(zp_1,2,) + (1 — a) max{d*(zn_1,2n), d*(Tn, Tni1)}
= d* (T, Trs1)-

If M(xp_1,2,) = d*(2n, Tnyi1), by (2.19), we have
Fld*(xn, 1)) < Fld?(@n, Tng1)] — d(d*(2n-1,2n)) < F(d*(2n,Tn41)). Since F is increasing,
we have

(2.20) d? (l‘n, anrl) < d? (xnfla xn)
which is a contradiction. Hence, M (z,,_1,x,) = d*(z,,_1, ). Thus,
(2.21) Fd*(2n, Tpy1)] < Fld*(xp_1,20)] — ¢(d* (21, 22)).

Repeating this step, we conclude that
F(dQ(l‘nvxnﬂ—l)) S F(d2(xn—17xn)) - (b(dZ(xn—lvxn))
< F(dQ(mnfbxnfl)) - ¢(d2(1’n717xn)) - ¢(d2($n,27$n,1))

n
<o < F(d*(z0,21)) Z¢ (@i, Tig1))-

Since liminf, .+ ¢(«) > 0, we have liminf,, ¢( %(2n—1,2n)) > 0, then from the definition
of the limit, there exists ng € Nand A > 0 such that for all n > ng, ¢(q¢(z,—1,z,)) > A, hence

nog—1 n
F(d*(2p-1,Tn+1)) < F(d*(z0,71)) Z P(d®(zi,i41)) — Z o(d*(zi,wi41))
i:no—l
(d2 Io,xl Z A
1=ng—1

= F(d*(z0,21)) — (n —ng)A
for all n > ny. Taking the limit as n — oo in the above inequality, we get
lim F(d*(xn, Tny1)) < lim [F(d*(z0,21)) — (n — ng)A],
n—oo n— oo
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that is, lim,, oo F(d?(2,2ny1)) = —o00, then from the condition (ii) of Definition 1.3, we con-
clude that
(2.22) lim d*(z,, Zng1) = 0.

n—oo

Next, we shall prove that

. 2 _
nlgr;od (Tny Tpyo) = 0.

We assume that x,, # z,, for every n,m € N,n # m. Indeed, suppose that =, = z,,, for some
n =m+ k with £ > 0 and using (2.2)

(2.23) dQ(xm, Tmt1) = dz(;vn,xnﬂ) < d2(;vn,1,xn).

Continuing this process, we can that d?(z,, n11) = d*(Tn, Tni1) < d*(Tm, Tm1) which is a
contradiction. Therefore, d?(x,,, z.,) > 0 for every n,m € N,n # m. Now, applying (2.1) with
T =xp—1 and y = x,4+1, we have

F(dz(xn,zn+2)) = F[d2(T93n—1vTxn+l)]
F[s*d*(Txp_1, Txni1))
F(M(xn—la xn-{-l)) - ¢(d2(l'n—1a xn))a

IN A

where

M(2p—1,Zps1) = ad*(p_1,Tpi1)
+ (1 — a) max {dQ(xn,l,an), dQ(xn,hxn),d2(xn+1,:rn+2)7d2(xn+1,xn)}
= ad*(p_1,Zns1) + (1 —a) max{dz(xn_h Tpt1)s d2(a:n_1,xn)}
= dQ(xn,han).

So, we get

224)  F(d(wn,ny2)) < Flmax{d?(zn1,20), d*(@n-1,7n11)}) — ¢(d*(@n—1,Zn11))
Suppose a,, = d*(zy,, Tpi2) and by, = d*(z,,, Tp41). Thus, by (2.24), one can write
(2.25) F(an) < F(max{an_1,bp_1)} — ¢(d*(an_1)).
Since F is increasing, we get
ap < max{an—1,bp_1}.
By (2.2), we have
by, <bp—1 <max{an—_1,bn_1}
which implies that
max{an, by} < max{a,_1,b,_1}, Yn € N.

