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ABSTRACT. This article concerns the permanence of the single valued extension property at a point under suitable
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preserved under sums and products of commuting operators.
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1. INTRODUCTION AND BASIC DEFINITIONS

In [3] the authors P. Aiena and V. Muller have studied the stability of the localized single-
valued extension property under commuting perturbations for bounded operators. Also if
the ideal environment to study this type of perturbations is the algebra of bounded operators,
as Aiena and Muller did, in this paper the possibility of considering unbounded operators is
studied.

We consider a similar problem for unbounded operators based on the recent new works by
P. Aiena et al. [4] and [5]. In this work, we shall consider the version of this property for an
(T,D(T )) closed linear operator in H. This property, in the case of bounded operators defined
on a Banach space in this paper we extend some of the results established in the bounded case
to an unbounded linear operator. Recent studies in fact go in this direction [6, 8]. First we begin
with some preliminary notations and remarks.

Let (T,D(T )) be a (possibly unbounded) closed linear operator in H. Clearly we define
D(T 2) := {x ∈ D(T ) : Tx ∈ D(T )} and, in general, for n ≥ 2 we put D(Tn) := {x ∈ D(Tn−1) :
Tn−1x ∈ D(T )} and Tn(x) = T (Tn−1x). It is worth mentioning that nothing guarantees, in
general, that D(T k) does not reduce to the null subspace {0}, for some k ∈ N. For this reason,
powers of an unbounded operator could be of little use in many occasions. Throughout this
paper if D is linear subspace of H a function f : Ω → D is analytic if f : Ω → H is analytic and
fn(x) ∈ D for every x ∈ Ω, and n ∈ N.

Let (T,D(T )) be a closed linear operator in H. As usual, the spectrum of (T,D(T )) is defined
as the set σ(T ) := {λ ∈ C : λI − T} is not a bijection of D(T ) onto H. The set ρ(T ) = C \ σ(T )
is called the resolvent set of (T,D(T )), while the map R(λ, T ) : ρ(T ) ∋ λ 7→ (λI − T )−1 is
called the resolvent of (T,D(T )). It is well known that, if T is a bounded everywhere defined
operator, σ(T ) is a compact subset of the complex plane. The viceversa is not true: there exist
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closed unbounded operators whose spectrum is a bounded subset of C. Thus, the spectral
radius of an unbounded operator can be finite. Let (T,D(T )) be a closed operator in H.

(1) A point λ ∈ C is said to be in the local resolvent set of x ∈ H, denoted by ρT (x), if there
exist an open neighborhood U of λ in C and an analytic function f : U → D(T ) which
satisfies

(1.1) (λI − T )f(λ) = x for all λ ∈ U .

(2) The local spectrum σT (x) of T at x ∈ H is the set defined by σT (x) := C \ ρT (x) and
obviously σT (x) ⊆ σ(T ), and σT (x) is a closed subset of C.

Definition 1.1. Let (T,D(T )), D := D(T ) be a closed linear operator in H such that Tn(D) ⊆ D.
The hyperrange of T is the subspace

T∞(D) :=
⋂
n∈N

Tn(D) =: R∞(T ).

Now, let us introduce two classical quantities associated with an operator. To every linear
operator T on a vector space D there corresponds the two chains:

{0} = ker T 0 ⊆ ker T ⊆ ker T 2 · · · ,

and
D = T 0(D) ⊇ T (D) ⊇ T 2(D) · · · .

The ascent of T is the smallest positive integer p = p(T ), whenever it exists, such that ker T p

= ker T p+1. If such p does not exist, we let p = +∞. Analogously, the descent of T is defined to
be the smallest integer q = q(T ), whenever it exists, such that T q+1(D) = T q(D). If such q does
not exist, we let q = +∞.

Let D be a dense subspace of a Hilbert space H. We denote by L(D) the set of all closable
linear operators from D to D and L†(D) be the space consisting of all its elements which leave,
together with their adjoints, the domain D invariant. Then L(D) is a algebra with respect to the
usual operations and L†(D) is a subalgebra of L(D) (for the definitions and in general for the
details can be found [6]).

Definition 1.2. The operator (T,D(T )) is said to have the single valued extension property at λo ∈ C
(abbreviated SVEP at λo), if for every open disc Dλo centered at λo the only analytic function f :
Dλo → D(T ) which satisfies the equation

(1.2) (λI − T )f(λ) = 0

is the function f ≡ 0.
An unbounded linear operator (T,D(T )) is said to have the SVEP if T has the SVEP at every point
λ ∈ C.

