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ABSTRACT. This survey paper provides a historical overview of wavelets and orthonormal systems, alongside
recent findings related to linear positive operators reconstructed using wavelets. The first section delves into the
historical and chronological development of wavelets, highlighting some of their significant properties. The second
section examines linear positive operators constructed through wavelets, discussing their structural characteristics and
approximation results. While the list included in this paper is comprehensive, it is not exhaustive. We apologize to
any authors whose works on wavelets and wavelet-based operators are not cited in this paper.
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1. INTRODUCTION

The main inspiration for this work comes from Fourier’s pioneering work on Fourier series
and Haar’s question about the orthogonal systems presented in his PhD thesis in 1909. As
everyone knows, Fourier asserted in 1807 that any 27 periodic function f is the sum

f(x) ~ap+ Z (ay cos kx + by sin kx)
k=1
where ag, ag, br (k = 1,2, 3, ...) are Fourier coefficients calculated by

27 27
ag = %/f(ac)dx, ay = %/f(x) cos (kx) dz,
0 0

2m
b = %/f(x) sin (kx) dzx.
0

Prior to Fourier’s contributions, Euler, D’ Alembert and Daniel Bernoulli made attempts to rep-
resent and manipulate functions using power series. By passing from an early representation
of the power series form

ag + arx + agx2 + aga:3 + ...
to one of the trigonometrical system form

agp + (a1 cosx + by sinx) 4 (a2 cos 2z + by sin 2z) + ...

Received: 29.07.2024; Accepted: 21.10.2024; Published Online: 08.12.2024
*Corresponding author: Harun Karsli; karsli_h@ibu.edu.tr

132


https://orcid.org/0000-0002-3641-9052

Historical backround of wavelets and orthonormal systems 133

Fourier discovered a new functional universe. At the time, he derived this series representa-
tion, Fourier did not know the exact definitions of the function and the concept of integral.
However, in 1873, Du Bois-Reymond constructed a continuous 2m-periodic function whose
Fourier series diverged at a specific point. This discovery highlighted the existence of cases
that were incompatible with Fourier’s theory. These discrepancies opened up three new av-
enues for mathematicians of that era, each leading to significant results.

(1) They could modify or determine the notion of function that is adapted to the Fourier
series.

(2) They could modify the definition of convergence of Fourier series.

(3) They could find other orthogonal systems for which the phenomenon, discovered by
Du Bois Reymond in the case of trigonometric system, cannot happen.

As a solution to the first aproach, namely functional concept, was created by Henri Lebesgue,
by defining the L2[0, 27] space, their norm and the quadratic mean.
This approach has been studied by several authors (cf the references, in particular the books

(1) P. L. Butzer, R. ]. Nessel: Fourier Analysis and Approximation, vol. 1, Academic Press,
New York-London (1971),

(2) C. Bardaro, J. Musielak and G. Vinti: Nonlinear Integral Operators and Applications,
De Gruyter Series in Nonlinear Analysis and Applications, vol. 9, New York-Berlin
(2003)).

The solutions related with the second difficulty are the summability methods and the ap-
proximation theory.
(Cf the references, in particular the books

(3) P. P. Korovkin: Linear operators and approximation theory, Hindustan Publ., New
Delhi (1960),

(4) E Altomare, M. Campiti: Korovkin-type approximation theory and its applications, De
Gruyter Studies in Mathematics, vol. 17, Walter de Gruyter and Co., Berlin (1994)).

The third route leads to the notion wavelets.
(Cf the references, in particular

(5) L. Daubechies: Orthonormal bases of compactly supported wavelets, Comm. Pure
Appl. Math., 41 (1988), 909-996,

(6) L. Daubechies: Ten lectures on wavelets, CBMS-NSF Series in Appl. Math., vol. 61,
SIAM Publ., Philadelphia (1992),

(7) Y. Meyer: Ondelettes: wavelets and operators, Cambridge University Press, New York
(1993)).

In 1909, Haar asked himself the following question.

“Does there exist another orthonormal system {hq(z), ha(x), ..., hy(x), ...} of functions defined on
[0, 1] such that for any function f continuous on [0, 1], the series converges to f(x) uniformly on [0,1]?”

The first and simplest solution to the problem was given by Alfred Haar in his PhD thesis
(1909). In other words, Haar suggests an alternative system to Fourier system.

A. Haar, Dissertation: “Zur Theorie der orthogonalen Funktionensysteme”, Georg-August-
Universitit Gottingen (1909).

This system, known as the Haar system, is the first and simplest known form of wavelets
and has been an important guide in the beginning and progress of the theory.
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The simplest wavelet is known as the Haar wavelet defined as;

1, 0<z<j;
play=¢ -1 , <<l
0o e.w.
with the corresponding scaling function
1, 0<z<1
oft) = { 0 , e.w.

Note. Clearly, Haar wavelets constitutes an orthonormal system for the space of square-integrable
functions on the real line. Unfortunately, Haar wavelets are not continuously differentiable
which somewhat limits their applications. Indeed, since Haar wavelet is neither continuous
nor differentiable, it is suitable for representing discrete signals not for representing smooth
signals or functions.

