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Method for solving mixed boundary value problems for
parabolic type equations by using modifications
Lagrange-Sturm-Liouville operators
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ABSTRACT. A new method for solving a mixed boundary value problem with a parabolic type equation is obtained.
Boundary conditions of the third kind are considered. The inhomogeneity of the equation and the initial conditions
of the problem are arbitrary continuous functions. They are not required to satisfy boundary conditions. The solution
is constructed using interpolation operators of Lagrange-Sturm-Liouville functions. A sequential approach is used to
construct a generalized solution. The solution is presented as a series. The series converges uniformly on any compact
set contained within the domain of definition of the solution. The coefficients of the series are linear combinations
of the values of the functions from the equation and the initial conditions of the boundary value problem. A simple
method for finding the coefficients of these linear combinations is proposed.
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1. INTRODUCTION

The paper proposes a method for obtaining a generalized solution to a mixed boundary
value problem with a parabolic type equation. We consider the mixed boundary value problem

ut − uxx + q(x)u = f(x, t),(1.1)

u(0, t) cosα+ ux(0, t) sinα = 0,(1.2)

u(π, t) cosβ + ux(π, t) sinβ = 0,(1.3)

u(x, 0) = φ(x),(1.4)

where x ∈ [0, π], t ∈ [0, T ], T > 0, α, β ∈ R, functions f and φ are continuous on the vari-
able x ∈ [0, π], and function f is summable on the variable t on the segment [0, T ], and the
function q is of bounded variation. Satisfaction of the boundary conditions (1.2), (1.3) by the
functions f and φ are not necessary. We obtain a generalized solution in the case where there
are arbitrary continuous function (not necessarily satisfying the boundary conditions) in the
initial conditions and homogeneous terms of the equations. As an intermediate approximation
of the generalized solution, we use the generalized Lagrange-Sturm-Liouville operator [14]. In
this method the role of Fourier coefficients of functions involved in the problem is played by
the set of their values at zeros of solutions to the auxiliary Sturm-Liouville problem. The algo-
rithm admits the use of already calculated Fourier coefficients for a countable set of auxiliary
functions. When reasoning, we used ideas from works [2]-[4].
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2. THE MAIN RESULTS

Unless otherwise stated, Un is the normalized (Un(0) = 1 or U ′
n(0) = 1 if h = ±∞) n-

th eigenfunction, corresponding to the eigenvalue λn regular Sturm-Liouville problem with
potential q∗ of bounded variation on [0, π]

U ′′ + [λ− q∗]U = 0,(2.5)

U ′(0)− hU(0) = 0,(2.6)

U ′(π) +HU(π) = 0,(2.7)

where h = ±∞ and H = ±∞ are admitted.
We define the interpolation operator of a functions LSL

n (f, ·) sending a finite-valued function
f defined at the zeros 0 ≤ x1,n < x2,n < · · · < xn,n ≤ π of Un to a continuous function by the
rule (cf. [14])

(2.8) LSL
n (f, x) =

n∑
k=1

f(xk,n)
Un(x)

U ′
n(xk,n)(x− xk,n)

=

n∑
k=1

f(xk,n)l
SL
k,n(x).

The value of operator (2.8) cannot approximate an arbitrary continuous function (cf. [9]). We
modify this operator as follows. On the space of bounded functions defined on [0, π] (f ∈
M [0, π]), we introduce the operator

CTSL
n (f, x) =

1

4

n−1∑
k=1

(
lSL
k+1,n(x) + 2lSL

k,n(x) + lSL
k−1,n(x)

)
×
{
f(xk,n)−

f(π)− f(0)

π
xk,λ − f(0)

}
+

f(π)− f(0)

π
x+ f(0),(2.9)

or

CTSL
n (f, x) ≡ C̃TnSL(f, x)

=
1

4

n−1∑
k=1

lSL
k,n(x)

{
f(xk+1,n) + 2f(xk,n) + f(xk−1,n)

−f(π)− f(0)

π
(xk+1,n + 2xk,n + xk−1,n)− 4f(0)

}
+

f(π)− f(0)

π
x+ f(0),(2.10)

where the functions lSL
k,n are defined in (2.8). We introduce generalized functions in the sence

of the sequential approach [7], [1, p. 1.3].

Definition 2.1. The class of equivalent sequences of continuous functions on a compact set K, i.e.,
sequences converging to the same continuous function in the norm ∥f∥C(K) = max

x∈K
|f(x)| is called a

generalized function on K.

