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A Jackson-type estimate in terms of the τ -modulus for neural
network operators in Lp-spaces
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ABSTRACT. In this paper, we study the order of approximation with respect to the Lp-norm for the (shallow) neural
network (NN) operators. We establish a Jackson-type estimate for the considered family of discrete approximation
operators using the averaged modulus of smoothness introduced by Sendov and Popov, also known by the name of
τ -modulus, in the case of bounded and measurable functions on the interval [−1, 1]. The results here proved, improve
those given by Costarelli (J. Approx. Theory 294:105944, 2023), obtaining a sharper approximation. In order to provide
quantitative estimates in this context, we first establish an estimate in the case of functions belonging to Sobolev spaces.
In the case 1 < p < +∞, a crucial role is played by the so-called Hardy-Littlewood maximal function. The case of
p = 1 is covered in case of density functions with compact support.
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1. INTRODUCTION

The theory of feed-forward artificial neural networks (NNs) has been widely studied since
the first half of the 1990s in view of their wide use in many applied fields such as artificial
intelligence [15, 16, 19] and neuroscience. A crucial first impulse to that theory came from the
introduction of an oversimplified model of the human brain, thanks to the contribution of Mc-
Culloch and Pitts [7] (1943). Actually, simplifying the real functioning of the most complex
organ of the human body, McCulloch and Pitts view the brain as a collection of neurons rep-
resented by dots that communicate with each other through connections modeLled by lines in
accordance with “threshold logic”: if the magnitude of the incoming impulse exceeds a certain
threshold value, the individual neuron sends its charge in response to the neurons to which it
is connected; otherwise, it maintains its quiet status.

In recent decades, many authors have shown that neural networks can be successfully used
for function approximation, finding interesting applications in Approximation Theory, as well
in [1, 3, 4, 5, 18, 20, 22]. One of the purposes was to obtain constructive approximation al-
gorithms based on NNs. In this direction, the pioneer result is the approximation theorem
established by Cybenko [13] for single layer (shallow) NNs defined by the superposition of
sigmoidal activation functions. Although this result is elegant from a mathematical point of
view, since its proof is based on well-known theorems of functional analysis, such as the fa-
mous Hahn-Banach theorem, at the same time it has a strong non-constructive character that
severely limits its use in the application domain.
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In order to solve this problem, a constructive approximation approach was faced by
Cardaliaguet and Euvrard in [6], where uniform approximation processes through NN opera-
tors activated by bell-shaped functions, exclusively with compact support, have been studied.
The definition of Cardaliaguet-Euvrard NN operators has beeen improved in [10], where the
authors introduced the following family of (shallow) NN operators activated by a general class
of sigmoidal functions satisfying suitable assumptions:

(I) (Fnf)(x) =

n∑
k=−n

f

(
k

n

)
ϕσ (nx− k)

n∑
k=−n

ϕσ(nx− k)

, x ∈ I := [−1, 1].