In 1922, Hans Radamacher [31] defined another orthonormal system on the interval [0, 1] as
follows and provided a solution similar to Haar’s problem.

1 2’;—;1 <z< g—ff

¢(n,x)—sign(sin2”ﬁx)—{ ENTT T i z €10,1].

The Radamecher system, which is similar to the Haar system, revealed the connection with the
trigonometric system.

(0.x)
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5
S(1x)
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1
o l ! - X
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¢ - ! » X

‘(6\3;1

FIGURE 1. First four elements of Rademacher system

In order to eliminate this negative situation, various attempts were made by Faber [16] and
Schauder [32] between 1910 and 1928, and a new system was created by taking the antideriva-
tives of the functions in the Haar system, thus making it possible to obtain the convergence of
the series polygonally. Let j > 0 and

Vin(@) = AMr —k+1),1 <k <27,
where
2x , 0
Alz)=< 2-2z , %
0 ;

x
x
e.w
together with the function ¢1 (z) = ¢,1(x — 1/2) + 9,1 (z + 1/2) on [0, 1] and 0 elsewhere.
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FIGURE 2. Some elements of the Faber and Schauder System

The Faber-Schauder system is the first basis defined for the Cf[a,b] space and is generally
known as the Schauder basis. The Faber-Schauder system is not an orthonormal system. As
a result of applying the Gram-Schmidt orthonormalization process to the Faber-Schauder sys-
tem, the Franklin system is obtained. This system was described by Philip Franklin in 1927,
[17].

In 1983, Stromberg [33] defined the Stromberg wavelets, which bear his name, by using
the Franklin system. If we remember that the Haar wavelet is the first known wavelet, the
Stromberg wavelet is the first wavelet defined as smooth. This is a very important step for the
representation of differentiable functions.

FIGURE 3. Stromberg wavelet of order zero

1.1. Wavelet Analysis. In this section, we outline the main notation used throughout the paper
and include some general information.

It is very well-known that wavelets and wavelet expansions have the great advantage of
being able to separate and identify fine details in a signal or a function. One of the main ad-
vantages of wavelets compared to the Fourier analysis and its related theories is that they offer
simultaneous localization in the time and frequency domain. The second main advantage of
wavelets is that they are computationally very fast and detailed when using wavelet expan-
sions and transformations.
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Unlike Fourier analysis, which uses sinusoidal functions, wavelets offer flexibility and adapt-
ability to specific signals (target functions) and are inherently localized. Because there is no sin-
gle universal wavelet, they can be tailored to suit particular applications, making them ideal
for adaptive systems that adjust to match the function. Below are the graphs of a sinusoidal
function and the Shannon wavelet.

FIGURE 4. Sinusoidal function and the Shannon wavelet

Wavelet expansion, or the reconstruction of signals using wavelets, enables more precise
local identification and separation of signal features. Each wavelet expansion coefficient rep-
resents a local component, making interpretation easier. Additionally, wavelets allow overlap-
ping components of a signal to be separated in both time and frequency domains.

1.2. Multiresolution Analysis (MRA). A Multiresolution Analysis (MRA) is an increasing se-
quence (Vj) ez of closed subspaces of L?(R) such that the following hold:

(i) V;isasetofall f € L?(R) which are constant on 277 length intervals and

W CV o CVoL WV C Vi C...CV; C Vg C.. C La(R),

UV, = La®).NV; = {0}

Vi,k € Z, f(x) € V; & f(2x) € V)11,
VkeZ, fe) e Vo fx—k)e Wy
Vik€Z, f(z) €V, & fx—277k) €V},
(see [14]-[15]).
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Since V; C Vj41 (for all j € Z), then there exist subspaces W; of Ly(R) satisfying

V1 =Vo & Wy,
Vo =V @ Wy,
‘/j+1 = ‘/j 2] Wj7
and
LQ(R) =.OW o dW_1Wy®..P Wj © Wj+1 D ...
Let

1, 0<z<1

¢(x) :{ 0, du.

be a scale function and then the subspaces are

Vo:flz) =) ard(x —k)
k

Viif(o)=> ard(2z— k)
k

Va: fx) =) arg(2°x — k)
k

(GE€Z), Vy: fl@) = ard(2x — k).
k
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Definition 1.1 (Wavelet). A wavelet is a small wave which oscillates and decays in the time domain.
In other words, functions called "wavelets” are generated from one single function ¢ (scale function) by
dilations and translations as

bnp(x) =2"2¢ (2" — k), n ke Z

The fundamental idea behind wavelets is to analyze the signals and functions according to
scale. A wavelet basis set starts with two orthogonal functions: the scaling function (or father
wavelet) ¢(t) and the wavelet function (or mother wavelet) ¢(t). By scaling and translation
of these two orthogonal functions, we obtain a complete basis set. The scaling and wavelet
functions, respectively, satisfy

7 o(t)dt = 1, 7 o(t)dt = 0.

These two functions have finite energy, namely ¢, » € L?(R), and orthogonal. In general, the
wavelets refers to the set of family of orthonormal functions of the form

1 t—20
1.1 () = —o (222 beER,
(R bust) = o () s 0

where ¢ is the basic wavelet.