By solving of a mixed boundary value problem (1.1)-(1.4), we mean a generalized function
in terms of Definition 2.1. Because if the stationary sequence fn ≡ f belongs to the class
of equivalent sequences in Definition 2.1, then the classical solution is a special case of the
generalized solution. Making the change of variables u(x, t) = Û(x)V (t) in (1.1)-(1.4) and
separating the variables in Equation (1.1), we obtain the regular Sturm-Liouville problem

Û ′′ + [λ̂− q(x)]Û = 0,(2.11)

Û(0) cosα+ Û ′(0) sinα = 0,(2.12)

Û(π) cosβ + Û ′(π) sinβ = 0.(2.13)
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Properties of this problem are well studied, for example [4]. We denote by λ̂m := λ̂m(q, α, β)
and Um := Um(q, α, β, x)m = 0, 1, 2, 3, . . . the eigenvalues and the corresponding orthonormal-
ized eigenfunctions of problem (2.11)-(2.13), respectively. We consider the Fourier coefficients
of (3.33) calculated for the Sturm-Liouville problem (2.11)-(2.13) and linear function

τk,n,m =

π∫
0

Ûm(q, α, β, ξ)lSL
k,n(ξ) dξ,

τ (0)m =

π∫
0

Ûm(q, α, β, ξ) dξ, τ (1)m =

π∫
0

ξÛm(q, α, β, ξ) dξ.(2.14)

The Fourier coefficients (2.14) are determined only by the parameters of the mixed boundary
value problem and can be calculated a priori for each problem of the form (1.1)-(1.4). We con-
sider the Fourier coefficients of the values of the operator (2.9) for arbitrary f ∈ M [0, π]

ĈT
SL

n,m[f ] :=
1

4

n∑
k=1

(τk−1,n,m + 2τk,n,m + τk−1,n,m)

×
{
f(xk,n)−

f(π)− f(0)

π
xk,n − f(0)

}
+

f(π)− f(0)

π
τ (1)m + f(0)τ (0)m .(2.15)

We set

νn =

{
−e−λn

(
CTSL

n (f, 0) ctgα+ CTSL
n

′
(f, 0)

)
when α ̸= πm1,m1 ∈ Z,

CTSL
n (f, 0) when α = πm1,m1 ∈ Z,

ν̃n =

{
−e−λn

(
CTSL

n (f, π) ctg β + CTSL
n

′
(f, π)

)
when β ̸= πm2,m2 ∈ Z,

CTSL
n (f, π) when β = πm2,m2 ∈ Z,

µn =
√
3
2 eλn .

We will define two operators η(x, λn)[f ] := η(x, λn), η̃(x, λn)[f ] := η̃(x, λn) as follows; for each
continuous function f on the set {xk,n}n,∞k=1,n=1, we will put two functions in correspondence
(2.16)

η(x, λn) =



2
√

1
3νnµnx when x ∈ [0, 1

|µn|

(√
2
3

)
], α ̸= πm1,m1 ∈ Z,

νn sin
3
(
µn

(
x+ 1

|µn|

(
arcsin

√
2
3 −

√
2
3

)))
when

x ∈ [ 1
|µn|

(√
2
3

)
, π
|µn| −

1
|µn|

(
arcsin

√
2
3 −

√
2
3

)
], α ̸= πm1,m1 ∈ Z,

νn

(
π

|µn| −
1

|µn|

(
arcsin

√
2
3 −

√
2
3

))−3 (
x− π

|µn| +
1

|µn|

(
arcsin

√
2
3 −

√
2
3

))3
when x ∈ [0, π

|µn| −
1

|µn|

(
arcsin

√
2
3 −

√
2
3

)
], α = πm1,m1 ∈ Z,

0 when x ∈ [ π
|µn| −

1
|µn|

(
arcsin

√
2
3 −

√
2
3

)
, π],
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(2.17)

η̃(x, λn) = −



2
√

1
3 ν̃nµn(π − x) when x ∈ [π − 1

µn

(√
2
3

)
, π], β ̸= πm2,m2 ∈ Z,

ν̃n sin
3
(
µn

(
π − x+ 1

µn

(
arcsin

√
2
3 −

√
2
3

)))
when x ∈ [π − π

µn
+ 1

µn

(
arcsin

√
2
3 −

√
2
3

)
, π − 1

µn

(√
2
3

)
], β ̸= πm2,m2 ∈ Z,

ν̃n

(
π
µn

− 1
µn

(
arcsin

√
2
3 −

√
2
3

))−3 (
π − π

µn
+ 1

µn

(
arcsin

√
2
3 −

√
2
3

)
− x
)3

when x ∈ [π − π
µn

+ 1
µn

(
arcsin

√
2
3 −

√
2
3

)
, π], β = πm2,m2 ∈ Z,

0 when x ∈ [0, π − π
µn

+ 1
µn

(
arcsin

√
2
3 −

√
2
3

)
].