The approximation capabilities of the above operators have been extensively investigated in
relation to the approximation of continuous functions, establishing a pointwise and uniform
convergence theorem and qualitative and quantitative estimates about the rate of convergence
with respect to the usual sup norm (see, e.g., [8, 10]).
Recently, the problem of studying the approximation properties of the operators defined in (I)
in Lp-spaces and, thus in fact, their power in approximating not-necessarily continuous func-
tions has been faced in [9]. Here, quantitative estimates for the aliasing error with respect to the
Lp-norm for the operators Fn have been provided in terms of the well-known averaged mod-
ulus of smoothness introduced by Sendov and Popov [23], known by the name of τ -modulus.
The use of τ -modulus is necessitated by the intrinsic pointwise nature of the operators consid-
ered, which depend strongly on the single values of the function to be approximated. Indeed,
unlike the usual Lp-modulus of smoothness, which is not able to consider increments of f on
sets with null-measure, the averaged modulus of smoothness allows us to estimate the ap-
proximation error for several families of discrete pointwise operators in case of not-necessarily
continuous functions (see [23, Chapter 4]). Moreover, the above context forces us to work in an
unaccustomed setting of Lp-setting, in which we do not identify functions coinciding almost
everywhere; that is, we are not dealing with equivalence classes of functions, as usual. In fact,
we separate each measurable and bounded function f on I , uniquely defined by the individual
values assumed at each point x ∈ I , from its own equivalence class, as is often the case in the
literature when similar problems of approximating Lp functions are faced (see, e.g., [2]).
In this frame, the goal of this paper is to show that, by resorting to the τ -modulus, we can im-
prove the results proved in [9], establishing Jackson-type estimates with respect to the Lp-norm
for the above NN operators. To reach the desired result, after recalling in Section 2 the defini-
tion of the involved operators and all the auxiliary results used in this paper, we will establish
an estimate in the case of functions belonging to Sobolev spaces. In this proof, for 1 < p < +∞,
a crucial role is played by the well-known Hardy-Littlewood maximal function. Instead, in
order to get an analogous result also in the case p = 1, we consider activation functions with
compact support. As a direct consequence of these results, exploiting the basic properties of
the averaged modulus of smoothness, we are able to obtain Jackson-type estimations for the
approximation of Lp-functions and thus a convergence theorem (already proved in [9]) can be
deduced. Finally, we recall several examples of sigmoidal activation functions for which the
above theory can be applied.

2. PRELIMINARY NOTIONS

We begin this section by recalling the definition of the neural network (NN) operators con-
sidered in this paper. A measurable function σ : R → R is called a sigmoidal function if
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lim
x→−∞

σ(x) = 0 and lim
x→+∞

σ(x) = 1.

Using this definition, we can define the density function ϕσ associated with the operators, that
we will consider below, that is:

ϕσ(x) :=
1

2
[σ(x+ 1)− σ(x− 1)], x ∈ R.

Here, we consider σ as any non-decreasing sigmoidal function that satisfies the following con-
ditions:
(Σ1) σ(x)− 1/2 is an odd function;
(Σ2) σ ∈ C2(R) is concave for x ≥ 0;
(Σ3) σ(x) = O(|x|−α) as x → −∞, for some α > 1.

The above assumptions on the sigmoidal function σ have been first introduced in [10] in or-
der to obtain constructive approximation results for (shallows) NN operators that extend the
theory developed in [6].

Definition 2.1. Let σ be a sigmoidal function satisfying (Σ1) − (Σ3). The corresponding family of
(shallow) NN operators is defined by:

(Fnf)(x) :=

n∑
k=−n

f

(
k

n

)
ϕσ(nx− k)

n∑
k=−n

ϕσ(nx− k)

, x ∈ I := [−1, 1], n ∈ N,

where f : I → R is bounded.

Note that here we consider for simplicity the case of functions defined in I = [−1, 1], but
the following result can also be proved for any general interval [a, b]. We summarize some
well-known properties of ϕσ established in [10] in the following lemma.

Lemma 2.1. (i) ϕσ(x) ≥ 0 for every x ∈ R, with ϕσ(1) > 0, and moreover limx→±∞ ϕσ(x) = 0;
(ii) The function ϕσ(x) is even;
(iii) The function ϕσ(x) is non-decreasing for x < 0 and non-increasing for x ≥ 0;
(iv) Let α be the positive constant of condition (Σ3). Then:

ϕσ(x) = O(|x|−α), as x → ±∞.