The wavelet analysis procedure is to adopt a wavelet prototype function, called an analyzing
wavelet (father wavelet) or mother wavelet. Some of the special cases of a and b, one can obtain
from (1.1) different type of wavelets, such as Haar wavelet, Shannon wavelet, Franklin system,
Meyer wavelets, etc. (see [9]).

In the present study, we consider orthonormal bases of wavelets in L?(R), and assume that
there is a scaling function (father wavelet) ¢(¢) whose translates {¢(t — n)} are orthogonal and
the mother wavelet ¢(t) based on the father wavelet ¢(t) gives rise to the orthonormal basis
©jk(t) of L*(R), where

(12) k() =270(2t — k).
Hence, by using a multiresolution analysis (MRA), each f € L?(R) has the following wavelet

expansion
F@) =" bikpjr(@),

JEL kEL
where b; ;, are wavelet coefficients defined by

@kzwmxﬁw@»:wﬂ/#uw@mkom
R

1.3. Daubechies Wavelets. Assume that the scale function (or father wavelet) i) € Lo, (R) and
satisfies:

(i) v is a compactly supported, namely there is a real constant 0 < A < 1 such that supp ¢ C
[0, A],

(i) [ (x)de =1,
R

(iii) the first N moments of the father wavelet ¢ satisfy

mﬂw?/ﬂwmm:aj:me

R
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Obviously, the absolute moments of the father wavelet v

MY () = / 2! ()| dr < +o0
R

for every j € Ny := {0} U N. Actually, Daubechies wavelets have strong relations with the
properties of continuity and differentiability. Namely, for an arbitrary fixed integer N > 1,
compactly supported Daubechies wavelet 1 is supported with [0,2N — 1], in addition there
exists a constant 7 > 0 such that for N > 2, ¢ € C"™(R) and to have a given number of
vanishing moments. In particular, when N = 1, then the first Daubechies wavelet ¢ will be the
classical Haar basis. As N increases, the regularity of the wavelets increase (see [14]-[15]).

25 4
& Value
2.0 A

15 A
10 4
05 4
0.0 +
-0.5
10 4
-15 4
-20 4

-25 - e COMpressed  —— Original

FIGURE 5. Approximation by Haar wavelet

This means that if we want to use Daubechies wavelets to reconstruct a function, it is more
convenient to choose or construct wavelets based on the continuity or differentiability proper-
ties of the given function.

Hd B HH FH S

db2 db3 db4 db5 db6
db7 db8 dbg db1n

FIGURE 6. Daubechies wavelets (N=2,3,... )

2. RECENT RESULTS ON POSITIVE LINEAR OPERATORS RECONSTRUCTED VIA WAVELETS

In this section, we deal with the very recent studies about the Bernstein type operators and
Neural Network (NN) operators reconstructed via wavelets.

For a bounded real valued function f defined on the interval [0, 1] (f € BJ0, 1]), the Bernstein
operators B,,, n > 1 are defined by

23) Zf( )zank 0. o>l

=0
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where py, i, (x) = (})2"(1 — )" 7% is the Bernstein basis (0 < z < 1).

2.1. Bernstein Operators Constructed Using Wavelets. Owing to the above definitions, first
of all we will recall the wavelet type Bernstein operators W B,, introduced by the author [24].

Definition 2.2 (2023, [24]). Let f € B0, 1], and let w € Lo (R) be a father wavelet satisfying (i)-(iii).
Then the wavelet type Bernstein operators are defined by:

1
(Wan = nzpn k(T /f TLJU — )dx,
- 0

with t € [0, 1], specifying that supp(w) C [0,A], 0 < A <

Remark 2.1 (2023, [24]). If we choose the father wavelet w as the Haar scaling function, namely
w(x) = X[0,1](), then clearly our wavelet type operators reduce to the Kantorovich form of the Bernstein
operators. Indeed:

1

(W B f)(t _nZPnk /f w(nx — k)dx

0
St [ 1(22) o

> pailt) [ 72z = (Kaf)(0).
> i /

This shows that the wavelet type Bernstein operators (2.9) are a natural extension of the
Kantorovich type of the Bernstein operators. As presented and proved in [24], we have the
followings.

Theorem 2.1 (2023, [24]). Let f € BJ0,1] and let w € Lo (R) be a father wavelet satisfies (i)-(iii).
Then the moments of wavelet type Bernstein operators, constructed by using the compactly supported
Daubechies wavelets (2.9) and the Bernstein operators (2.3) are the same, namely

(WBuz°)(t) = (Bpz®)(t), s=0,1,...,K
holds true.
Remark 2.2 (2023, [24]). By the properties (ii) and (iii), one gets

(WBn (JU — t 3 an Kt - nt)/g

= (B, <x - )")(1).

Throughout this work, the first two central moments of the wavelet type Bernstein operators (2.9) satisfy

(2.4) ) = =3 pas(t) (ki) =
k=0

1 < s t1-t) 1
= — — = < —
77 2 Pl (k= nt)* = === < o

for every t € [0, 1].