We set

σ1 =

{
1 when (α = πm1,m1 ∈ Z) ∧ f(0) ̸= 0,
0 when (α ̸= πm1,m1 ∈ Z) ∨ f(0) = 0,

σ̃1 =

{
1 when (β = πm2,m2 ∈ Z) ∧ f(π) ̸= 0,
0 when (β ̸= πm2,m2 ∈ Z) ∨ f(π) = 0.

(2.18)

We consider the Fourier coefficients of the values of the operators (2.16), (2.17) with respect to
the eigenfunctions of the problem (2.11)-(2.13)

η̂λn,m =⟨Ûm(q, α, β, ·), η(·, λn)⟩ =
π∫

0

Ûm(q, α, β, ξ)η(ξ, λn)dξ,

ˆ̃ηλn,m =⟨Ûm(q, α, β, ·), η̃(·, λn)⟩ =
π∫

0

Ûm(q, α, β, ξ)η̃(ξ, λn)dξ.(2.19)

We introduce the operator sending f ∈ C[0, π] to partial Fourier sums of CTSL
n (f, x)+η(x, λn)+

η̃(x, λn):

(2.20) CTSL
n,j(f, x) =

j∑
m=0

ĈT
SL

n,m[f, η]Ûm(q, α, β, x),

where (cf. (2.15) and (2.19))

ĈT
SL

n,m[f, η] :=
1

2

n∑
k=1

(τk−1,n,m + τk,n,m + τk+1,n,m)

{
f(xk,n)−

f(π)− f(0)

π
xk,n − f(0)

}
+
f(π)− f(0)

π
τ (1)m + f(0)τ (0)m + η̂λn,m + ˆ̃ηλn,m.(2.21)

Theorem 2.1. We assume that T > 0, ε > 0, functions f and φ are continuous on the variable
x ∈ [0, π], and function f is summable on the variable t on the segment [0, T ], a function q is bounded
variation, and a function j(n) takes integer or infinite values and satisfies the relation

(2.22)
[
n2(1+ε)

]
+ 1 ⩽ j(n) ⩽ ∞.

Then the generalized solution to the mixed boundary value problem (1.1)-(1.4) has the form

u(x, t) = lim
n→∞

j(n)∑
m=0

(
ĈT

SL

n,m[φ, η]e−λ̂mt +

∫ t

0

e−λ̂m(t−τ)ĈT
SL

n,m[f(·, τ), η] dτ
)

× Um(q, α, β, x).(2.23)
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The convergence in (2.23) is uniform on [σ1ε̃, π− σ̃1ε̃]× [0, T ], where ĈT
SL

n,m[·, η] are defined in (2.21),
and σ1, σ̃1 are defined in (2.18).

Comparing with the theory of difference schemes, we see that the method proposed in The-
orem 2.1 has the advantages of Fourier analysis, but, unlike the classical Fourier and Krylov
methods, deals with a wider set of admissible function f , φ, which means that it suffices to
possess an information about these functions at the nodes xk,n. To calculate the coefficients

ĈT
SL

n,m[f, η], one can use the Fourier coefficients τk,n,m of lSL
k,n (cf. (2.14)) independent of f and

φ. To avoid calculations of integrals of rapidly oscillating functions, the following assertion can
be used.

Proposition 2.1 ([13], [15]). If q∗(x) ≡ q(x) in (2.5) and (2.11), then the Fourier coefficients (2.14) of
lSL
k,n (cf. (2.8)) can be found in terms of Riemann-Stieltjes integral

τk,n,m =
1(

λ̂m − λn

)(lSL
k,n

′
(π)Um(π)− lSL

k,n(π)U
′
m(π)

−
(
lSL
k,n

′
(0)Um(0)− lSL

k,n(0)U
′
m(0)

))
+

2(
λ̂m − λn

) π∫
0

Um(x)

(x− xk,n)
dlSL

k,n(x).(2.24)

If the potential of the problem (1.1)-(1.4) is continuously differentiable, then the Fourier co-
efficients of lSL

k,n can be found in terms of the resolvent of a differential operator.