Following [2] if (T,D(T )) be closed linear operator in H for every subset Ω of C, the analytic
spectral subspace of T associated with Ω is the set

XT (Ω) := {x ∈ H : σT (x) ⊆ Ω}.

Remark 1.1. If T is globally defined (D(T ) = H) and bounded then the SVEP may be easily charac-
terized by means of the subspace XT (∅) trough the equivalence of the following statements [7]:

(i) T has the SVEP.
(ii) If σT (x) = ∅ then x = 0, i.e. XT (∅) = {0}.

(iii) XT (∅) is closed.
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Given a (possibly unbounded) linear operator (T,D(T )) and a closed set F ⊆ C, let XT (F )
consist of all x ∈ H for which there exists an analytic function f : C \ F → D(T ) that satisfies

(1.3) (λI − T )f(λ) = x for all λ ∈ C \ F.
Clearly, the identity XT (F ) = XT (F ) holds for all closed sets F ⊆ C whenever T has SVEP.
The following proposition generalizes partially the result of Remark 1.1.

Theorem 1.1. Every closed linear operator (T,D(T )) such that XT (∅) = {0} has the SVEP.

Definition 1.3. The quasi-nilpotent part of an operator T ∈ L(D) is the set

H0(T ) := {x ∈ D : lim
n→∞

∥Tnx∥ 1
n = 0},

while the analytic core of T is the set K(T ) := XT (C \ {0}).
Let N∞(T ) :=

⋃∞
k=1 ker T

k. For every n ∈ N, we have the increasing chain of range-type
subspaces

XT (∅) ⊆ K(T ) ⊆ R∞(T ) ⊆ R(Tn) ⊆ R(T ).

This result will be one of our principal tools.

Theorem 1.2. For every operator T ∈ L(D) and λ ∈ C, the following assertions are equivalent:
(i) T has SVEP at λ.

(ii) ker(λI − T ) ∩XT (∅) = {0}.
(iii) N∞(λI − T ) ∩XT (∅) = {0}.

2. RESULTS

As it is well known, it is interesting to study the preservation of localized SVEP under certain
perturbations. So let us try the problem again in a different setup.

Recall that an operator Q ∈ L(D) is said to be quasi-nilpotent if σ(Q) = {0}. A quasi-
nilpotent operator on an infinite-dimensional Banach space cannot be onto, since σs(Q) ̸= ∅.
We put

Qi(D) := {T ∈ L†(D) : there exists an injective quasi-nilpotent operator

Q ∈ L†(D) such that TQ = QT}.
Note that a nilpotent operator N ̸= 0 cannot be injective, since if ker N = {0} and Nν = 0, then
X = ker Nν = {0}. We start with the following result that has a central role in this paper.

Following [2] if (T,D(T )) be closed linear operator in H, we consider the following:

Question 1. Is SVEP at a point is preserved under quasi-nilpotent commuting perturbations or even
under quasi-nilpotent equivalence?

Theorem 2.3. Suppose that T ∈ Qi(D), and let λ ∈ C. Then T has SVEP at λ.

Proof. Since all quasi-nilpotent operators share SVEP Q has SVEP at λ. By Theorem 1.2 the
condition on Q entails that

N∞(λI −Q) ∩XQ(∅) = {0},
while if consider an arbitrary x ∈ ker(λI −T ). Then (λI −T )kx = 0 for k = 1, . . . , n, so that the
preceding identities imply that (λI −Q)nx = 0. Consequently, we obtain

ker(λI − T ) ⊆ ker(λI −Q)n ⊆ N∞(λI −Q),

and therefore
ker(λI − T ) ∩XT (∅) ⊆ N∞(λI −Q) ∩XQ(∅) = {0}.

Hence Theorem 1.2 guarantees that T has SVEP at λ. □
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An operator K ∈ L†(D) is said to be algebraic if there exists a non-trivial complex poly-
nomial h such that h(K) = 0. Examples of algebraic operators are idempotent operators and
operators for which some power has finite-dimensional range. If T ∈ L(X) has SVEP at a point
λ, then it may be tempting to conjecture that T +K has SVEP at λ for every algebraic operator
K that commutes with T . However, this cannot be true in general, since SVEP for T at λ is
equivalent to SVEP for T − λI at 0. Nevertheless, we obtain the following result.

Theorem 2.4. Suppose that T ∈ Qi(D), and K ∈ L†(D), and suppose that K is algebraic, and let h
be a non-zero polynomial for which h(K) = 0. Then T −K and T +K are SVEP at 0.

