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On a problem inspired by Descartes’ rule of signs
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ABSTRACT. We study real univariate polynomials with non-zero coefficients and with all roots real, out of which
exactly two positive. The sequence of coefficients of such a polynomial begins with m positive coefficients followed by
n negative followed by q positive coefficients. We consider the sequence of moduli of their roots on the positive real
half-axis; all moduli are supposed distinct. We mark in this sequence the positions of the moduli of the two positive
roots. For m = n = 2, n = q = 2 and m = q = 2, we give the exhaustive answer to the question which the positions
of the two moduli of positive roots can be.
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1. INTRODUCTION

The present paper treats a problem inspired by Descartes’ rule of signs. The latter says that
given a real univariate polynomial Q :=

∑d
j=0 ajx

j , ad ̸= 0, the number r+ of its positive roots
(counted with multiplicity) is majorized by the number c̃ of the sign changes in the sequence S
of its coefficients and the difference c̃− r+ is even. About Descartes’ rule of signs see [1, 2, 3, 4,
6, 8, 9, 18, 19].

We are interested in the case when all coefficients aj are non-zero and the polynomial Q is
hyperbolic, i.e. all its roots are real. In this case one has c̃ = r+ and p̃ = r−, where p̃ is the
number of sign preservations in the sequence S and r− is the number of negative roots of Q.
Clearly c̃+ p̃ = r+ + r− = d.

Definition 1.1. A sign pattern is a vector whose components equal + or −. The polynomial Q is
said to define the sign pattern σ(Q) := (sgn(ad), sgn(ad−1), . . . , sgn(a0)). We focus mainly on monic
polynomials in which case sign patterns begin with a +.

Consider the moduli of the roots of a hyperbolic polynomial as a sequence of d points on
the positive half-axis. We study the generic case when all these moduli are distinct. One can
mark in this sequence the p̃ positions of the moduli of negative and the c̃ positions of moduli
of positive roots. This defines the order of moduli whose definition and notation should be clear
from the following example:

Example 1.1. If for the positive roots α1 < α2 < α3 and the moduli of the negative roots | − γ1| <
· · · < | − γ4| of a degree 7 hyperbolic polynomial, one has

α1 < | − γ1| < | − γ2| < α2 < | − γ3| < α3 < | − γ4|,
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then these moduli define the order PNNPNPN (the letters P and N refer to the relative positions of
the moduli of positive and negative roots).

Definition 1.2. A couple (sign pattern, order of moduli) is compatible with Descartes’ rule of signs if
the number of letters P (resp. N ) in the order equals c̃ (resp. p̃). In what follows, we consider only
couples compatible with Descartes’ rule of signs.

We study the following problem:

Problem 1.1. Consider the class of hyperbolic polynomials defining one and the same sign pattern σ.
What are the possible orders of moduli for the polynomials of this class?

The problem has been completely resolved for c̃ = 0 and 1, see [11]. The results of this paper
concern the case c̃ = 2. We use the following notation:

Notation 1.1.
(1) For c̃ = 1, (resp. c̃ = 2), we denote by Σm,n, m+n = d+1, (resp. Σm,n,q , m+n+ q = d+1)

the sign pattern consisting of m signs + followed by n signs − (resp. of m signs + followed by
n signs − followed by q signs +).

(2) For a polynomial Q with σ(Q) = Σm,n, we denote by α its positive and by γ1 < · · · < γd−1

the moduli of its negative roots. If γu < α < γu+1 (we set γ0 := 0 and γd := +∞), then we
denote the given couple (sign pattern, order of moduli) by (Σm,n, (u, v)), v = d− 1− u.

(3) For a polynomial Q with σ(Q) = Σm,n,q , we denote by β < α its positive and by γ1 < · · · <
γd−2 the moduli of its negative roots. If γu < β < γu+1 and γu+v < α < γu+v+1, v ≥ 0 (we
set γ0 := 0 and γd−1 := +∞), then we denote the given couple (sign pattern, order of moduli)
by (Σm,n,q, (u, v, w)), w = d− 2− u− v.

Definition 1.3. If for a given sign pattern there exists a hyperbolic polynomial defining this sign pat-
tern, then we say that the polynomial realizes the sign pattern. If, in addition, the roots of the polynomial
define a given order of moduli, then we say that the polynomial realizes the given couple (sign pattern,
order of moduli) or that the order of moduli is realizable with the given sign pattern.

We can now reformulate Problem 1.1:

Problem 1.2. For a given degree d, which couples (sign pattern, order of moduli) are realizable?

Definition 1.4.
(1) For a given degree d, we define the following two commuting involutions acting on the set of

couples:

im : Q(x) 7→ (−1)dQ(−x) and ir : Q(x) 7→ xdQ(1/x)/Q(0).

The factors (−1)d and 1/Q(0) are introduced to preserve the set of monic polynomials. The
involution ir reads orders, sign patterns and polynomials (modulo the factor 1/Q(0)) from the
right while preserving the quantities c̃ and p̃. In particular, ir((Σm,n, (u, v))) = (Σn,m, (v, u))
and ir((Σm,n,q, (u, v, w))) = (Σq,n,m, (w, v, u)). The involution im changes the signs of the
odd (resp. even) monomials for d even (resp. for d odd). It exchanges the letters P and N in the
order of moduli and the quantities c̃ and p̃, therefore when answering Problem 1.2 it suffices to
study the cases with c̃ ≤ p̃.

(2) The orbits of couples under the Z2 ×Z2-action are of length 4 or 2. Orbits of length 2 can occur
only for sign patterns σ such that σ = ir(σ) or σ = irim(σ); σ = im(σ) is impossible. One
can consider orbits also only of sign patterns or of orders of moduli. All couples of a given orbit
are simultaneously (non)-realizable.