Proposition 2.2 ([13], [15]). If q∗(x) ≡ −q(x) in (2.5) and (2.11) is continuously differentiable, then
the Fourier coefficients (2.14) of lSL

k,n (cf. (2.8)) can be calculated in terms of the differential Cauchy
operator

Φ′′′
k,λn,m(x) + (λn + λm) Φ′

k,λn,m(x) =2lSL
k,n

′
(x)

(
Um(x)

(x− xk,n)

)′

(x− xk,n)

Φk,λn,m(xk,n) =0,

Φ′
k,λn,m(xk,n) =Um(xk,n),

Φ′′
k,λn,m(xk,n) =U ′

m(xk,n),(2.25)

as follows:

(2.26) τk,n,m = Φk,λn,m(π)− Φk,λn,m(0).

3. AUXILIARIES

If ρλ ≥ 0, for every λ, we assume that qλ is an arbitrary element of the ball Vρλ
[0, π] of radius

ρλ = o
(√

λ
lnλ

)
in the space of functions such that

(3.27) V π
0 [qλ] ≤ ρλ, ρλ = o

(√
λ

lnλ

)
, as λ → ∞, qλ(0) = 0.

Here, the potential qλ depended of λ. For any potential qλ ∈ Vρλ
[0, π], all zeros of solution to

the Cauchy problem

(3.28)

 y′′ +
(
λ− qλ(x)

)
y = 0,

y(0, λ) = 1,
y′(0, λ) = h(λ),
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or, under the additional condition h(λ) ̸= 0

(3.29) V π
0 [qλ] ≤ ρλ, ρλ = o

(√
λ

lnλ

)
, when λ → ∞, qλ(0) = 0, h(λ) ̸= 0

the Cauchy problem

(3.30)

 y′′ +
(
λ− qλ(x)

)
y = 0,

y(0, λ) = 0,
y′(0, λ) = h(λ),

that belong to [0, π] and are enumerated in ascending order will be denoted by

(3.31) 0 ≤ x0,λ < x1,λ < . . . < xn(λ),λ ≤ π, (x−1,λ < 0, xn(λ)+1,λ > π).

Hereinafter, for brevity, we denote n = n(λ). We consider the function

(3.32) sk,λ(x) =
y(x, λ)

y′(xk,λ, λ)(x− xk,λ)
,

where y(x, λ) is the solution to the Cauchy problem (3.28) or (3.30) with zeros xk,λ (cf. (3.31)).
If qλ ≡ q∗ in (3.28) or (3.30) instead of a continuously varying parameter λ, we consider λ = λn

and h(λ) ≡ 1. We obtain the identities

(3.33) lSL
k,n ≡ sk,λn.

On the space of continuous functions f on [0, π], we introduce (cf.[8]) operators

CTλ(f, x) =
1

4

n−1∑
k=1

{
f(xk,λ)−

f(π)− f(0)

π
xk,λ − f(0)

}
×
(
sk−1,λ(x) + 2sk,λ(x) + sk+1,λ(x)

)
+

f(π)− f(0)

π
x+ f(0),(3.34)

which can be written in the form

CTλ(f, x) ≡ C̃Tλ(f, x)

=

n−1∑
k=1

{
f(xk+1,λ) + 2f(xk,λ) + f(xk−1,λ)

4
− (f(π)− f(0))

π

(xk+1,λ + xk,λ)

2

− f(0)

}
sk,λ(x) +

f(π)− f(0)

π
x+ f(0).(3.35)

We set

CT
(1)
λ (f, x) =

d

dx
CTλ(f, x),(3.36)

CT
(2)
λ (f, x) =

d2

dx2
CTλ(f, x).(3.37)

The values of the operators (3.34) and (2.9), (2.10) depend only on the values of f(xk,λn−1
) at

zeros xk,λn−1
of the function y(x, λn−1).
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3.1. Asymptotic Formulas. We will use the following statements.

Proposition 3.3 ([10, Theorem 1], [8, Proposition 2]). Let ρλ ≥ 0, ρλ = o(
√
λ) when λ → ∞,

and let Vρλ
[0, π] be a ball of radius ρλ in the space of function of bounded variation vanishing at the

origin, so that
V π
0 [qλ] ≤ ρλ, qλ(0) = 0, where ρλ = o(

√
λ), when λ → ∞

for real λ. Then there exists λ1 > 4π2ρ2λ such that λ ≥ λ1, for each potemtial qλ ∈ Vρλ
[0, π] and any

x ∈ [0, π] the solution of the Cauchy problem (3.28) satisfies the following inequalities:∣∣∣∣y(x, λ)− γ(x, λ, h) cos
√
λx− β(x, λ, h)

sin
√
λx√
λ

∣∣∣∣ ≤ ρλ(1 + πρλ)

2λ

(
1 +

|h(λ)|√
λ

)
,(3.38) ∣∣∣∣y′(x, λ) +√

λγ(x, λ, h) sin
√
λx− β(x, λ, h) cos

√
λx

∣∣∣∣ ≤ ρλ(1 + πρλ)

2
√
λ

(
1 +

|h(λ)|√
λ

)
,

where

β(x, λ, h) =h(λ) +
1

2

∫ x

0

qλ(τ)dτ,

γ(x, λ, h) =1− h(λ)

2λ

∫ x

0

qλ(τ)dτ.