Thus, we have ϕσ ∈ L1(R);
(v) For every x ∈ R, ∑

k∈Z
ϕσ(x− k) = 1, and ∥ϕσ∥1 =

∫
R
ϕσ(x) dx = 1;

(vi) Let x ∈ I and n ∈ N be fixed. Then:

(2.1)
n∑

k=−n

ϕσ(nx− k) ≥ ϕσ(1) > 0.
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The inequality (2.1) is of crucial importance to have that Fnf is well-defined, since it guar-
antees that Fn has always a non-zero denominator. Moreover, for f bounded we also have:

|(Fnf)(x)| ≤

n∑
k=−n

∣∣∣∣f (
k

n

)∣∣∣∣ϕσ(nx− k)

n∑
k=−n

ϕσ(nx− k)

≤ ∥f∥∞ < +∞, x ∈ I, n ∈ N,

where ∥ · ∥∞ denotes the usual max-norm on I . We now recall the following useful notion of
the discrete absolute moment of order ν ≥ 0 of ϕσ (see, e.g., [10]), i.e.,

Mν(ϕσ) := sup
u∈R

∑
k∈Z

ϕσ(u− k)|u− k|ν .

It is well-known, from the assumptions (Σ1)− (Σ3) on σ (see [12, Lemma 2.6]), that it turns out
that:

Mν(ϕσ) < +∞, 0 ≤ ν < α− 1,

where α is the constant of condition (Σ3). The latter result follows by (iv) of Lemma 2.1 and
the boundedness of the density function ϕσ .
From now on, we consider the space Lp(I), where we do not identify functions coinciding
almost everywhere since our operators are sensitive to single function values and they could
map different functions of the same equivalence class to different classes.
Now, we recall the following useful estimate (see [9, Lemma 4.1]) for the Lp-norm of the family
of NN operators Fn in case of bounded and measurable functions.

Lemma 2.2. Let σ be a sigmoidal function satisfying (Σ1) − (Σ3). For every bounded function f :
I → R, there holds:

∥Fnf∥p ≤
∥f∥lp(Σn)

ϕσ(1)1/p
, 1 ≤ p < +∞,

where:

Σn :=

{
k

n
, k = −n, ..., n

}
,

and

∥f∥lp(Σn) :=

{
n∑

k=−n

∣∣∣∣f (
k

n

)∣∣∣∣p n−1

}1/p

,

denotes a discrete lp norm of the function f on Σn, n ∈ N.

In order to establish quantitative estimates for the rate of convergence for the above NN
operators with respect to the Lp-norm, we will use the so-called averaged modulus of smooth-
ness, also known by the name of τ -modulus, introduced in [23] by the Bulgarian school of
the mathematician Sendov. However, before introducing its definition, we need to recall the
notion of the well-known local modulus of smoothness [23] for bounded and measurable func-
tions defined on I (see also [2]).
From now on, we denote by M(I) the set of all bounded and measurable functions f : I → R.
Let f ∈ M(I) be fixed. The local modulus of smoothness of order r ∈ N (r ≥ 1) of the function
f at the point x ∈ I is defined, for 0 < δ ≤ 2/r, by:

ωr(f, x; δ) := sup

{
|(∆r

hf)(t)| : t, t+ rh ∈
[
x− rδ

2
, x+

rδ

2

]
∩ I

}
,
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where

(∆r
hf)(t) :=

r∑
j=0

(
r

j

)
(−1)r−jf(t+ jh)

is the classical finite forward difference of order r of f with increment h at the point t. It is
possible to prove (see [23, Theorem 1.3]) that the local modulus of smoothness ωr(f, x; δ) of
f ∈ M(I), considered as a function of x ∈ I , belongs to M(I). Now, from the boundedness of
ωr(f, x; δ) as a function of x ∈ I , it follows that it also belongs to Lp(I), 1 ≤ p < +∞. This fact
justifies the introduction of the averaged modulus of smoothness (τ -modulus) of f ∈ M(I) as
the Lp-norm of the above local modulus of smoothness. Namely,

Definition 2.2. Let f ∈ M(I) be fixed. The averaged modulus of smoothness of order r ∈ N (r ≥ 1)
(or τ -modulus) of the function f is defined by:

τr(f, δ)p := ∥ωr(f, ·; δ)∥p =

{∫ 1

−1

[ωr(f, x; δ)]
p dx

}1/p

, 1 ≤ p < +∞,

for 0 < δ ≤ 2/r.