Proof. Following the reasoning used in [3] for bounded operators by the classical spectral map-
ping theorem h(σ(K)) = σ(h(K)) = {0}, so that σ(K) is finite, say σ(K) = {µ1, . . . , µn}. For
i = 1, . . . , n, let Pi ∈ L†(D) denote the spectral projection associated with K and with the spec-
tral set {µi}, and let Yi := R(Pi). From standard spectral theory, also in this case, it is known
that P1+ · · ·+Pn = I , that Y1, . . . , Yn are closed linear subspaces of X which are each invariant
under both K and T , and that X = Y1 ⊕ · · · ⊕ Yn. Moreover, for arbitrary i = 1, . . . , n, the
two restrictions Ki := K | Yi and Ti := T | Yi commute, and we have σ(Ki) = {µi}. Because
h(Ki) = h(K) | Yi = 0, we obtain

h({µi}) = h(σ(Ki)) = σ(h(Ki)) = {0}.

Hence we may factor h in the form

h(µ) = (µ− µi)
niqi(µ) for all µ ∈ C,

where ni ∈ N and qi is a complex polynomial for which qi(µi) ̸= 0. We conclude that

0 = h(Ki) = (Ki − µiI)
niqi(Ki),

where qi(Ki) ∈ L†(D)(Yi) is invertible in light of σ(qi(Ki)) = qi(σ(Ki)) = {qi(µi)} and qi(µi) ̸=
0. Therefore (Ki − µiI)

ni = 0 which show that the operator Ni := Ki − µiI is nilpotent. Now
observe that

Ti −Ki = (Ti − µiI)− (Ki − µiI) = Ti − µiI −Ni.

Because T has SVEP at µi, we know that T −µiI has SVEP at 0. Since this condition is inherited
by restrictions to closed invariant subspaces, we conclude that Ti − µiI has SVEP at 0, and
hence, by Theorem 2.3, also Ti − Ki = Ti − µiI − Ni has SVEP at 0 for all i = 1, . . . , n. By [1,
Theorem 2.9], it then follows that

T −K = (T1 −K1)⊕ · · · ⊕ (Tn −Kn)

has SVEP at 0, as desired. An application of the main result to the operator −K and T − λI for
arbitrary λ ∈ C then establishes the final claim. □

For arbitrary T ∈ L(D), let α(T ) := dim kerT and β(T ) := codimR(T ). As usual,

Φ+(D) := {T ∈ L(D) : α(T ) < ∞ and T (D) is closed}

denotes the class of upper semi-Fredholm operators, while

Φ−(D) := {T ∈ L(D) : β(T ) < ∞}

stands for the class of lower semi-Fredholm operators, and Φ+(D)∪Φ−(D) is the class of semi-
Fredholm operators on D.

Also recall that an operator T ∈ L(D) is said to be semi-regular if R(T ) is closed and
N∞(T ) ⊆ R∞(T ). More generally, T is said to admit a generalized Kato decomposition if
there exists a pair (M,N) of T -invariant closed subspaces of X such that D = M ⊕N , T |M is
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semi-regular, and T |N quasi-nilpotent. If, in addition, N is of finite dimension, then T is said
to be essentially semi-regular, see [1, Chapter 1] for details and properties of such operators.

Theorem 2.5. Suppose that T ∈ Qi(D), λ ∈ C and λI − T either admits a generalized Kato decompo-
sition or is quasi-Fredholm. Then T +Q has SVEP at λ.

Proof. Under either of the two conditions on λI − T , it is known that SVEP for T at λ is equiv-
alent to the condition XT (∅) ⊆ H0(λI − T ) ∩ K(λI − T ) = {0}. Then establishes the final
claim. □

3. TWO EXAMPLES

In two recent works, [4] and [8], the following integrity domains were introduced and stud-
ied. In this example we give a family of linear operators Tvk : ℓ2(N) → ℓ2(N) with commutes
with an injective quasi-nilpotent operator. Let Q2 be the matrix:

Q2 =



0 0 0 0 0 0 . . .
1 0 0 0 0 0 . . .
0 1

2 0 0 0 0 . . .
0 0 1

3 0 0 0 . . .
0 0 0 1

4 0 0 . . .
0 0 0 0 1

5 0 . . .
...

...
...

...
...

. . .


,

where for i, j = 1, 2, . . . ,

qij =


0 if i < j + 1
1
j if i = j + 1

0 if i > j + 1

.