Proposition 3.4 ([10, Theorem 1’], [8, Proposition 3]). Let ρλ ≥ 0, ρλ = o(
√
λ) as λ → ∞,

and let Vρλ
[0, π] be the ball of radius ρλ in the space of functions of bounded variation vanishing at the

origin. Then there exists λ1 > 4π2ρ2λ, such that λ ≥ λ1, for each potential qλ ∈ Vρλ
[0, π] and any

x ∈ [0, π] the solution of the Cauchy problem (3.30) satisfies the following inequalities:∣∣∣∣y(x, λ)− h(λ) sin
√
λx√

λ
+ δ(x, λ, h) cos

√
λx

∣∣∣∣ ≤ ρλ(1 + πρλ)|h(λ)|
2λ

√
λ

,(3.39) ∣∣∣y′(x, λ)− h(λ) cos
√
λx−

√
λδ(x, λ, h) sin

√
λx
∣∣∣ ≤ ρλ(1 + πρλ)|h(λ)|

2λ
,∣∣∣y′′(x, λ) + h(λ)

√
λ sin

√
λx− λδ(x, λ, h) cos

√
λx
∣∣∣ ≤ ρλ(1 + πρλ)|h(λ)|

2
√
λ

,

where

δ(x, λ, h) =
h(λ)

2λ

∫ x

0

qλ(τ) dτ.

Proposition 3.5 ([10, Theorems 2, 2’], [8, Proposition 4]). Let condition (3.27) be satisfied. Then,
for each potential qλ ∈ Vρλ

[0, π], the zeros of the solutions of the Cauchy problem (3.28) lying in [0, π]
and numbered in accordance with (3.31), satisfy yhe following asymptotic formulae as λ → ∞:

xk,λ =
(k + 1)π√

λ
− 1√

λ
arcsin

√
λ

λ+ h2(λ)
+ o

(
λ− 1

2

lnλ

)
,

y′(xk,λ, λ) =
√

λ+ h2(λ)

(
(−1)(k+1) + o

(
1

lnλ

))
,

as λ → ∞. If h(λ) ̸= 0, and qλ satisfies (3.29) the zeros of the Cauchy problem (3.31), numbered in
accordance with (3.30), satisfy the asymptotic formulae

xk,λ =
k√
λ
π + o

(
λ− 1

2

lnλ

)
, when λ → ∞,
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y′(xk,λ, λ) =h(λ)

(
(−1)k + o

(
1

lnλ

))
, when λ → ∞.

The convergence of symbol o to zero is uniform in qλ ∈ Vρλ
[0, π] and k : 0 ≤ k ≤ n.

In order to recover the conditions of the problems (3.31) from the properties of the zeros of
(3.28), (3.30), we can use the results of the studies in [11], [12].

Lemma 3.1 ([8, Lemma 2]). Let ρλ ≥ 0, ρλ = o
(√

λ
lnλ

)
, as λ → ∞, and Vρλ

[0, π] be the ball of
radius ρλ in the space of functions of bounded variatin vanish at the origin (in the case of the Cauchy
problem (3.30) it is also assumed that h(λ) ̸= 0). Then there exists a positive λ0 depending only on the
rate of change of the radii of the balls ρλ in (3.27) or (3.29) such that for potentials qλ ∈ Vρλ

[0, π] and
any h(λ), and for arbitrary k, 0 ≤ k ≤ n, λ > λ0, the functions sk,λ(x) constructed from the solutions
of the Cauchy problem (3.28) or (3.30) have the following estimates:

max
x∈[0,π]

|sk,λ(x)| = max
x∈[0,π]

∣∣∣ y(x, λ)

y′(xk,λ, λ)(x− xk,λ)

∣∣∣ ≤ 3 when λ > λ0.