The main advantage of this tool over the usual Lp-modulus of smoothness, which is unable
to consider the increments of a given function f on subsets of I with null measure, is that, by
representing a mean of ωr(f, x; δ), it allows the increments of f to be evaluated at any fixed
point x in I .
In analogy to the usual moduli of smoothness, the τ -modulus has the following useful proper-
ties established in [23]:

(a) monotonicity:
τr(f, δ

′)p ≤ τr(f, δ
′′)p, for δ′ ≤ δ′′;

(b) sub-additivity:

τr(f + g, δ)p ≤ τr(f, δ)p + τr(g, δ)p, δ > 0;

(c) estimate of the high order modulus by means of lower order one:

τr(f, δ)p ≤ 2 τr−1

(
f,

r

r − 1
δ

)
p

, δ > 0;

(d) estimate of the modulus of order r of f by means of the modulus of order r − 1 of f ′

(whenever it exists):

τr(f, δ)p ≤ δ τr−1

(
f ′,

r

r − 1
δ

)
p

, δ > 0;

(e) the inequality:

τr(f, nδ)p ≤ (2n)r+1τr(f, δ)p, n ∈ N, δ > 0.

For more details concerning τr(f, δ)p, see [23] again. In the last part of this section, we recall
some well-known results concerning the τ -modulus that will be very useful in the next section.
We begin with the following lemma. For a proof, see [9, Lemma 4.3].

Lemma 2.3. Let r ≥ 1 be an integer. The following estimate:{
n∑

k=−n

[ωr(f, k/n, 2h)]
p
n−1

}1/p

≤ 2(1/p)+ 2(r+1) τr

(
f, h+

1

(n+ 1) r

)
p

, 1 ≤ p < +∞,

holds, for every 0 < h ≤ 2/r.
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For what concerns the behaviour for δ → 0+, τr(f, δ)p converges to zero under suitable
assumptions upon the function f . Indeed, we can state the following (see [2, Proposition 6 and
Remark 7]):

Proposition 2.1. Let 1 ≤ p < +∞. For every f ∈ M(I) that is Riemann integrable, there holds:

lim
δ→0+

τr(f, δ)p = 0, r ∈ N, r ≥ 1.

In the particular case r = 1, limδ→0+ τ1(f, δ)p = 0 is a necessary and sufficient condition for f ∈ M(I)
to be Riemann integrable.

From now on, we denote by W r
p (I) the usual Sobolev spaces, i.e., the subspaces of Lp(I)

of all functions f : I → R with an absolutely continuous (r − 1)-th derivative and with the
r-th derivative belonging to Lp(I), with 1 ≤ p < +∞, and r ≥ 1. Now, let us recall another
preliminary density result that establishes a connection between the τ -modulus τr(f, δ)p and
the so-called Steklov functions (see, e.g., [23, 25]), that is:

Theorem 2.1 ([23, Theorem 2.5′, p. 34]). Let f be a bounded function belonging to Lp(I), 1 ≤ p <
+∞. For every integer r ≥ 1 and every 0 < h ≤ 2, there exists a Steklov-type function fr,h ∈ Lp(I),
defined by:

fr,h(x) := (−h)−r

∫ h

0

· · ·
∫ h

0

r∑
m=1

(−1)r−m+1

(
r

m

)
f
(
x+

m

r
(t1 + ...+ tr)

)
dt1 ... dtr,

where, here, f has to be considered extended on the whole R, as a periodic function of period 2, satisfying
the following properties:

(i) |f(x)− fr,h(x)| ≤ ωr(f, x; 2h), x ∈ I ;
(ii) ∥f − fr,h∥p ≤ τr(f, 2h)p;

(iii) fr,h ∈ W r
p (I) and for its s-th derivative, the following inequality holds:

∥f (s)
r,h∥p ≤ c(r)h−sτs(f, h)p, s = 1, ..., r,

where the constant c(r) is dependent only on r.