Remarks 1.
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(1) Problem 1.2 is completely resolved for d ≤ 6, see [7] and [15]. For c̃ = 2, it is settled for n = 1,
see [11, Theorem 5], and for q = 1 (hence for m = 1 as well), see [17].

(2) Each sign pattern is realizable with its canonical order of moduli, see [12, Definition 2 and
Proposition 1]. For the sign pattern Σm,n,q , the couple with the corresponding canonical order
is (Σm,n,q, (q − 1, n − 1,m − 1)). There exist sign patterns (called also canonical) which are
realizable only with their corresponding canonical orders, see [13, Theorem 7]. Among the sign
patterns of the form Σm,n,q , canonical are only Σ1,n,1 and Σm,1,q . The relative part of canonical
sign patterns within the set of all sign patterns of a given degree d, tends to 0 as d tends to ∞,
see [13, Definition 9 and Proposition 10].

(3) There exist also orders of moduli (called rigid) realizable with a single sign pattern, see [14,
Definition 6, Notation 7 and Theorem 8].

The first result of the present paper about couples (Σm,n,q, (u, v, w)) reads:

Theorem 1.1.
(1) Suppose that d ≥ 7 and n = q = 2. Then realizable can be only couples with w ≥ m − 3. For

each d ≥ 7 fixed, there are 15 triples (u, v, w) satisfying the latter condition.
(2) For d ≥ 6, the 10 triples (u, v, w) with u + v ≤ 3 and the triple (0, 4,m − 3), are realizable

with the sign pattern Σm,2,2, d = m+ 3.
(3) For d ≥ 6, the triples (4, 0,m−3), (3, 1,m−3), (2, 2,m−3) and (1, 3,m−3) are not realizable

with the sign pattern Σm,2,2.

The theorem is proved in Section 2. It can be automatically reformulated for the case m =
n = 2 using the involution ir, see Definition 1.4, and for certain couples with p̃ = 2 with the
help of the involution im. Our second result is formulated as follows:

Theorem 1.2.
(1) For n ≥ 4, all couples (Σ2,n,2, (u, v, w)) with u ≤ 2 and w ≤ 2 are realizable.
(2) For n ≥ 4, all couples (Σ2,n,2, (u, v, w)) with u ≥ 3 or w ≥ 3 are not realizable.

The theorem is proved in Section 3.

2. PROOF OF THEOREM 1.1

Proof.
Part (1) We set α := 1 which can be obtained by a linear change of the variable x. The set of

monic hyperbolic polynomials defining the sign pattern Σd−3,2,2 is open and connected
(see [16, Theorem 2]) and there exists a hyperbolic polynomial with this sign pattern
and with w = m− 1, see part (2) of Remarks 1. Hence if there exists such a polynomial
with w ≤ m − 4, then for this sign pattern, there exists a hyperbolic polynomial which
is of the form

Q :=(x2 − 1)(x− β)(xd−3 + e1x
d−4 + · · ·+ ed−3)

=(x2 − 1)(xd−2 + (e1 − β)xd−3 + (e2 − βe1)x
d−4 + (e3 − βe2)x

d−5 + · · ·
+(ed−5 − βed−6)x

3 + (ed−4 − βed−5)x
2 + (ed−3 − βed−4)x− βed−3).

Hence one of the moduli of negative roots of the polynomialQ equals 1 and we suppose
that exactly four of its moduli of negative roots are smaller than 1. The second factor
in the right-hand side defines the sign pattern Σd−3,2. Indeed, this factor has exactly
one positive root, so its sign pattern is of the form Σd−1−ν,ν , 0 < ν < d − 1. Then the
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coefficient of xν+1 of Q is negative, so ν + 1 ≤ 3, i.e. ν ≤ 2. For ν = 1, the coefficient of
x is negative, so ν = 2. Thus by setting Q :=

∑d
j=0 cjx

j , one obtains the conditions

ed−4 > βed−5, ed−3 < βed−4,(2.1)
c4 := ed−4 − βed−5 − ed−6 + βed−7 > 0, c1 := −ed−3 + βed−4 > 0.

The fourth of conditions (2.1) and the inequality

c3 := (ed−3 − βed−4)− (ed−5 − βed−6) < 0

are corollaries of the second of conditions (2.1); for c3 < 0, one has to use also ed−5 −
βed−6 > 0 which results from the sign pattern Σd−3,2. We denote by

r1 > · · · > rd−3

the moduli of negative roots different from −1. Hence we suppose that rd−7 > 1 > rd−6.
We set

Ek :=
∑

1≤i1<···<ik≤d−7

ri1 · · · rik , 1 ≤ k ≤ d− 7 and

e′s :=
∑

d−6≤p1<···<ps≤d−3

rp1
· · · rps

, 1 ≤ s ≤ 4.

We set Ek := 0 for k ≤ 0 and k ≥ d − 6, and e′s := 0 for s ≤ 0 and s ≥ 5. Using this
notation, one can write

ed−6 =Ed−7e
′
1 + Ed−8e

′
2 + Ed−9e

′
3 + Ed−10e

′
4

and

ed−4 =Ed−7e
′
3 + Ed−8e

′
4.

It is clear that e′1 > e′3, because these are elementary symmetric polynomials having
the same number (namely 4) of terms and their arguments are in the interval (0, 1). It
is also evident that e′2 > e′4 (their numbers of terms are 6 and 1), e′3 > 0 and e′4 > 0.
Therefore ed−6 > ed−4. If ed−5 ≥ ed−7, then (see (2.1)) c4 < 0 which contradicts the sign
pattern of Q. So one has ed−5 < ed−7 and conditions (2.1) imply

ed−4/ed−5 > β > (ed−6 − ed−4)/(ed−7 − ed−5), i. e. ed−4ed−7 > ed−5ed−6.