3.2. Some Operators of the Theory of Approximations of Functions.

Proposition 3.6 ([8, Proposition 1, Remark 6]). Let f ∈ C[0, π] and let the functions qλ and h(λ)
satisfy the condition (3.27) in the case of the Cauchy problem (3.28) or (3.29) in the case of the Cauchy
problem (3.30). Then the operators (3.34), (3.35) satisfy

(3.40) lim
λ→∞

CTλ(f, x) ≡ lim
λ→∞

C̃Tλ(f, x) = f(x)

uniformly for x on [0, π] and for qλ in the balls Vρλ
[0, π], for any h(λ) ∈ R.

Proposition 3.7. Let ρλ ≥ 0, ρλ = o
(√

λ
lnλ

)
, as λ → ∞, and Vρλ

[0, π] is the ball or radius ρλ in
the space of functions of bounded variation that vanish at zero (additionaly, h(λ) ̸= 0 for the Cauchy
problem (3.30)). Then there is λ0 such that for any potential qλ ∈ Vρλ

[0, π] and function h(λ) and for
all λ > λ0 the norms of the operators (3.36) and (3.37) acting from M [0, π] to C[0, π] and constructed
from the solution to Cauchy problem (3.28) or (3.30) are estimated from above as follows:

CT
(1)
λ ≤17

√
λ

π
lnλ,(3.41)

CT
(2)
λ ≤17λ

π
lnλ.(3.42)

Proof. We first prove the estimate (3.41) for the operator (3.36) in the case of the Cauchy prob-
lem (3.30). Since the operator (3.35) is invariant under multiplication of y(x, λ) by a non zero
constant, we can set h(λ) ≡ 1. For an arbitrary point x ∈ [0, π], we denote by k0 the number of
the nearest node to x (if there are two such nodes, then for k0 we take any of them). From the
Proposition 3.5, we obtain the estimate

(3.43) |x− xk0,λ| = O

(
π√
λ

)
.

We will consider the representation of CTλ in the form (3.35). Then the norms of the functionals
(3.36) have the estimate:

CT
(1)
λ (x) ≤ 2

n∑
k=0

∣∣s′k,λ(x)∣∣+ 2

π

= 2

k0−1∑
k=0

∣∣s′k,λ(x)∣∣+ 2
∣∣s′k0,λ(x)

∣∣+ 2

n∑
k=k0+1

∣∣s′k,λ(x)∣∣+ 2

π
.(3.44)
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The norms of the operators (3.36) have a representation:

(3.45) CT
(1)
λ = max

x∈[0,π]
CT

(1)
λ (x).

The second term on the right-hand side of (3.44) is estimated in a neighborhood of the point
xk0,λ (3.43) with the help of the Lagrange formula, and the asymptotic formulas from the Propo-
sition 3.5 as follows:

2
∣∣s′k0,λ(x)

∣∣ = 2

∣∣∣∣
∣∣y′(x, λ)(x− xk0,λ)− y(x, λ)

∣∣
y′(xk0,λ, λ)(x− xk0,λ)

2

∣∣∣∣ = o

(
1√
λ

)
.

Using (3.44), we obtain the estimate

CT
(1)
λ (x) ≤ 2

k0−1∑
k=0

∣∣∣∣
∣∣y′(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)

∣∣∣∣+ 2

n∑
k=k0+1

∣∣∣∣
∣∣y′(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)

∣∣∣∣
+ 2

k0−1∑
k=0

∣∣∣∣
∣∣y(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)2

∣∣∣∣+ 2

n∑
k=k0+1

∣∣∣∣
∣∣y(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)2

∣∣∣∣
+

2

π
+ o

(
1√
λ

)
.(3.46)

By the above-mentioned asymptotic formulas from the Proposition 3.5, for sufficiently large λ
we have

(3.47) min
1≤k≤n

|xk,λ − xk−1,λ| ≥
π

2
√
λ
, min (|x− xk0−1,λ|, |x− xk0+1,λ|| ≥

π

8
√
λ
.

By (3.46), (3.47) and the above-mentioned asymptotic formulas from the Proposition 3.5, there
is λ1 depending only on the change rate of the ball radii in (3.27), (3.29) such that for all λ > λ1

CT
(1)
λ (x) ≤ 2

∣∣y′(x, λ)∣∣ n∑
k=0

′
∣∣∣∣∣ 1(

(−1)k + o
(

1
lnλ

))
(x− xk,λ)

∣∣∣∣∣
+ 2
∣∣y(x, λ)∣∣ n∑

k=0

′
∣∣∣∣∣ 1(

(−1)k + o
(

1
lnλ

))
(x− xk,λ)2

∣∣∣∣∣+ 2

π
+ o

(
1√
λ

)
.