Finally, at the end of this section, we recall the following useful and well-known inequality.
To do this, we introduce the well-known Hardy-Littlewood maximal function, defined by:

M(f ;x) := sup
t∈I,t̸=x

1

t− x

∫ t

x

|f(u)| du.

It is known that the Lp-norm of the Hardy-Littlewood maximal function can be estimated as
follows (see [24]):

(2.2) ∥M(f ; ·)∥p ≤ Cp∥f∥p, f ∈ Lp(I), 1 < p < +∞.

3. MAIN RESULTS

We begin this section with the following estimate in case of functions belonging to the
Sobolev spaces W 1

p (I), 1 < p < +∞.

Theorem 3.2. Let σ be a sigmoidal function satisfying (Σ3) with α > p+ 1, 1 < p < +∞.
For every f ∈ W 1

p (I), it turns out that:

∥Fnf − f∥p ≤
(
Mp(ϕσ)

ϕσ(1)

)1/p

n−1Cp∥f ′∥p, n ∈ N,

where Mp(ϕσ) < +∞ and Cp is the constant arising from inequality (2.2).
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Proof. According to the definition of Sobolev spaces given in the previous section, since f ∈
W 1

p (I), we can write the following first order Taylor formula with integral remainder (see [14,
p. 37]):

f(u) = f(x) +

∫ u

x

f ′(t) dt, x, u ∈ I;

hence, for every fixed x ∈ I and integer n ≥ 1, by the definition of Fnf , we obtain:

(Fnf)(x) =

n∑
k=−n

[
f(x) +

∫ k/n

x

f ′(t) dt

]
ϕσ(nx− k)

n∑
k=−n

ϕσ(nx− k)

= f(x) +

n∑
k=−n

[∫ k/n

x

f ′(t) dt

]
ϕσ(nx− k)

n∑
k=−n

ϕσ(nx− k)

.

(3.3)

Now, using the above expression for the operator Fn, the discrete Jensen inequality (see, e.g.,
[11]) with the convexity of |·|p and inequality (2.1), we can write what follows:

∫ 1

−1

|(Fnf)(x)− f(x)|pdx =

∫ 1

−1

∣∣∣∣∣∣∣∣∣∣∣

n∑
k=−n

[∫ k/n

x

f ′(t)dt

]
ϕσ(nx− k)

n∑
k=−n

ϕσ(nx− k)

∣∣∣∣∣∣∣∣∣∣∣

p

dx

≤
∫ 1

−1

n∑
k=−n

∣∣∣∣∣
∫ k/n

x

f ′(t)dt

∣∣∣∣∣
p

ϕσ(nx− k)

n∑
k=−n

ϕσ(nx− k)

dx

≤ 1

ϕσ(1)

∫ 1

−1

n∑
k=−n

∣∣∣∣∣
∫ k/n

x

f ′(t) dt

∣∣∣∣∣
p

ϕσ(nx− k)dx(3.4)

≤ 1

ϕσ(1)

∫ 1

−1

n∑
k=−n

∣∣∣∣∣k/n− x

k/n− x

∫ k/n

x

|f ′(t)|dt

∣∣∣∣∣
p

ϕσ(nx− k)dx.

Recalling the definition of the Hardy-Littlewood maximal function, the notion of the discrete
absolute moment of order p of ϕσ , and inequality (2.2), we finally obtain:∫ 1

−1

|(Fnf)(x)− f(x)|pdx ≤ 1

ϕσ(1)

∫ 1

−1

n∑
k=−n

∣∣∣∣(k

n
− x

)
M(f ′;x)

∣∣∣∣p ϕσ(nx− k)dx

=
1

ϕσ(1)
n−p

∫ 1

−1

|M(f ′;x)|p
n∑

k=−n

|nx− k|pϕσ(nx− k)dx

≤ Mp(ϕσ)