The left and right symmetric polynomials have

h1 :=

(
d

d− 4

)(
d

d− 7

)
and h2 :=

(
d

d− 5

)(
d

d− 6

)
terms respectively, where

h2/h1 = h∗ := 7(d− 4)/5(d− 6) > 1,

i.e. ed−5ed−6 has more terms than ed−4ed−7. We show that one has ed−4ed−7 < ed−5ed−6

which contradiction implies that the inequality w ≤ m − 4 is impossible. We set Sj :=

ej/
(
d
j

)
and then use Newton’s inequalities S2

j ≥ Sj−1Sj+1 for j = d − 5 and j = d − 6.
Thus

S2
d−5S

2
d−6 ≥ Sd−4Sd−6Sd−5Sd−7 , i.e. Sd−5Sd−6 ≥ Sd−4Sd−7, so

ed−5ed−6 ≥ h∗ed−4ed−7 > ed−4ed−7.

The triples (u, v, w) for which w ≥ m− 3, are all the 15 triples with 0 ≤ u+ v ≤ 4.
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Part (2) For d = 6, the proof can be found in [15]. Suppose that d ≥ 6 and that the degree d
polynomial Q realizes one of the 11 triples (u, v, w) of part (2) of the theorem. Then for
ε > 0 small enough, the polynomial (1 + εx)Q realizes the triple (u, v, w+1) for degree
d+ 1.

Part (3) Suppose that the polynomial Q̃ realizes one of the triples (4, 0,m − 3), (3, 1,m − 3),
(2, 2,m − 3) or (1, 3,m − 3) with the sign pattern Σm,2,2. Then γ1 < β < 1 = α. Set
A := (x− β)(x+ γ1) and

d∑
k=0

q̃kx
k =: Q̃ := AU ,

d−2∑
i=0

uix
i =: U := (x− 1)

d−2∏
j=2

(x+ γj).

The sign pattern of the product A is (+,−,−). The one of U is of the form Σµ,ν . As
q̃ν+1 = −βγ1uν+1 − (β − γ1)uν + uν−1 < 0, one must have ν + 1 ≤ 3, i.e. ν = 1 or 2.
For both cases Theorem 1 of [11] states that the polynomial U has ≤ 2 negative roots
with moduli smaller than 1. However one obtains that γi ≤ 1 for i = 2, 3 and 4. One
perturbs then these roots to obtain γi < 1 (without changing the signs of the coefficients
of U ) which brings a contradiction with [11, Theorem 1].

□

3. PROOF OF THEOREM 1.2

3.1. Proof of part (1). In the proof of part (1), we use concatenation of sign patterns and of
couples. The following lemma follows directly from [5, Lemma 14].

Lemma 3.1. Suppose that for the monic polynomials P1 and P2 of degrees d1 and d2, one has σ(Pi) =
(+, σi), i = 1, 2, where σi denote what remains of the sign patterns when the initial sign + is deleted.
We set P † := εd2P1(x)P2(x/ε). Then for ε > 0 small enough,

σ(P †) :=

 (+, σ1, σ2) if the last position of σ1 is +

(+, σ1,−σ2) if the last position of σ1 is −
.

Here −σ2 is obtained from σ2 by changing each + by − and vice versa.

Remark 3.1. We use the symbol ∗ to denote concatenation of couples or of sign patterns. We denote by
Σm1,...,ms

the sign pattern beginning with m1 signs + followed by m2 signs − followed by m3 signs +
etc., so one can write

Σm1,...,ms−1,ms+n1−1,n2,...,nℓ
= Σm1,...,ms

∗ Σn1,...,nℓ
.

When necessary we use more than two consecutive concatenations. If ε is small enough, the moduli of
all roots of P2(x/ε) are smaller than the moduli of all roots of P1(x) which allows to deduce the order of
the moduli of roots of P †.

To prove part (1), one takes into account the fact that the sign pattern Σ2,2 is realizable
with each of the orders (0, 2), (1, 1) and (2, 0), see [11, Part (3) of Example 2]. Hence the cases
(Σ2,n,2, (u, v, w)) with u ≤ 2, w ≤ 2 are realizable by the triple concatenation

(Σ2,2, (u, 2− u)) ∗ (Σn−2, (n− 3)) ∗ (Σ2,2, (2− w,w)).

The concatenation factor in the middle is realizable by any hyperbolic polynomial with all
coefficients positive (and with n− 3 negative roots).
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3.2. Plan of the proof of part (2). We deduce part (2) from two propositions:

Proposition 3.1. Suppose that n ≥ 4. Then:
(1) All couples (Σ2,n,2, (u, v, w)) with either w ≥ 5 or with w = 4 and v ≥ 1, are non-realizable.
(2) All couples (Σ2,n,2, (0, n− 2, 3)) are non-realizable.

The proposition is proved in Subsection 3.3.

Proposition 3.2. For n ≥ 4, the following couples are not realizable:
(1) (Σ2,n,2, (u, v, 4)), u+ v = n− 3
(2) (Σ2,n,2, (u, v, 3)), u+ v = n− 2, u > 0.

Part (2) of Proposition 3.1 and part (2) of Proposition 3.2 settle the case w = 3 while the
first parts of these propositions resolve the case w ≥ 4. Proposition 3.2 is proved in Subsec-
tion 3.7. In its proof three other propositions are used which are formulated below and proved
in Subsections 3.4, 3.5 and 3.6 respectively.