Hereinafter, the prime at the sum symbol means the abscence of terms with index k = k0. If
k0 = 0, then the first term is missing in the sum, if k0 = n, then there is no third. We have

CT
(1)
λ (x) ≤ 2|y′(x, λ)|

(
1 +

∣∣∣∣o( 1

lnλ

)∣∣∣∣
)
8
√
λ

π

[∫ x− π

8
√

λ

0

dt

x− t
+

∫ π

x+ π

8
√

λ

dt

t− x

]

+ 2|y(x, λ)|

(
1 +

∣∣∣∣o( 1

lnλ

)∣∣∣∣
)
8
√
λ

π

[∫ x− π

8
√

λ

0

dt

(x− t)2
+

∫ π

x+ π

8
√

λ

dt

(t− x)2

]

+
2

π
+ o

(
1√
λ

)
.(3.48)
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For the sums of this integrals (3.48), we obtain the estimates∫ x− π

8
√

λ

0

dt

x− t
+

∫ π

x+ π

8
√

λ

dt

t− x
= − ln(x− t)

∣∣x− π

8
√

λ

0 + ln(t− x)
∣∣π
x+ π

8
√

λ

≤

{
ln(λ) + ln 16 when x ∈ [ π

4
√
λ
, π − π

4
√
λ
],

1
2 ln(λ) + ln 8 when x ∈ [0, π

4
√
λ
] ∪ [π − π

4
√
λ
, π].

Now, let’s estimate the sum of integrals∫ x− π

8
√

λ

0

dt

(x− t)2
+

∫ π

x+ π

8
√

λ

dt

(t− x)2
=

16
√
λ

π
− π

x(π − x)
.

Hence, we obtain the estimates

∫ x− π

8
√

λ

0

dt

(x− t)2
+

∫ π

x+ π

8
√

λ

dt

(t− x)2
≤


16

√
λ

π − π
x(π−x) when x ∈ [ π

4
√
λ
, π − π

4
√
λ
],

8
√
λ

π − 1
π−x when x ∈ [0, π

4
√
λ
],

8
√
λ

π − 1
x when x ∈ [π − π

4
√
λ
, π].

By (3.48) and (3.45), for the norm of operator (3.36), we obtain the following estimate un with
respect to x ∈ [0, π]:

CT
(1)
λ ≤ 16

√
λ

π

[
ln(λ) +

16 + π ln 16

π

]
+ o

(√
λ

lnλ

)
.

Therefore, in the case of the Cauchy problem (3.30), there exists a sufficiently large λ0 ≥ λ1

such that for all λ > λ0 the estimate (3.41) holds. Now, we show that the inequality (3.41) also
holds in the case of the Cauchy problem (3.28). For this purpose, we extend the function

(3.49) qλ(x) =

{
qλ(x) when x ∈ [0, π],
0 when x ̸∈ [0, π].

We change the independent variable

(3.50) t =

π

(
x
√
λ+ arcsin

√
λ

λ+h2(λ)

)
π
√
λ+ arcsin

√
λ

λ+h2(λ)

.

We denote

ŷ(t, λ̂) = y

(
π
√
λ+ arcsin

√
λ

λ+h2(λ)

π
√
λ

t− 1√
λ
arcsin

√
λ

λ+ h2(λ)
, λ

)
(3.51)

and

q̂λ̂(t) =

(
1 +

1

π
√
λ
arcsin

√
λ

λ+ h2(λ)

)2

× qλ

(
π
√
λ+ arcsin

√
λ

λ+h2(λ)

π
√
λ

t− 1√
λ
arcsin

√
λ

λ+ h2(λ)

)
,(3.52)

where

λ̂ =

(
1 +

1

π
√
λ
arcsin

√
λ

λ+ h2(λ)

)2

λ.
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By the Picard theorem, the functions (3.51) are solutions to the Cauchy problems

ŷ′′ +
(
λ̂− q̂λ̂(t)

)
ŷ = 0, ŷ

(
t(0), λ̂

)
= y(0, λ) = 1,

(3.53) ŷ′
(
t(0), λ̂

)
=

(
1 +

1

π
√
λ
arcsin

√
λ

λ+ h2(λ)

)
h(λ)

and

ŷ′′ +
(
λ̂− q̂λ̂(t)

)
ŷ = 0, ŷ(0, λ̂) = y

(
− 1√

λ
arcsin

√
λ

λ+ h2(λ)

)
= 0,

(3.54) ŷ′(0, λ̂) =
√
λ+ h2(λ)

(
1 +

1

π
√
λ
arcsin

√
λ

λ+ h2(λ)

)
= ĥ(λ̂).