ϕσ(1)
n−p∥M(f ′; ·)∥pp
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≤ Mp(ϕσ)

ϕσ(1)
n−pCp

p∥f ′∥pp < +∞,

where Mp(ϕσ) < +∞, since condition (Σ3) is satisfied for α > p + 1 and ∥f ′∥pp < +∞ since
f ∈ W 1

p (I). This completes the proof. □

Note that the estimate established in Theorem 3.2 holds for every 1 < p < +∞ but does not
cover the case p = 1. This is due to the fact that inequality (2.2), which is shown to be crucial
in the proof of the previous theorem, does not hold in the case p = 1. However, if we suppose
that the density function ϕσ has compact support, we are able to establish the following result
for the operators Fnf with f ∈ W 1

p (I), 1 ≤ p < +∞. Namely, in the latter case, we also achieve
an estimate for p = 1.

Theorem 3.3. Let σ be a sigmoidal function such that supp ϕσ ⊆ [−T, T ], T > 0. Further, let
f ∈ W 1

p (I), 1 ≤ p < +∞, be fixed. Then:

∥Fnf − f∥p ≤
(
2TMp−1(ϕσ)

ϕσ(1)

)1/p

n−1∥f ′∥p,

for n ∈ N, where Mp−1(ϕσ) < +∞, since ϕσ is bounded and with compact support.

Proof. Let n ∈ N and f ∈ W 1
p (I), 1 ≤ p < +∞, be fixed. Repeating the same computations of

(3.3) and (3.4), we obtain∫ 1

−1

|(Fnf)(x)− f(x)|p dx ≤ 1

ϕσ(1)

∫ 1

−1

n∑
k=−n

∣∣∣∣∣ |k/n− x|
|k/n− x|

∫ k/n

x

|f ′(t)| dt

∣∣∣∣∣
p

ϕσ(nx− k) dx

=
1

ϕσ(1)

∫ 1

−1

n∑
k=−n

∣∣∣∣kn − x

∣∣∣∣p
∣∣∣∣∣ 1

|k/n− x|

∫ k/n

x

|f ′(t)| dt

∣∣∣∣∣
p

ϕσ(nx− k) dx.

Now, we formally extend f ′ on the whole R, as a periodic function of period 2. Thus, re-
calling that supp ϕσ ⊆ [−T, T ], and using the continuous Jensen inequality, we can write what
follows: ∫ 1

−1

|(Fnf)(x)− f(x)|pdx

≤ 1

ϕσ(1)

∫ 1

−1

n∑
k=−n

∣∣∣∣kn − x

∣∣∣∣p−1
∣∣∣∣∣
∫ k/n

x

|f ′(t)|p dt

∣∣∣∣∣ϕσ(nx− k)dx

≤ 1

ϕσ(1)

∫ 1

−1

n∑
k=−n

|nx−k|≤T

∣∣∣∣kn − x

∣∣∣∣p−1
∣∣∣∣∣
∫ k/n−x

0

|f ′(y + x)|pdy

∣∣∣∣∣ϕσ(nx− k)dx

≤ 1

ϕσ(1)

∫ 1

−1

n∑
k=−n

|nx−k|≤T

∣∣∣∣kn − x

∣∣∣∣p−1
[∫

|y|≤|k/n−x|
|f ′(y + x)|p dy

]
ϕσ(nx− k)dx

≤ 1

ϕσ(1)

∫ 1

−1

n∑
k=−n

|nx−k|≤T

∣∣∣∣kn − x

∣∣∣∣p−1
[∫

|y|≤T/n

|f ′(y + x)|p dy

]
ϕσ(nx− k)dx.
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Now, we can use the Fubini-Tonelli theorem in order to interchange the integrals in the above
computations, obtaining:∫ 1

−1

|(Fnf)(x)− f(x)|pdx

≤ 1

ϕσ(1)