Historical backround of wavelets and orthonormal systems 141

It is also well-known that for each s € Ny there is a constant A, only depending upon s such
that

As

hold. Moreover, for every t € [0, 1] and for some 5 > 0, the discrete absolute moments of order
B satisfy

2 nb/2
where I'(+) stands for the Gamma function (see [3]). In [24], we have also proved the following:

Theorem 2.2 (2023, [24]). Let f € B0, 1] and let » € Loo(R) be a father wavelet satisfying (i)-(iii).
Then

2.5) fis(t) == (By |z — %) (t) < 20 (B + 1) o

i (W B,,f)(to) = f(to)
holds true at each point to of continuity of f.

As a consequence of the Theorem 2.2, we have also the following uniform convergence re-
sult.

Corollary 2.1 (2023, [24]). The same arguments of Theorem 2.2 apply to the case when f € C[0,1]. In
this case the convergence is uniform with respect to t € [0, 1], and hence one has

nlggo [(WBf) - fHC[O,l] =0.

Theorem 2.3 (2023, [24]). Let f € CI0,1] and let ¢ € Lo (R) be a father wavelet satisfies (i)-(iii).
Then
IWBflloo < K| fllso »

holds true, where K = X ||¢| .
Theorem 2.4 (2023, [24]). Let f € CI0,1] and let ¢ € Lo (R) be a father wavelet satisfies (i)-(iii).
Then
lim (WB,J) (x) = ().
and

n2

(WB,f) (2) — ()] < (K +1) Ko (f; W) ,

where K = X ||¢||, and Ka(f;6) is the Peetre’s K-functional.

Theorem 2.5 (2023, [24]). Let f € C[0,1], ¥ € Lo(R) be a father wavelet satisfies (i)-(iii) and
a € (0, 2) be fixed real number. Then
wa(fit) = Ot*) = [(WS,f) (x) — f(z)] = O(1/n)"

holds true.
Theorem 2.6 (2023, [24]). Let f € L[0,1] and let 1) € Lo(R) be a father wavelet satisfies (i)-(iii).
Then

IWBLflly < K|If]ly
holds true, where K = nh ||| ||Pn.kll, and h := [X] + 1. Here | ] denotes the floor function of the
real number .
Theorem 2.7 (2023, [24]). Let f € L?[0,1] (1 < p < oo) and let 1) € Loo(R) be a father wavelet
satisfies (1)-(iii). Then

IWSnfll, < Kp I £l

holds true, where K,, = n ||1|| Hpn,kHi/p RYP > 0,and h:= [A| + 1.
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2.2. Extension of the Generalized Bézier Operators by Wavelets. Letp, i (t) = (})t*(1—t)"~F
be the Bernstein basis and let J,, . (t) = > i—kPnj (1), t € [0,1], be the Bézier basis functions
introduced in [8]. For a bounded real valued function f defined on the interval [0,1] (f €
B[0,1]) and « > 1, the Bézier modification B, , of the well-known Bernstein operators are
defined as

(2.6) (Buof)(x) =Y f (S) Q') () for z € 0,1],

k=0

where Q%) (t) = J& (t) — J2 1 (t) for t € [0,1] (Jpu(2) = 0if L > n). If a = 1, then By, 4
reduce to the classical Bernstein operators.
In 2004, Gupta [19] considered the generalized Kantorovich type operators as;

k+1

n

(27) ( n cf =n an k,c (u)du

:\?r\

where f is locally integrable on the interval [0, c0) and are of polynomial growth as u — oo,
whose particular cases reduce to the well-known Szasz-Kantorovich and Baskakov-Kantorovich
operators. Indeed, here

P (@) = (=1)F ¢(’“)()

and as special cases, ¢, .(z) = (1 + cz)™/¢ for ¢ = 1, and ¢, .(z) = exp(—nz) for ¢ = 0, then
the generalized Kantorovich type operators (2.7) turns out to be Baskakov-Kantorovich and
Szasz-Kantorovich operators, respectively.

As a generalization, Gupta [19] defined the Bézier variant of the aforementioned generalized
Kantorovich type operators as follows:

2.8) (KS.f —nZQSS‘;C / F(u)du,

whereanc(): ke () =k (t), > 1and

n,k,c n,

nkc E pmjc

be the Baskakov basis and Szész basis for ¢ = 1 and ¢ = 0, respectively. Clearly, if « = 1 then
the operators Ky . (2.8) reduce to operators (2.7). Now, we construct the generalized Bézier
operators by using the compactly supported Daubechies wavelets.

Definition 2.3 (2022, [23]). Let f € L1[0,00) and ¢ € Loo(R) be a father wavelet satisfies (i)-
(iii). Then the wavelet type generalized Bézier operators, constructed by using the compactly supported
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Daubechies wavelets, are defined by:

o}

(2.9) (WBZ f)(t) :=n Z QY . ) / f(z) (e —k)dz (t€R)
- R
> (@) x + k)
Qn,k,c )d$ (t € R)

k=0

y%\
~
/N

;a,zc / <x+k> (¢)dz (tE€R).