Therefore, the sequence max{a,_1, bp—1 }nen is decreasing sequence of real non-negative num-
bers. Thus, there exists A\ > 0 such that

nh_{r;o max{an, by} = A

By (2.6), assume that A > 0, we have

A= lim supa, = lim supmax{a,,b,} = lim max{a,,b,}.
n—00 n—00 n—00
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Taking the lim sup,,_, . in (2.24) and applying the continuity of /" and the property of ¢, we get
F(nlirrgo sup a,) < F(nllrgo sup max{a,_1,b,_1}) — nhﬁn;@ sup ¢(an—1)
< F( lim supmax{a,—1,bp—1}) — lim inf ¢(a,_1)
n—00 n— oo

< F(lim max{an—_1,bn—1}).

n—oo
Therefore, F'(\) < F(A), which is a contradiction. Hence,
(2.26) lim d*(2p, Tnyo) = 0.

Next, we shall prove that {z,}, € Nis a Cauchy sequence.
klggo M (T, Ty ) = ad*(Tomy,, Ty )
+ (1 — a) max {dz(xmk,mnk), dQ(xmk,xmkH), dQ(xnk,xnkH), d2(mnk,mmk+1)}
(2.27) < se.
Now, applying (2.1) with = z,,, and y = z,,, we get

(2.28) F[SQdQ(xmk-&-lv Tnj+1] < F(M (2, Ty ) — ¢(d2($mkvxnk))-
Letting k — oo the above inequality and using (2.26) and (iv), we obtain
F(Ss%) = F(es)
s
< F(s? lim sup d*(Zomy 41, Tnys1))
k—o0
= lim sup F(s?d(Tmy 11, Tnp11))
k—o0
< lim sup F(M (2, , Ty, ) — lim sup ¢(d*(xm,,, Tn,))
k—o00 k—o00
= F(M(xmk ) xnk)) - klggo sup ¢(d2(mmk ) xnk))
< F(M(xmk ’ xnk)) - klggo inf ¢(d2($mk ) ‘Tnk))
< F(lim sup M (zm,,%n,))
k—o0
< F(se).
Therefore, F'(se) < F(se). Since F is increasing, we get se < se which is a contradiction. Then,

lim  d*(zm,z,) = 0.
7,1M—> 00

Hence, {z,} is a Cauchy sequence in X. By completeness of (X, d) there exists z € X such that
nhﬁrrolo d*(xp, 2) = 0.
Now, we show that d?(T'z, z) = 0 arguing by contradiction, assume that
d*(Tz,z) > 0.

Since x,, — z asn — oo for all n € N, then from Lemma 1.2, we conclude that d?(x,,, z,,) = 0,
for all n,m € N. Suppose to the contrary. By Lemma 1.2, then there is ¢ > 0 such that for an
integer k there exists two sequences {m;} and {n} such that

(i) € < limy_,o inf dz(:cm(k),xn(k)) < limg_, o SUp dz(a:m(k),acn(k)) < s¢,

(i) € < limp_,o Inf dz(xn(k),:vm(k)ﬂ) < limy_ o0 SUP dQ(xn(k),:cm(kHl) < se,
(iil)) € < limp_, o Inf d2(xm(k>,xn(k)+1) < limy_y o0 SUP d2(xm(k),xn(k)+l) < se,
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: : ‘e a2 : 1 (72 2
(v) ¢ < limpyoo inf d* (T s Trgy sy ) < Mg oo SUD A2 (T Trgy ) < 876

From (2.1) and by setting 2 = z,,, and y = z,,, we have

lim M(xmk , xnk) = ad® (xmk , xnk)
k—o0

+ (1 = a) max {d* (T, Tny ) ATy s T 41)s A2 (T T 1), A2 (T s Ty 41) }
(2.29) < se.

Now, applying (2.1) with z = z,, and y = z,, , we get

(2.30) F[S2d2($mk+lu Tnyt1] < F(M (2, Tny)) — ¢(d2(mmmxnk))~
Letting k — oo the above inequality and using (2.27) and (iv), we get

F(Ss%) = F(es)
s
< F(s? lim sup d® (T, 41, Tny41))
k—o0 ) )
= lim SupF(SQd(l‘mk+1,l‘nk+1))
k—o0
< lim sup F(M (@, , Tpn, ) — lim Sup(b(dQ(zmk,xnk_))
k—o0 k—o0
= F(M(‘rmk7mnk)) - kll)rgo sSup ¢(d2(xmk’xnk))
< F(M(Zmy, Tny,)) — klim inf ¢(d*(Trmy s Tny )
—00
< F( lim sup M (@, , Tn,,))
k—o0
< F(se).
Therefore,
F(se) < F(se).
Since F'is increasing, we get
s€ < s€

which is a contradiction. Then
lim  d*(2,,2,) = 0.

n,m—s00
Hence, {z,} is a Cauchy sequence in X. By completeness of (X, d) there exists z € X such that
nh_}rrgo d*(z,,2) = 0.
Now, we show that d?(T'z, z) = 0 arguing by contradiction, we assume that
d*(Tz,z) > 0.