Proposition 3.3. The couple (Σ2,4,2, (1, 0, 4)) is not realizable.

Proposition 3.4. The couple (Σ2,4,2, (2, 0, 3)) is not realizable.

Proposition 3.5. The couple (Σ2,4,2, (1, 1, 3)) is not realizable.

3.3. Proof of Proposition 3.1.
Part (1) Denote by β < α the positive and by γ1 < · · · < γn+1 the moduli of the negative roots

of a hyperbolic polynomial Q :=
∑d

j=0 qjx
j supposed to realize one of the mentioned

couples. Denote by ej the elementary symmetric polynomials of the quantities γi. We
show that qd−2 > 0 which means that the sign pattern of Q is not Σ2,n,2. Clearly

qd−2 = αβ − (α+ β)e1 + e2.

Suppose that w ≥ 5. Recall that u+v+w = d−2 = n+1. Set ℓ := n−w+2 = u+v+1.
Then γℓ−1 < α < γℓ. For S :=

∑n+1
j=ℓ γj , one has

(3.2) (α+ β)S <
∑

ℓ≤i<j≤n+1

γiγj .

Indeed, the left-hand side contains 2w products by two while the right-hand side con-
tains w(w − 1)/2 ≥ 2w such products. Besides, for each k, ℓ ≤ k ≤ n + 1, it is true that
(S − γk)α < (S − γk)γk and (S − γk)β < (S − γk)γk. Summing up these inequalities
yields

(3.3) (w − 1)(α+ β)S < 2
∑

ℓ≤i<j≤n+1

γiγj .

For each ν < ℓ, it is true that (α+ β)γν < (γn + γn+1)γν , so

(3.4) (α+ β)

ℓ−1∑
j=1

γj < (γn + γn+1)

ℓ−1∑
j=1

γj .

Equations (3.3) and (3.4) imply

(α+ β)e1 < (2/(w − 1))
∑

ℓ≤i<j≤n+1

γiγj + (γn + γn+1)

ℓ−1∑
j=1

γj < e2
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from which qd−2 > 0 follows. Suppose that w = 4 and v ≥ 1. For µ ≤ n − 4, it is true
that

(−α− β + γn + γn+1)γµ > 0.

On the other hand, as β < γn−3 < α < γn−2, one has

(−β + γn−3)(γn−2 + γn−1 + γn + γn+1) > 0,

(−α+ γn−2)(γn−1 + γn + γn+1) > 0,

(−α− β)γn−3 + (γn + γn+1)γn−1 > 0,

−αγn−2 + γnγn+1 > 0

which again proves that qd−2 > 0, because the left-hand sides of these inequalities
contain all products by two of moduli in which exactly one of the factors equals α or
β (but not necessarily all products γiγj , and not the product αβ; no product γiγj is
repeated).

Part (2) Using the same notation one can write:

αγn−1 < γn−1γn , βγn−1 < γ2γn

αγn < γnγn+1 , βγn < γ2γn+1

αγn+1 < γn−1γn+1 , βγn+1 < γ1γn+1

αγ1 < γn−1γ1 , βγ1 < γ2γ1

αγ2 < γn−1γ2 , βγ2 < γnγ1

and for 3 ≤ k ≤ n− 2, (α+ β)γk < (γn + γn+1)γk. All these inequalities together imply
(α+ β)e1 < e2, so qd−2 > 0.

3.4. Proof of Proposition 3.3. Suppose that the couple is realizable by a polynomial
Q :=

∑7
j=0 qjx

j , q7 = 1, with positive roots α and β and negative roots −y and −γi, where

(3.5) y < β < α < γ1 < γ2 < γ3 < γ4.

As q6 = −α− β + y+ γ1 + · · ·+ γ4, one has q6 > 0. With roots satisfying the above inequalities
it is impossible to have q1 < 0, see [11, Theorem 3]. It is impossible to have q1 = 0, q2 < 0
either, because one can perturb q1 to make it negative by which action the roots remain real,
distinct and satisfying the above inequalities. So q1 > 0. We denote by Ej (resp. Gj) the jth
elementary symmetric polynomial of the quantities γi (resp. 1/γi), i = 1, . . ., 4. We show that
the inequalities (3.5) and

q2/αβyE4 := 1/αβ − (1/α+ 1/β)(G1 + 1/y) + (1/y)G1 +G2 < 0 and

q5 := αβ − (α+ β)(E1 + y) + yE1 + E2 < 0
(3.6)

cannot simultaneously hold true. In what follows, we assume that γ1 = 1 which can be
achieved by a linear change of the variable x and we consider instead of the inequalities (3.5)
the corresponding inequalities ≤. We first observe that for α + β fixed, the left-hand sides in
the inequalities (3.6) are the smallest possible when the product αβ is the smallest possible
(i.e. when α − β is the maximal possible). For the second of these inequalities this is evident,
for the first of them, one has to notice that the coefficient of 1/αβ in the left-hand side equals
1 − (α + β)(G1 + 1/y) < 0 (because α/y > 1). Thus it suffices to prove the proposition in the
two extremal cases β = y and α = γ1 = 1. Suppose that β = y. Then the second of inequalities
(3.6) reads:

E2 < αE1 + β2 .
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This is clearly impossible, because α ≤ 1, β ≤ 1, so αE1 + β2 ≤ E1 + 1 while

E2 ≥ γ2 + 2γ3 + 3γ4 ≥ E1 + 2 .