Remark 2.3 (2022, [23]). If we choose the father wavelet 1) as the Haar scaling function, namely 1 (x) =
X0,1)(2), then clearly our wavelet type operators reduce to the Kantorovich form of the generalized Bézier
operators (2.8) considered and investigated by Gupta in [1], [19] and [20]. Indeed;

o

(WBZ‘,cf)(t)=nZanc /f $(n — K)dz

RLEVIRLY B G R

k=0
0 1

=300 0 [ 1 () vt
k=0 0

This means that our new operators constructed by father wavelets are a natural extension of the Kan-
torovich type of the generalized Bézier operators and also its Durrmeyer type operators.

Theorem 2.8 (2022, [23]). Let b € Loo(R) be a father wavelet satisfies (i)-(iii). Then the moments
of wavelet type generalized Bézier operators constructed by using the compactly supported Daubechies
wavelets (2.9) are given by

X 1s
WB2 )1 =3 Q) (1), s=0,1,.., M,

where M is a positive integer.

Remark 2.4 (2022, [23]). Moreover, the central moments of the wavelet type generalized Bézier opera-
tors (2.9) are given by,

1 o0
(WBZ, (z —t)° ?Z QL) (1) (k—nt)”.

Throughout this work, as in the case of the generalized Bézier operators, we assume that
the first two central moments of the generalized Bézier operators, constructed by using the

compactly supported Daubechies wavelets (2.9) satisfy for ¢ = 1 and ¢ = 0,
wo(t) == (WBL 1)(t) = 1,

n,c

wi(t) == (WBy . (x = 1))(t) = 0,

w(t) = (WBS, (x — )°)() = 2+
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and in addjition for each z € [0, c0)
(WBG. (z = )™)(t) = O (n~ D7) 1 — oo
(see [19]).

Theorem 2.9 (2022, [23]). Let f € L1[0,00) and let 1) € Lo (R) be a father wavelet satisfies (i)-(iii).
Then

lim (W BSf)(to) = f(to)

n— oo

holds true at each point to of continuity of f.

Corollary 2.2 (2022, [23]). The same arguments of Theorem 2.9 apply to the case when f € C[0,00) N
Loo(R). In this case the convergence is uniform with respect to x € [0, 00), and hence one has

i [[(WB5,.) - /], =0

n—oo

Theorem 2.10 (2022, [23]). Let f € C[0,00) N Lo (R) and let 1) € Lo (R) be a father wavelet satisfies
(i)-(iii). Then

W B3 e flle < Kl llsc
holds true, where K = X ||9| .

Theorem 2.11 (2022, [23]). Let f € C[0,00) N Loo(R) and let i € Lo (R) be a father wavelet satisfies
(i)-(iii). Then
lim (WBicf) (z) = f(x),

n—oo

and

not(1 + ct) + )\2)
2 b

(WB2.f) (2) — ()] < (K +1) K (f;

where K = X ||¢||, and Kx(f;0) is the Peetre’s K-functional.

n

Theorem 2.12 (2022, [23]). Let f € C[0,00)N Lo (R), ¥ € Loo(R) be a father wavelet satisfies (i)-(iii)
and n € (0, 2) be fixed real number. Then

wa(f;t) = O(t") = |(WBs .f) (z) — f(x)] = O(1/n)"
holds true.

2.3. Some Properties of the Generalized Bézier Operators Constructed by Wavelets in BV
Spaces. We first recall the following main definitions.

Definition 2.4. Let g be a bounded function on a compact interval I = [a, b]. The modulus of variation
v (g; [a, b]) of the function g is defined for nonnegative integers n as follows:

v(g; a, b]) := 0
and for k > 1
k—1
vi(g; [a, b]) := SIITJPZ l9(z2541) — g(x25)],

where 11, is an arbitrary system of k disjoint intervals (xg;, x2j11), j = 0,1,...,k —lie, a < zy <
1 < o < T3... < Top_9 < Top_1 < b(see[12]).
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Some properties of the modulus of variation and its applications can be found e.g. in [12].
In particular, v (g; I) is a non-decreasing function of k € N,

vi(g; 1) < 2ksup [g(t)],
tel
vi(9;2) < v(g; I)

for any compact interval Z contained in I. Let p > 1. The pth power variation of a function g
on a compact interval I = [a, b] is denoted by V,,(g, I) and is defined as the upper bound of the

set of numbers
1/p
(Z lg(s;j) — g(tj)lp)
J

over all finite systems of non-overlapping intervals (s;,¢;) C I.If f is of bounded pth power
variation on I, then for every k € N,

(2.10) ve(g; T) < K=YPV, (g, 1).

The class of all functions of bounded pth power variation on every compact interval contained
in [0, co) will be denoted by BV} [0, c0).