Evidently,

Q(x1, x2, x3, . . . ) = (0, x1,
x2

2
,
x3

3
, . . . ) for all (x1, x2, x3, . . . ) ∈ ℓ2(N),

so Q is injective and quasi-nilpotent. If Q is a weighted shift with non zero weights which
tend to zero, then Q is a one-to-one quasi-nilpotent operator. Put ek := (0, . . . , 1, 0, . . . ), with
eki = δik, let Tek be the following matrix:

Tek =



0 0 0 0 0 . . .
...

...
...

...
...

1 0 0 0 0 . . .
0 1

k 0 0 0 . . .
0 0 1

(k+1
2 )

0 0 . . .

0 0 0 1

(k+2
3 )

0 . . .

...
...

...
...

. . .


,

where the generic element aij is given by:

aij =


0 if i < j + k − 1

1

(i−1
i−k)

if i = j + k − 1

0 if i > j + k − 1

.



98 Salvatore Triolo

Then, by arbitrarily choosing k ≥ 2 and λk ∈ R, we obtain a family of matrices Tvk
:= λkTek

that commute with Q2: Q2 Tvk
= Tvk

Q2. Moreover it is easy to verify that ∀k ≥ 2, λk ∈ R, Tvk

is a bounded linear operator; clearly Q2 = Te2 . More generally, if we define Qn := Ten , then,
∀n ≥ 2, Qn is quasi-nilpotent, injective, with the property that Qn commute with Tvk

, ∀k ≥
2, λk ∈ R : Qn Tvk

= Tvk
Qn. We finally observe that the linear span D := ⟨Te1 , . . . , Tek , . . . ⟩ is

an integral domain. If A ∈ D, then A is a matrix of the following type:

A =



λ1 0 0 0 0 0 0 . . .
λ2 λ1 0 0 0 0 0 . . .

λ3
λ2

2 λ1 0 0 0 0 . . .

λ4
λ3

3
λ2

3 λ1 0 0 0 . . .

λ5
λ4

4
λ3

6
λ2

4 λ1 0 0 . . .

λ6
λ5

5
λ4

10
λ3

10
λ2

5 λ1 0 . . .
...

...
...

...
...

...
. . .


,

where λi ∈ R, i = 1, 2, . . . , and the generic element aij is

aij =

{
0 if i < j
λi−j+1

(i−1
j−1)

if i ≥ j
.

Let M := {A ∈ D : supi,j |aij | < ∞}. Then for every A ∈ M there exists cA ∈ R, such
that |aij | ≤ cA, ∀i, j. Let l∞ be the Banach space of bounded sequences, x ∈ l∞ and let
cx := supi |xi|. Let us consider now y = Ax. Then

yk =

k∑
j=1

λjxk+1−j(
k−1
j−1

) ,

so

∀k ≥ 1, |yk| ≤ |cAcx|
k∑

j=1

1(
k−1
j−1

) .
Since

lim
k→∞

k∑
j=1

1(
k−1
j−1

) =: S < +∞,

then y = Ax ∈ l∞, hence A : l∞ → l∞, and so A is bounded. But in general in this example
A : l2 → l2 is a unbounded operator with commutes with an injective quasi-nilpotent operator
Q2.

Example 3.1. Let (T,D(T )) be the operator defined by

D(T ) := {u ∈ L2([0, 1]) : u(x) =

∫ x

0

v(y)dy; u(1) = 0, v ∈ L2([0, 1])}

(Tu)(x) = v(x).

It is easy to check that for every u ∈ L2([0, 1]) we have σT (u) = σ(T ) = C and T has SVEP.
Let (S,D(S)) be the operator

D(S) := {u ∈ L2([0, 1]) : u(x) = u(0) +

∫ x

0

v(y)dy; v ∈ L2([0, 1])}

(Su)(x) = v(x).
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It is easy to check that every λ ∈ C is an eigenvalue of S, so that the operator S does not have SVEP
in every λ ∈ C. Since S = T ∗, this shows how deeply different the behavior of T and T ∗ can be with
respect to SVEP.

Let (A,D(A)) be the operator

D(A) := {u ∈ L2([0, 1]) : u(x) = u(0) +

∫ x

0

v(y)dy; u(1) = u(0) v ∈ L2([0, 1])}

(Au)(x) = v(x).

The operator A is self-adjoint; thus has SVEP and for every u ∈ L2([0, 1]) we have σA(u) = σ(A) =
{2kπi; k ∈ Z}.
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