Suppose that α = γ1 = 1. We denote by ej and gj the elementary symmetric polynomials of the
quantities γi and 1/γi respectively, where i = 2, 3, 4. ThusE1 = 1+e1, E2 = e1+e2,G1 = 1+g1
and G2 = g1 + g2. The two inequalities (3.6) read:

(q2) : −1 + (β − y)g1 − βy + βyg2 < 0 and

(q5) : −1− (β − y)e1 − βy + e2 < 0.
(3.7)

Suppose first that 1−(β−y)g1 ≥ 0, i. e. β−y ≤ 1/g1. Hence the left-hand side L in (q5) satisfies
the inequality

L ≥ −1− e1/g1 − βy + e2 = (−g1 − e1 − βyg1 + e2g1)/g1 ≥ 0 ,

because g1 ≤ 3, βy ≤ 1, so −g1 − βyg1 ≥ −6, while e2g1 = 2e1 + T , where

T := γ2γ3/γ4 + γ3γ4/γ2 + γ4γ2/γ3 ≥ 3(γ2γ3γ4)
1/3 ≥ 3

(by the inequality between the mean arithmetic and the mean geometric), so

e2g1 ≥ 2e1 + 3 and L ≥ (−e1 − 6 + 2e1 + 3)/g1 = (e1 − 3)/g1 ≥ 0.

Suppose now that 1−(β−y)g1 < 0. Then the inequality (q2) can hold true only if βy(−1+g2) <
0, i.e. if −1 + g2 < 0. This means that for β − y fixed, the left-hand sides of (q2) and (q5) are
minimal when βy is maximal. This is the case when β = α = 1. Hence the following inequality
(derived from (q5)) holds true:

(3.8) −1− e1 + (e1 − 1)y + e2 < 0.

The left-hand side is minimal for y = 0, because e1 ≥ 3. Our aim is to show that if γi ≥ 1, i = 2,
3, 4, and if g2 < 1, then e2 > e1+1; this contradiction with inequality (3.8) would finish the proof
of Proposition 3.3. If g2 < 1, then as e2g2 ≥ 9 (inequality between the mean arithmetic and the
mean harmonic), one obtains e2 > 9. So the inequality e2 < e1 + 1 is possible only for e1 > 8.
But for fixed quantity e1, the quantity e2 is minimal for γ2 = γ3 = 1, γ4 = k > 1. For e1 > 8, one
should have k > 6. For such a choice of γi, one gets e2− e1−1 = 2k+1−k−3 = k−2 > 4 > 0.
This proves the proposition.

3.5. Proof of Proposition 3.4. We suppose that the polynomialQ :=
∑7

j=0 qjx
j , q7 = 1, realizes

the couple and for the moduli of its roots α, β and −y1, −y2, −γ1, −γ2, −γ3 one has

(3.9) y1 < y2 < β < α < γ1 < γ2 < γ3.

As in the proof of Proposition 3.3, one shows that q6 > 0 and q1 > 0. We want to show that
one cannot simultaneously have the inequalities (3.9), q2 < 0 and q5 < 0. We denote by Ej ,
Gj the elementary symmetric polynomials of the quantities γi and 1/γi respectively. We set
r := y1 + y2 and t := y1y2. Then one must have

q2/αβtE3 := 1/αβ − (1/α+ 1/β)(G1 + r/t) +G2 +G1r/t+ 1/t < 0 and

q5 := αβ − (α+ β)(E1 + r) + rE1 + E2 + t < 0.
(3.10)

For α + β fixed, the left-hand sides of the above inequalities are minimal when αβ is minimal.
In the equation for q2/αβtE3 the coefficient of 1/αβ equals 1− (α+ β)(G1 + r/t) < 0 (because
αr/t > α/y1 > 1). So it suffices to consider the cases A) β = y2 and B) α = γ1; in both cases one



On a problem inspired by Descartes’ rule of signs 111

can assume that γ1 = 1 which can be achieved by a linear change of the variable x.
Case A). If β = y2, then these inequalities read:

q2/αβtE3 := G2 +G1/y1 < G1/α+ 1/αy1 + 1/β2 and

q5 := E2 + y1E1 < αE1 + αy1 + β2.
(3.11)

One has α > 2/3. Indeed, if the second of inequalities (3.11) holds true, then it holds true for
y1 = 0, because E1 > α. But for y1 = 0 and α ≤ 2/3, it is true that αE1 + β2 < 2E1/3 + 1 < E2.
Next, one has γ3 < 2. Indeed, for γ3 ≥ 2, one gets

E2 ≥ 2γ1 + γ2 + γ3 = E1 + 1

≥ αE1 − y1(E1 − α) + 1 = (α− y1)E1 + αy1 + 1

≥ (α− y1)E1 + αy1 + β2

which is a contradiction with (3.11). Thus

(3.12) γ1 = 1 ≤ γ2 < γ3 < 2 and 4 < E1 < 5 , 2 < G1 < 3 , 5/4 < G2 < G1 < 3.

Suppose first that α− y1 ≤ 1/2. For E1 fixed, consider the function

Φ(α, y1) := (α− y1)E1 + αy1

on the closed pentagon

{(α, y1) | 0 ≤ α, y1 ≤ 1 , α− y1 ≤ 1/2 } .

As ∂Φ/∂y1 = −E1 + α < 0, the maximal value of Φ is attained on the union of two segments
I1 ∪ I2, where

I1 := {y1 = 0, α ∈ [0, 1/2]} and I2 := {y1 = α− 1/2, α ∈ [1/2, 1]} .

For (α, y1) ∈ I1, one has Φ = αE1 ≤ E1/2 < E2 − 1 < E2 − β2 which is a contradiction with
(3.11). For (α, y1) ∈ I2, one obtains

Φ = E1/2 + α(α− 1/2) < E1/2 + 1/2 < E2 − 1 < E2 − β2

which is again a contradiction. Suppose now that the couple (α, y1) belongs to the segment
I3 := {α− y1 = δ, α ∈ [δ, 1], δ ∈ [1/2, 1]}. Set

Ψ := (G1(α− y1)− 1)/αy1 .