Theorem 2.13 (2023, [25]). Let f be a bounded variation on every finite subinterval of [0, 00) and are
of polynomial growth as t — oo, i.e., for some r > 1 and some absolute constant M, |f(t)| < Mt" holds
true for t € [0,00). Let ¢ € Lo (R) be a father wavelet satisfies (i)-(iii) and let x € (0, o) the one-sided
limits f(x+), f(x—) exist at a fixed point x € (0, 00). Then, for all sufficiently large integers n, one has

5,0 o) - 5

<2v1(gz; H. x/\/ﬁ

lﬁnamg |:mz: U] gr, ]I/f)) m(graHr(x))

3ol = (1= 55 ) 760

Jj=1 m?
(n,x,c) B aMms (1)
nx (1 + cx) —J@)l+ x2rpr
where m := [\/n],
2Bl +x)+2C1] , c=1
Aln,z,0) = { g0~ [QM+11} , c=0"
and
ft) = fla+) if t>ux
(2.11) 9z (1) := 0 if t=ux
f&) = flz=) if 0<t<uz

Using the notations used in Theorem 2.13 and using inequality (2.10), we get:
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Theorem 2.14 (2023, [25]). Let f € BVP

b.10,00), p > 1and let x € (0,00). Then for all sufficiently
large integers n, one has

2@
< (24 222 vy g o/ )
Jr16nozmg(1/1) ( 1 >1+1/p ~ Vp(ga; He(2/VE)

2

0 By0) - gt - (1- 5 ) £lo-)

x Vn =1 (ﬁ)l_l/p
OB iy pamy| + M)
nx (1 + cx) ) = gl trnt

So, we get the following approximation theorem.

Corollary 2.3 (2023, [25]). Suppose that f € M;o.[0,00) (in particular, f € BV} [0,00), p > 1) and
it satisfies the growth condition as in Theorem 2.13. Then at every point « € (0, 00) at which the limits
f(z+), f(xz—) exist, we have

n—oo 204

lim (W B f) (2) = oo f4) + (1 - 1) fa-).

Obviously, the above relations hold true for every measurable function f bounded on [0, c0),
in particular for every function f of bounded pth power variation (p > 1) on the whole interval
[0, 00).

Remark 2.5 (2023, [25]). For the particular value ¢ = 1 and ¢ = 0, our theorems improve the main
results of [1], [19] and [20].

2.4. Asymptotic Properties and Quantitative Results of the Wavelet Type Bernstein Opera-
tors.

Theorem 2.15 (2024, [28]). Let f : [0,1] — R be a bounded function. Moreover, we assume that f' (t)
exists at a fixed point t. Then the following asymptotic formula holds:

(WB.f) (t) = f(t) + o (n*“) . (n = 00).

Theorem 2.16 (2024, [28]). Let f € B[0,1] and let t € [0,1] be fixed. If for a certain r € N,
f € C" locally at the point t, then the following asymptotic formula holds:

(WBwf) ( +Zf +o(*’“/2), (n — 0),

where y; is the i — th order algebraic moment.

As a consequence of the aforementioned theorems, we can establish the following first and
second order Voronovskaya type theorems, respectively.

Theorem 2.17 (2024, [28]). Let f € B[0,1] and let t € [0, 1] be fixed. If f € C* locally at the point t,
then we have

lim n'/2 [(WB,f) (t) — f(t)] = 0.

n—oo
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Theorem 2.18 (2024, [28]). Let f € B[0,1] and let t € [0, 1] be fixed. If f € C? locally at the point t,
then we have

lim n [(WB, ) (£) — F(1)] = ~ 1" () pz (1)

n— o0 2

_t(l_t) "
=S ().

Here, we study quantitative estimates of the convergence results given in the previous the-
orems.

Theorem 2.19 (2024, [28]). Let f be a bounded function f : [0,1] — R. Moreover, we also assume
that f € C* locally at a fixed point t. Then, there holds

(V) () = FO)] < 20186 (£ ).

where

Dy = M (w) + Mg’ (w)pa (t)

Dy = My’ (w) + Mg’ (w)pz(t) + 2M;° (w) i (t)
and M (-) (i = 0,1, 2) are the absolute moments.

Similarly we have the following quantitative estimates for the r — th order asymtotic expan-
sion.

Theorem 2.20 (2024, [28]). We also assume that f € C™ locally at a fixed point t, then we have

T f@)
” ((WBm 0 -7 -3 T <t>> < 2k (1 e )

S N G

k=0

where

o +1
=3 (T ) M-t

k=0
2.5. Neural Network Operators Described Using Wavelets. In 1989, Cybenko [13] gave an
answer to the superposition problem on C|a, b] with his famous density theorem, which states
that every continuous function defined on [a, b] can be approximated by a sequence constructed
by a linear combination of sigmoidal functions. In other words, Cybenko confirmed that a neu-
ral network with solely one hidden-layer is capable of always approximating to a continuous
function.

Based on the idea developed by Cybenko, the theory of the mathematical models of the
neural network (NN) operators arise since 1992 with the pioneer work of Cardaliaguet and
Euvrard [11], and then in the next years, they have been largely studied by several authors
under different aspects. Especially in the last two decades, there are many new version of
artificial neural networks has been introduced and widely studied.