∫ 1

−1

n∑
k=−n

|nx−k|≤T

∣∣∣∣kn − x

∣∣∣∣p−1
[∫

|y|≤T/n

|f ′(y + x)|p dy

]
ϕσ(nx− k)dx

=
1

ϕσ(1)
n1−p

∫
|y|≤T/n

dy

∫ 1

−1

|f ′(y + x)|p
n∑

k=−n

|nx−k|≤T

|nx− k|p−1ϕσ(nx− k)dx

≤ Mp−1(ϕσ)

ϕσ(1)
n1−p

∫
|y|≤T/n

∥f ′(y + ·)∥ppdy,

where Mp−1(ϕσ) < +∞ denotes the discrete absolute moment of order (p − 1) of ϕσ . Finally,
observing that:

∥f ′(y + ·)∥pp = ∥f ′∥pp
for every y ∈ [−T/n, T/n], we finally obtain:

∥Fnf − f∥pp ≤ 2TMp−1(ϕσ)

ϕσ(1)
n−p∥f ′∥pp.

This completes the proof. □

Now, we can prove the main theorem of this paper, i.e., a quantitative Jackson-type esti-
mate in terms of the first order τ -modulus for the approximation error in the Lp-norm by the
operators Fn.

Theorem 3.4. Let σ be a sigmoidal function satisfying (Σ3) with α > p + 1, 1 < p < +∞. For any
bounded f ∈ Lp(I), it turns out that:

∥Fnf − f∥p ≤ Kτ1

(
f,

1

n

)
p

,

for every n ∈ N, where:

K :=
2(1/p)+8

ϕσ(1)1/p
+ 16 + Cpc(1)

(
Mp(ϕσ)

ϕσ(1)

)1/p

,

Cp is the constant arising from inequality (2.2) and c(1) is given in (iii) of Theorem 2.1.

Proof. Let n ∈ N and 0 < h ≤ 1 be fixed. Since Theorem 2.1 with r = 1 holds, we can con-
struct for the function f the corresponding Steklov type function f1,h. Thus, we can write what
follows:

∥Fnf − f∥p ≤ ∥Fnf − Fnf1,h∥p + ∥Fnf1,h − f1,h∥p + ∥f1,h − f∥p.
By using (ii) of Theorem 2.1 (with r = 1), we obtain:

(3.5) ∥f1,h − f∥p ≤ τ1(f, 2h)p.

Further, since f1,h ∈ W 1
p (I), exploiting Theorem 3.2 and (iii) of Theorem 2.1 (with r = 1), we

immediately get that:

∥Fnf1,h − f1,h∥p ≤
(
Mp(ϕσ)

ϕσ(1)

)1/p

n−1Cp∥f ′
1,h∥p ≤ K̄n−1h−1τ1(f, h)p,
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where:

K̄ := Cpc(1)

(
Mp(ϕσ)

ϕσ(1)

)1/p

,

for suitable positive constants Cp and c(1).
Finally, exploiting the linearity of the operators Fn, using Lemma 2.2, again Theorem 2.1 (i)
(with r = 1), Lemma 2.3 with r = 1 and the fact that τ1(f, ·)p is non-decreasing, respectively,
we can estimate the quantity ∥Fnf − Fnf1,h∥p as follows:

∥Fnf − Fnf1,h∥p = ∥Fn(f − f1,h)∥p ≤ 1

ϕσ(1)1/p
∥f − f1,h∥lp(Σn)

=
1

ϕσ(1)1/p

{
n∑

k=−n

∣∣∣∣f (
k

n

)
− f1,h

(
k

n

)∣∣∣∣p n−1

}1/p

≤ 1

ϕσ(1)1/p

{
n∑

k=−n

[
ω1

(
f,

k

n
, 2h

)]p
n−1

}1/p

≤ 2(1/p)+4

ϕσ(1)1/p
τ1

(
f, h+

1

n+ 1

)
p

(3.6) ≤ 2(1/p)+4

ϕσ(1)1/p
τ1

(
f, h+

1

n

)
p

.