As G1 > 2 and α− y1 ≥ 1/2, one has Ψ > 0. Moreover, Ψ > (G1δ− 1)/(1− δ). From (3.11), one
deduces that 1/β2 > G2 +Ψ, so

β2 < 1/(G2 +Ψ) < 1/

(
G2 +

G1δ − 1

1− δ

)
= (1− δ)/K,

where

K := G2(1− δ) +G1δ − 1 = G2 + (G1 −G2)δ − 1

> G2 + (G1 −G2)/2− 1 = (G1 +G2 − 2)/2 > 5/8

see (3.12). Thus β2 < (8/5)(1− δ). One can rewrite the second of inequalities (3.11) in the form
E2 − β2 < Φ. However on the segment I3 one has

Φ = E1δ + α(α− δ) ≤ E1δ + (1− δ) < E2 − β2,

because E2 = E2δ + E2(1− δ) with E1δ < E2δ and

(1− δ) + β2 < (13/5)(1− δ) < 3(1− δ) < E2(1− δ).
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This contradiction shows that the system of inequalities (3.11) has no solution in Case A).
Case B). Suppose that α = γ1 = 1 and that there exists a polynomialQ := (x2−1)Y (x) satisfying
the conditions of Case B); the roots of Y are β, −γ2, −γ3, −y1 and −y2. We consider a one-
parameter family of polynomials Qt := Q− tU , U := x2(x2 − 1)(x−β), t ≥ 0. The first and last
coefficients of U are positive which means that the coefficients q2 and q5 of Qt remain negative
for t ≥ 0; the coefficients q0, q1, q6 and q7 do not change. As t increases and as long as Qt

remains hyperbolic,
(1) the roots −γ3 and −y2 move to the left while −γ2 and −y1 move to the right; −y1 never

reaches 0, because U(0) = 0, while −γ2 and −y2 could reach −1;
(2) the root −γ3 cannot go to −∞, because this would mean that q7 = 0;
(3) neither of the coefficients q3 and q4 can vanish. Indeed, for a hyperbolic polynomial

without root at 0, it is impossible to have two consecutive vanishing coefficients, and
when a coefficient is 0, then the two surrounding coefficients must have opposite signs
([10, Lemma 7]).

It is clear that for t > 0 sufficiently large, one has Qt(2) < 0, so Qt has more than 2 positive
roots. This can happen only if Qt is no longer hyperbolic, because if it is, then it keeps the sign
pattern Σ2,4,2 (see 3)) and hence has exactly 2 positive roots.

Loss of hyperbolicity can occur only if the following couple or triple of roots coalesce:
(−γ2,−1), (−y2,−1) or (−γ2,−1,−y2). The triple confluence is a particular case of (−γ2,−1).
Case B.1). We assume that for t = t0 > 0, one has −γ2 = −γ1 = −1. We consider the one-
parameter family Rs := Qt0 − sV , where V := x2(x+1)2(x− 1) and s ≥ 0. For s small enough,
the sign pattern of Rs is Σ2,4,2. As s increases, −γ3 moves to the left without reaching −∞, −y2
and β move to the right and −y1 moves to the left. Hence for some s = s0, either β coalesces
with 1 or −y1 and −y2 coalesce.
Case B.1.1). Suppose that β = 1. Then Rs0 = (x2 − 1)2W , where W := x3 + Ax2 + Bx+ C has
only negative roots, so A, B, C > 0. Hence

(3.13) q2 = A− 2C < 0, q3 = 1− 2B < 0,
q4 = −2A+ C < 0 and q5 = B − 2 < 0.

The discriminant set

{ρ := Res(W,W ′, x) = 0}, ρ(A,B,C) = 4A3C −A2B2 − 18ABC + 4B3 + 27C2,

separates the setH3 of hyperbolic polynomials (where ρ < 0) in the spaceOABC from the set of
polynomials having exactly one real root (i.e. where ρ > 0). We show that the discriminant set
does not intersect the domain D in the spaceOABC defined by conditions (3.13). As ρ(1, 1, 1) =
16 > 0, the polynomial Rs0 is not hyperbolic which is a contradiction.

Lemma 3.2. The set {ρ = 0} does not intersect the border of the domain D := {0 < A/2 < C <
2A , B ∈ (1/2, 2)}.

The lemma implies that the set {ρ = 0} does not intersect the domain D. Indeed, the set
{ρ = 0} contains the curve A = 3t, B = 3t2, C = t3 (polynomials with a triple root at −t). This
curve is not contained in D, because it contains points with C > 2A. Hence if the set {ρ = 0}
contains a point from D, then it contains also a point not from D hence also a point from the
border of D.

Proof of Lemma 3.2. For A = 2C, one obtains ρ = 32C4 + τC2 + 4B3, τ := −4B2 − 36B + 27,
whose discriminant

τ2 − 4× 32× 4B3 = (2B − 1)(2B − 9)3
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is negative forB ∈ (1/2, 2). ForA = C/2, one gets ρ = C4/2+λC2+4B3, λ := −B2/4−9B+27,
with discriminant

∆0 := λ2 − 4× (1/2)× 4B3 = (−2 +B)(B − 18)3/16

which is positive for B ∈ (1/2, 2). However the biquadratic in C equation ρ = 0 has no real
solution, because ∆0 − λ2 = −8B3 < 0. Thus the discriminant set {ρ = 0} does not intersect
the sets {A = 2C > 0, B ∈ (1/2, 2)} and {A = C/2 > 0, B ∈ (1/2, 2)}. For B = 1/2, making
use of C/2 < A < 2C, one gets

ρ = 27C2 + 4A3C − 9AC −A2/4 + 1/2

> 27C2 + 4A3C − 18C2 − C2 + 1/2 = 8C2 + 4A3C + 1/2 > 0.