In particular, in 1997 Anastassiou [5] pointed out and obtained that the compactly supported
bell-shaped functions used in the Density Theorem of Cybenko and the Cardaliaguet and Eu-
vrard (NN) operators can be obtained from sigmoidal functions used effectively in Artificial
Neural Networks, serious relations have emerged between the Cybenko convergence theorem
and the Theory of Approximations.
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In this section, we shall recall some notation and background material of the theory of Neu-
ral Networks. We denote by Cla, b], Ba,b] and L. (R) the sets of continuous, bounded and
essentially bounded functions with their usual norms, respectively.

Definition 2.5 (Centered bell-shaped function). A function b : R — R is said to be centered
bell-shaped if b belongs to L'(R) and its integral is nonzero, if it is nondecreasing on (—oo,0) and
nonincreasing on [0, +00).

Definition 2.6 (Sigmoidal Function). Lef o : R — R be a measurable function satisfies

mgrzlooo(x) =0 and wl;r{)lo o(x) =1,

then it is called sigmoidal function.

As an example of a sigmoidal and its corresponding bell-shaped function, we can consider
the ramp function, which is very useful and important for the neural network.

Definition 2.7 (Ramp Function). A ramp function is a special sigmoidal function defined as

0,  x<-1/2
R(z)=4 x+1/2 |, -1/2<x<1/2
1 , x>1/2

Clearly, a bell-shaped function can be define by using Sigmoidal ( or Ramp) function, namely

ba(x)za(erl);o(xfl),

and
br(r) = R(x 4+ 1/2) — R(x — 1/2).
Moreover, br : R — R is a bell-shaped kernel function obtained by ramp function R(z) that
satisfies following assumptions:
bg is a continuous function on R,

n

br € L'(R), > br(u—k) =1forevery u € R,

k=0
and
2.12 Opg :=su br(u—k) < oo,
(2.12) R ueﬁz R( )

k=0

where the convergence of the series (2.12) is uniform on each compact subintervals of R. Some
other sigmoidal functions are Gompertz function, Logistic function, Error function and Hyper-
bolic tangent functions, etc. Now, we will give some definitions of the Neural Network (NN)
Operators.

Definition 2.8 (Cardaliaguet and Euvrard (NN) Operators). Let f : R — R be a continuous and
bounded function and n € N, the Cardaliaguet and Euvrard (NN) Operators are defined as:

n? k
(an) (gj) = Z %b(n*a(nm - k)a

k=—n?2
where 0 < o < 1, b is a bell-shaped function with compact support C [—T,T), and
T
B = / b(z)dz.

-T
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The Cardaliaguet and Euvrard (NN) Operators and its different modifications were inten-
sively studied by Anastassiou, Spigler, Costarelli, Vinti. In [5], Anastassiou defined the Cardaliaguet
and Euvrard (NN) Operators as follows;

Definition 2.9. Let f : R — R be a continuous and bounded function, T > 0,n € N and n >
max{T + |z|, T~'/*}, the Cardaliaguet and Euvrard (NN) Operators are given by

[nz+Tn" | k
Fn@=- > e,

k=[nz—Tn>]

where again 0 < a < 1, b is a bell-shaped function with compact support C =T, T, and
T
B = / b(z)dz.
=T

Definition 2.10 (Neural Network (NN) Operators). Let f : [0,1] — R be a bounded function, and
n € N*. The positive linear neural network operators activated by the ramp function R, are defined as.

S f () bg (nz — k)
(2.13) (Nof) (z) = =0 , z€el0,1],
kZ::O br (nx — k)

where by, is the bell-shaped function obtained by the ramp function R.

Moreover, we will examine and analyse various properties of the wavelet type extension of
the neural network operators.

Definition 2.11 (2023, [26], Wavelet type Neural Network (NN) Operators). Let f : [0,1] - R
be a bounded measurable function, n € N*. and let 1) € Lo (R) be a father wavelet satisfying (i)-(iii).
Then the wavelet type Neural Network (NN) operators activated by the ramp function R, constructed
by using the compactly supported Daubechies wavelets, are defined by:

ZbR (nt — k ff Y(nw — k)dx
(2.14) (WN,f) (t) = n*=2 . telo,1],
Z br (nt — k)

k=0

where by, is the bell-shaped function obtained by the ramp function R.

Remark 2.6 (2023, [26]). If we choose the father wavelet v as the Haar scaling function, namely (x) =
X0,1)(x), then clearly our wavelet type operators reduce to the Kantorovich form of the Neural Network
(NN) operators. Indeed;

i br(nt — k) [ f(z)¢(nz — k)dx

(WNLf)(t) = n*= i
> br(nt —k)
k=0
Z br(nt — k) [ f (% ) u)dx
_ k=0 0 .
> br(nt —k)

k=0
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This means that our operators constructed by wavelets are a natural extension of the Kan-
torovich type of the NN operators and also its Durrmeyer type operators.

Remark 2.7 (2023, [26]). Moreover, the central moments of the wavelet type NN operators (2.14) are
the same as of the classical NN operators (2.13). Indeed, we get

n

S br(nt — k) (k —nt)?