Since xz,, — zasn — oo for all n € N, then from Lemma 1.1, we conclude that
(2.31) %dQ(z, Tz) < nh%rrolo supd*(Txz,,Tz) < s d*(z,Tz).
Now, we applying (2.1) with z = z,, and y = 2, we have

F(s*d*(Tx,,Tz)) < F(M(x,,2)) — ¢(d*(xp, 2)),Vn € N,
where

M (2, 2) = ad*(x,, 2) + (1 — a) max {dQ(xn, 2),d*(xn, Txy), d*(2,T2), d2(z,Tmn)}
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and
(2.32) lim supmax {d*(2,,2),d* (2, Txy),d*(2,Tz),d*(z,Tx,) } = d*(2,T2).
n—oo

Therefore,
(2.33)
F(s*d*(Tx,,,T2)) < F(max {d*(zy, 2), d*(xn, T2y), d*(2,T2),d*(z, Txn) }) — ¢(d* (20, 2)).

By letting n — oo in inequality (2.33), using (2.32), (2.31) and continuity of F', we obtain
F[s2%d2(z7 Tz)] = F[sd*(z,Tz)]
< F[s? nh_}rxgo sup d*(Tx,,, Tz)]
= lim sup F[s*d*(Tz,,Tz)|

< hm sup F(M(xy,, 2)) — 7}1—{20 H(d* (2, 2))
F@(T2,2)) — tim (o 2)
F(d*(2,T%)).

Since F' is increasing, we get
sd*(z,Tz) < d*(z,Tz)
which implies that
d*(2,T2)(s — 1) < 0 implies s < 1
which is contradiction. Hence, Tz = z.
Therefore,
d*(z,u) = d*(Tz, Tu) > 0.
Applying (2.2) with z = z and y = u, we have

F(d*(z,u)) = F(d*((Tz,Tu))) < F(s*d*(Tz, Tu)) < F(M(z,u)) — ¢(d*(z,u)),

where
M(z,u) = ad®*(z,u) + (1 — a) max {d*(z,u), d*(z,Tz),d*(u, Tu),d*(u, Tz)}
= d*(z,u).
We have
F(d*(z,u)) < F(d*(z,u)) = ¢(d*(z,u))
< F(d*(z,u))
which implies that
d*(z,u) < d*(z,u)
which is a contradiction. Hence, u = z. [l

Corollary 2.1. Suppose (X, d) be a complete b-rectangular metric space and T : X — X be given
mapping. Suppose that there exist F' € § and 1 €]0, oo such that for any x,y € X, we have

d*(Tz,Ty) >0 = F[s’d*(Tz,Ty)] + 7 < [F(M(z,y))],
where
M(z,y) =a dz(a:,y) + (1 — a) max {dQ(x,y), dQ(x,Tx), dz(y,Ty), dQ(Tx,y)} .
T has a unique fixed point.
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If we take a = 0 we have the following result.

Corollary 2.2. Suppose (X,d) be a complete b-rectangular metric space and T : X — X be given
mapping. Suppose that there exist F' € § and 1 €]0, oo such that for any x,y € X, we have

& (Tz,Ty) >0 = F[s*d*(Tz,Ty)] + 7 < [F(M(z,y))],
where
M(z,y) = (1 — a) max {dQ(Jc,y),dz(m,Tﬂ:),d2(y,Ty),d2(Tx,y)} )
T has a unique fixed point.

For a = 1 we have the following:

Corollary 2.3. Suppose (X,d) be a complete b-rectangular metric space and T : X — X be given
mapping. Suppose that there exist F € § and T €)0, oo| such that for any x,y € X, we have

Tz, Ty) >0 = F[s*d*(Tz,Ty)] + 7 < [F(M(z,y))],
where
M(z,y) = a d*(z,y).
T has a unique fixed point.
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