For B = 2, one obtains ρ = 27C2 + 4A3C − 36AC − 4A2 + 32. The derivative ∂ρ/∂C =
4A3 − 36A + 54C takes positive values for A ≥ 3/2, A/2 < C < 2A. This follows easily from
the fact that the graphs of the functions A/2 and (−4A3 + 36A)/54 intersect exactly for A = 0
and A = ±3/2. Hence for A ≥ 3/2 and A/2 ≤ C ≤ 2A, ρ is minimal when C = A/2; in this
case it equals

2A4 − 61A2/4 + 32 = 2(A2 − 61/16)2 + 375/128 > 0.

For 0 < A ≤ 3/2 and A/2 ≤ C ≤ 2A, the quantity ρ takes its minimal value for A = 3/2.
Indeed,

∂ρ/∂A = 12A2C − 8A− 36C ≤ 27C − 8A− 36C < 0 for A ≤ 3/2.

But for A = 3/2, one has ρ = 27C2 − 81C/2 + 23 = 27(C − 3/4)2 + 125/16 > 0. Thus the set
{ρ = 0} does not intersect the border of the domain D. □

Case B.1.2). Suppose that −y1 and −y2 coalesce. We set c := y1 = y2 and we consider the
polynomial

7∑
j=0

qjx
j =: Q := (x+ 1)2(x+ c)2(x− 1)h(x), h := x2 +Ax−B,

where A = γ3 − β > 0 and B = γ3β. As c ∈ (0, 1), one has

(3.14) h(−1) = 1−A−B < 0.

The conditions q2 < 0 and q5 < 0 read:

(3.15) q2 = −Ac2 −Bc2 − 2Ac+ 2Bc− c2 +B < 0, i.e. B < (c2+2c)A+c2

−c2+2c+1

q5 = 2Ac+ c2 +A−B + 2c− 1 < 0, i.e. B > (2c+ 1)A+ c2 + 2c− 1.

We denote by (q2), (q5) and (g) the straight lines in the space OAB defined by the conditions
q2 = 0, q5 = 0 and A+B = 1 (see (3.14)). For c ∈ (0, 1), the slope (c2 +2c)/(−c2 +2c+1) of the
line (q2) is smaller than the slope 2c + 1 of (q5); both slopes are positive. The A-coordinates of
the intersection points (q2) ∩ (q5) and (q2) ∩ (g) equal respectively

A′ := −(c4 − 5c2 + 1)/(2c3 − 2c2 − 2c− 1) and A′′ := (1 + 2c− 2c2)/(4c+ 1).

For c ∈ (0, 1), one has

A′′ −A′ = 9c2(c2 − 2c− 1)/((2c3 − 2c2 − 2c− 1)(4c+ 1)) > 0.

Hence for c ∈ (0, 1), the half-plane {q5 < 0} does not intersect the sector {q2 < 0, 1−A−B < 0},
so a polynomial Q as above does not exist.
Case B.2). We assume that for t = t0 > 0, one has −γ1 = −y2 = −1. We consider the one-
parameter family Ts := Qt0 − sV , where as above V := x2(x− 1)(x+ 1)2 and s ≥ 0. For s > 0
small enough, the sign pattern of Ts is Σ2,4,2. As s increases, −γ3 moves to the left without
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reaching −∞, −y2 and β move to the right while −y1 moves to the left. Hence for some s = s1,
one has one of the confluences (β, 1), (−γ2,−1) or (−y1,−1). In the latter two cases, there is a
triple root at −1.
Case B.2.1). Suppose that β = α = 1. Then one can apply the involution ir (this does not
change the sign pattern Σ2,4,2) and obtain a polynomial corresponding to Case B.1.1) which
was already studied.
Case B.2.2). Suppose that −γ2 = −γ1 = −y2 = −1. Then

Ts1 = (x+ 1)3(x− 1)(x− β)(x+ γ3)(x+ y1) =

7∑
j=0

qjx
j ,

where q2 + 2q5 = 3(y1 − β + γ3) > 0. Hence the coefficients q2 and q5 cannot be both negative;
the sign pattern of Ts1 is not Σ2,4,2.
Case B.2.3). Suppose that −γ1 = −y2 = −y1 = −1. Then

Ts1 = (x+ 1)3(x− 1)(x− β)(x+ γ2)(x+ γ3) =

7∑
j=0

qjx
j ,

where q2 + 2q5 = 3(γ2 + γ3 − β) > 0. Hence the coefficients q2 and q5 cannot be both negative
and again the sign pattern of Ts1 is not Σ2,4,2.

3.6. Proof of Proposition 3.5. Suppose that the couple is realizable by a hyperbolic polynomial
Q :=

∑7
j=0 qjx

j the moduli of whose positive roots β < α and of whose negative roots −γi
satisfy the inequalities

γ1 < β < γ2 < α < γ3 < γ4 < γ5.

For the coefficients q0 = αβγ1 · · · γ5, q2 and q5 of the polynomial Q, it is true that

q2/q0 =
∑

1≤i<j≤5

1/γiγj − ((α+ β)/αβ)

5∑
j=1

1/γj + 1/αβ < 0,

q5 = αβ − (α+ β)

5∑
j=1

γj +
∑

1≤i<j≤5

γiγj < 0.