Now, we set h = 1/n ≤ 1. Thus, rearranging all the above estimates, recalling the property (e)
of the first order τ -modulus and that α > p+ 1, we finally obtain:

∥Fnf − f∥p ≤
(
2(1/p)+4

ϕσ(1)1/p
+ 1

)
τ1

(
f,

2

n

)
p

+ K̄τ1

(
f,

1

n

)
p

≤
(
2(1/p)+8

ϕσ(1)1/p
+ 16 + K̄

)
τ1

(
f,

1

n

)
p

.

□

The quantitative estimate established in the previous theorem does not hold if p = 1. How-
ever, under the same assumptions as in Theorem 3.3, we can obtain an analogous result that
covers the latter case. Indeed, we can establish the following.

Theorem 3.5. Let σ be a sigmoidal function such that supp ϕσ ⊆ [−T, T ], T > 0. Further, let
f ∈ Lp(I) be a bounded function. Then:

∥Fnf − f∥p ≤ Kτ1

(
f,

1

n

)
p

,

for n ∈ N and 1 ≤ p < +∞, where:

K :=
2(1/p)+8

ϕσ(1)1/p
+ 16 + c(1)

(
2TMp−1(ϕσ)

ϕσ(1)

)1/p

and c(1) is the constant arising from Theorem 2.1 (iii).

The proof of Theorem 3.5 is the same of Theorem 3.4, where we used the inequality achieved
in Theorem 3.3 in place of that one of Theorem 3.2.
Obviously, using Proposition 2.1 together with Theorem 3.4 and Theorem 3.5, we can deduce
the Lp-convergence of Fn (see [9]).
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Remark 3.1. In [9], quantitative estimates for the approximation error in the Lp-norm for the operators
Fn have already been achieved by using the τ -modulus. In particular, in [9, Theorem 4.4], the author
proved that, if the sigmoidal function σ satisfies (Σ3) with α > 2p, 1 ≤ p < +∞, then for any
f ∈ M(I), there exist two suitable positive absolute constants K1, K2 such that:

(3.7) ∥Fnf − f∥p ≤ K1 τ1

(
f,

1

n1−1/2p

)
p

+ K2 τ2

(
f,

1

n1−1/2p

)
p

,

for n ∈ N. Comparing the above results with those established in this paper, it is clear that the Jackson-
type estimates for the NN operators Fn established in Theorem 3.4 and Theorem 3.5 are better than the
one given in (3.7), and this explains the improvement with respect to the results proved in [9]. We
stress that, unlike the quantitative estimate in (3.7), to achieve the order of approximation established
in this paper, we adopted a different strategy of proof, in which a crucial role is played by the celebrated
Hardy-Littlewood maximal inequality (see (2.2)).

For what concerns possible examples of sigmoidal activation functions to which the above
theory can be applied, we recall the classical cases of the logistic and the hyperbolic tangent
sigmoidal functions (see, e.g., [4, 5]). It is well-known that, due to their exponential decay to
zero as x → −∞, both satisfy condition (Σ3) for every α > 0. This means that for the NN
operators activated by these smooth sigmoidal functions, both Theorem 3.2 and Theorem 3.4
hold.
On the other hand, we can also consider non-smooth (continuous) sigmoidal functions. Indeed,
as it is known (see, e.g., [10]), if we replace condition (Σ2) by directly assuming the condition
(iii) of Lemma 2.1, together with ϕσ(1) > 0, all the approximation results for Fn of this paper
still hold. A remarkable class of continuous (non-smooth) sigmoidal functions can be generated
from suitable finite linear combinations of shifted Rectified Power Units (RePUs), that are, in
fact, powers of the well-known Rectified Linear Unit (ReLU) activation function (see, e.g., [17,
21, 26]), widely used in applications of neural network type approximation.
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