(WN, (z—t)")(t) = niﬂ k=0

i bR(nt — k)
k=0

= (N (2= 1)°)(1)
Throughout this work, for every w € R and for some 3 > 0, we assume that the algebraic and discrete
absolute moment of order (3 are given by, i.e.,

n

mga(bg) ::SHEZ br (u—k) (u—k)?,
ue k=0

Mg(br) ::suprR (u—Fk)u—k° < oco.
uweR ;70

Theorem 2.21 (2023, [26]). Let f € B[0,1] and let ¢ € L (R) be a father wavelet satisfying (i)-
(iii). Then the moments of wavelet type NN operators, constructed by using the compactly supported
Daubechies wavelets (2.14) and the NN operators (2.13) are the same, namely

(WN,2°)(t) = (Np2®)(t), s=0,1,... K
holds true.

Theorem 2.22 (2023, [26]). Let f € B[0, 1] be a measurable function and let 1) € Lo (R) be a father
wavelet satisfying (i)-(iii). Then
lim (WN,f)(to) = f(to)

n—oo

holds true at each point to of continuity of f.

Theorem 2.23 (2023, [26]). Let f € C[0,1] and let yp € Lo (R) be a father wavelet satisfies (i)-(iii).
Then

((WNwf) () = f2)] < 4w (f;1/n)
holds true.

Corollary 2.4 (2023, [26]). The same arguments of Theorem 2.22 apply to the case when f € C|0, 1].
In this case the convergence is uniform with respect to x € [0, 1], and hence one has

Jim [[(WN,f) = fllcp, =0

Theorem 2.24 (2023, [26]). Let f € C[0,1] and let 1) € Lo (R) be a father wavelet satisfying (i)-(iii).
Then

lim (WN,f) (z) = f(x),

n—oo

and

My(bg) + \20Ogr + 2)\M1(bR)>

n2

(VN (@) = @) < (K + 1) Ko (1
where K = X||¢||, and Ka(f;6) is the Peetre’s K-functional.
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Theorem 2.25 (2023, [26]). Let f € C[0,1], ¥ € Loo(R) be a father wavelet satisfying (i)-(iii) and
a € (0,2) be fixed real number. Then

wa(fit) = O@%) = [(WNuf) (x) — f(z)] = O(1/n)*

holds true.

2.6. Graphical Representations. Now, we will give some graphical examples for these ap-
proach, namely convergence to functions by means of wavelet type Neural Network operators
(WN,f) (). We note that in all the following Figures, the graph with the red line belongs to
the target function.

Example 2.1. Let f(z) = x—x?, and take the activation function as a Ramp function for the neural net-
work operators. We consider a special case of the wavelet type Neural Network operators (W N, f) (z),
namely Kantorovich type Neural Network operators.Then one has for n = 3,5 and for n = 20.

—_— f(x)=x-><2

(WN3f)(x)
— (WNsf)(x)
— (WN2of)(x)

~01}F
—0.2}+

FIGURE 7. Approximation of f(z) = z — 22 by Kantorovich type NN operator
activated by Ramp function, for n = 3,5 and n = 20.

Example 2.2. Let f(x) = x — 22, and take the activation function as a Ramp function for the neural
network operators. We consider the wavelet type Neural Network operators (W N, f) (x) constructed
by using Haar scaling function. Then one has for n = 3,6 and for n = 15.
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— f(x)=x-x,
— (WN3f)(x)
— (WNgf)(x)
— (WN15f)(x)

I I I I
0.2 0.4 0.6 0.8 1.0

FIGURE 8. Approximation of f(z) = z—x? by Haar Wavelet type NN operator
activated by Ramp function, for n = 3,6 and n = 15.

Example 2.3. Let f(z) = x — 22, and take the activation function as a Ramp function for the neural
network operators. We consider the wavelet type Neural Network operators (W N, f) (x) constructed
by using Shannon wavelet function. Then one has for n = 30, 60 and for n = 150.

=)
T

/\ — f(x)=x-x*
— (WN3of)(x)
— (WNgof)(x)

\ /\ A /\ A /’\ — (WN1500)(x)

ANANANNAANAJALNNAAAAN A

FIGURE 9. Approximation of f(z) = z — z? by Shannon Wavelet type NN
operator activated by Ramp function, for n = 30, 60 and n = 150.

3. CONCLUSION AND FUTURE WORK

In contrast to Fourier analysis, which provides information about frequencies but not their
timing, wavelets offer insights into both the frequency content and the specific time intervals
at which these frequencies occur. This dual capability makes wavelets particularly effective for
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analyzing dynamic signals, as they achieve higher resolution in both the time and frequency
domains.

Furthermore, wavelets possess properties that enable their application to approximation
problems in L,, spaces. Given their advantages for approximation tasks in these spaces, there is
significant potential for leveraging wavelets in machine learning and neural network contexts.
Future research will focus on adapting the insights and methodologies developed for wavelets
to these emerging fields and theories.

Additionally, considering the effects and advantages of multivariate forms of operators in
image processing and data analysis, the use of these multivariate forms of operators, such as
sampling operators, which can be reconstructed with appropriate wavelets, can be identified
as an open problem and an area for future research in image processing and data analysis. For
the one dimensional case of the sampling operators reconstructed using wavelets please see
the recent paper of the author [27].
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