This however is impossible. Indeed, for positive α and β and when the sum α+ β is fixed, the
product αβ is minimal when α and β are as far apart as possible. Hence it suffices to consider
the two extremal situations:
(1) β = γ1. In this case

q5 =
∑

2≤i<j≤5

γiγj − α

5∑
j=2

γj − γ21

= (γ3 − α)γ2 + (γ4 − α)γ3 + (γ5 − α)γ4 + (γ3 − α)γ5

+ (γ2γ4 + γ2γ5 − γ21) > 0

and the sign pattern of Q is not Σ2,4,2.
(2) α = γ3. We assume that α = γ3 = 1. For fixed product γ4γ5, the sum γ4 + γ5 is the minimal
possible when γ4 and γ5 are the closest possible to one another, i.e. when they are equal. One
has

q2/q0 =
1

γ4γ5
(1 + (γ4 + γ5)L2) + ψ2, L2 :=

1

γ1
+

1

γ2
− 1

β
,

q5 = (γ4 + γ5)L5 + γ4γ5 + ψ5, L5 := γ1 + γ2 − β,
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where the quantities ψ2 and ψ5 do not depend on γ4 and γ5. As the quantities L2 and L5

are positive, if one has q2 < 0 and q5 < 0 for some values of the moduli γi and β such that
γ4γ5 = λ > 0, then these inequalities will hold true also for γ4 = γ5 =

√
λ. A similar reasoning

holds true for the couples (γ2, γ4) and (γ2, γ5), but in these cases the modulus 1 = γ3 = α must
remain between the two moduli of the couple, so one can only claim that the sum γ2 + γ4 or
γ2 + γ5 is minimal when one of these two moduli equals 1.

We apply the reasoning to the couple (γ2, γ4). Hence we can assume that either γ2 = 1 or
γ4 = 1. If γ2 = 1, then we apply the reasoning to the couple (γ4, γ5) to obtain the case

A) γ2 = γ3 = α = 1, γ4 = γ5.

If γ4 = 1, then we apply the reasoning to the couple (γ2, γ5) to obtain the cases

B) γ2 = γ3 = γ4 = α = 1 and

C) γ3 = γ4 = γ5 = α = 1.

In case A), one has to deal with the polynomial

(x+ γ1)(x− β)(x− 1)(x+ 1)2(x+ γ4)
2

with

q2 + (1 + γ1)q5 = βγ24(1− γ1) + (2γ4 − β)(γ21 + γ1) + (2γ4 − β − 1) + γ21 > 0 ,

so it is impossible to have q2 > 0 and q5 > 0.
In case B), we consider the polynomial

(x+ γ1)(x− β)(x− 1)(x+ 1)3(x+ γ5)

with
q2 + q5 = γ1β + γ5(β − γ1) + (γ5 − β) + γ1 > 0 ,

so again one cannot have q2 < 0 and q5 < 0 at the same time.
In case C), one considers the polynomial

(x+ γ1)(x− β)(x+ γ2)(x− 1)(x+ 1)3

with
q2 + q5 = βγ2 + βγ1 + (1− γ2)γ1 + (γ2 − β) > 0

and one cannot have q2 > 0 and q5 > 0.

3.7. Proof of Proposition 3.2. We prove the proposition by induction on n. We prove part
(2) first. The induction base are the couples (Σ2,4,2, (2, 0, 3)) and (Σ2,4,2, (1, 1, 3)), see Proposi-
tions 3.4 and 3.5. Suppose that it has been proved that the couple (Σ2,n,2, (u, v, 3)), u+v = n−2,
u > 0, is not realizable. This means that for any positive numbers

(3.16) y1 < · · · < yu < β < yu+1 < · · · < yu+v < α < γ1 < γ2 < γ3

(interpreted as the moduli of the roots of a hyperbolic polynomial, the positive roots being α
and β) it is impossible to simultaneously have

q2 := P∗ × (1/αβ − (1/α+ 1/β)G1 +G2) < 0 and

q5 := αβ − (α+ β)E1 + E2 < 0,
(3.17)

where P∗ := αβγ1γ2γ3y1 · · · yn−2, Ej (resp. Gj) denoting the corresponding elementary sym-
metric polynomials of the quantities yi and γj (resp. of 1/yi and 1/γj). Indeed, the inequalities
(3.16) provide the positive signs of q1 and q6. If inequalities (3.17) hold true, then as there
are just two positive roots, by Descartes’ rule of signs one must have q3 < 0 and q4 < 0;
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the equalities q3 = 0 and q4 = 0 are impossible by virtue of [10, Lemma 7]. We set q̃2 :=
1/αβ− (1/α+1/β)G1 +G2. Suppose that one increases n to n+1, so one adds a new quantity
yj or γj denoted by γ. Then P∗ 7→ P∗ × γ and the new quantities q̃2 and qd−2 equal respectively

q̃2 + (1/γ)(G1 − 1/α− 1/β) and qd−2 + γ(E1 − α− β) .

As y1 < β and y2 < α < γ1 < γ2, one has E1 − α− β > 0 and G1 − 1/α− 1/β > 0. This means
that both q̃2 and qd−2 increase and hence after passing from n to n+ 1 they still cannot be both
negative.

To prove part (1) of the proposition, one observes first that for u = 0, it follows from part (1)
of Proposition 3.1. So one can suppose that u ≥ 1. Then the proof of part (2) is performed in
much the same way as the proof of part (1). There are only two differences:
(1) the induction base includes also the couple (Σ2,4,2, (1, 0, 4)) which is non-realizable, see
Proposition 3.3;
(2) the inequalities (3.16) have to be replaced by

y1 < · · · < yu < β < yu+1 < · · · < yu+v < α < γ1 < γ2 < γ3 < γ4 .

The rest of the reasoning is the same.
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