By (3.49) and (3.52),
√
λ̂− 1

2 ≤
√
λ ≤

√
λ̂+ 1

2 , i.e.
√
λ̂ ≃

√
λ. Consequently, the relation (3.27)

remains valid for the problem (3.54) since (3.49) and (3.52) imply

(3.55) qλ̂(0) = 0 and V π
0 [q̂λ̂] ≤

(
1 +

1

2
√
λ

)2

V π
0 [qλ] = o

(√
λ

lnλ

)
= o

(√
λ̂

ln λ̂

)
.

By (3.51), when t ∈ [0, π] and x ∈
[
− 1√

λ
arcsin

√
λ

λ+h2(λ) , π
]
, we have the identity

(3.56) sk,λ(x) ≡
y(x, λ)

y′(xk,λ, λ)(x− xk,λ)
≡ ŷ(t, λ̂)

ŷ′(tk,λ̂, λ̂)(t− tk,λ̂)
≡ ŝk,λ̂(t).

Thus, (3.41) holds because ŝk,λ̂(t) are constructed from the Cauchy problem (3.54) of the form
(3.30).

Let us proceed to the proof of the estimate (3.42) for the norm of the operator (3.37). Again,
we will first carry out the reasoning in the case of the Cauchy problem (3.30). Since the operator
(3.35) is invariant under multiplication of y(x, λ) by a non zero constant, we can set h(λ) ≡ 1.
For an arbitrary point x ∈ [0, π], we denote by k0 the number of the nearest node to x (if there
are two such nodes, then for k0 we take any of them). From the Proposition 3.5, we obtain the
estimate (3.43). We will consider the representation of CTλ in the form (3.35). Then the norms
of the functionals (3.37) have the estimate:

CT
(2)
λ (x) ≤ 2

n∑
k=0

∣∣s′′k,λ(x)∣∣ = 2

k0−1∑
k=0

∣∣s′′k,λ(x)∣∣
+ 2
∣∣s′′k0,λ(x)

∣∣+ 2

n∑
k=k0+1

∣∣s′′k,λ(x)∣∣.(3.57)

The norms of the operators (3.37) have a representation:

(3.58) CT
(2)
λ = max

x∈[0,π]
CT

(2)
λ (x).

The second term on the right-hand side of (3.57) is estimated in a neighborhood of the point
xk0,λ (3.43) with the help of the Lagrange formula, and the asymptotic formulas from the Propo-
sition 3.5 and the Lemma 3.1. There are constants λ1 > 0 and C1 > 0 such that for all λ > λ1

and x ∈ [0, π] is a fair estimate
2
∣∣s′′k0,λ(x)

∣∣ ≤ C1

√
λ.
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Hence using (3.44), we obtain the estimate

CT
(2)
λ (x) ≤ 2

k0−1∑
k=0

∣∣∣∣
∣∣y′′(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)

∣∣∣∣+ 2

n∑
k=k0+1

∣∣∣∣
∣∣y′′(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)

∣∣∣∣
+ 4

k0−1∑
k=0

∣∣∣∣
∣∣y′(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)2

∣∣∣∣+ 4

n∑
k=k0+1

∣∣∣∣
∣∣y′(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)2

∣∣∣∣
+ 2

k0−1∑
k=0

∣∣∣∣
∣∣y(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)3

∣∣∣∣+ 2

n∑
k=k0+1

∣∣∣∣
∣∣y(x, λ)∣∣

y′(xk,λ, λ)(x− xk,λ)3

∣∣∣∣+O
(√

λ
)
.(3.59)

By the above-mentioned asymptotic formulas from the Proposition 3.5, for sufficiently large
λ, we have (3.47). By (3.59), (3.47) and the above-mentioned asymptotic formulas from the
Proposition 3.5, there is λ2 ≥ λ1 depending only on the change rate of the ball radii in (3.27),
(3.29) such that for all λ > λ2

CT
(2)
λ (x) ≤ 2

∣∣y′′(x, λ)∣∣ n∑
k=0

′
∣∣∣∣∣ 1(

(−1)k + o
(

1
lnλ

))
(x− xk,λ)

∣∣∣∣∣
+ 4
∣∣y′(x, λ)∣∣ n∑

k=0

′
∣∣∣∣∣ 1(

(−1)k + o
(

1
lnλ

))
(x− xk,λ)2

∣∣∣∣∣
+ 2
∣∣y(x, λ)∣∣ n∑

k=0

′
∣∣∣∣∣ 1(

(−1)k + o
(

1
lnλ

))
(x− xk,λ)3

∣∣∣∣∣+O
(√

λ
)
.

Let us estimate the sums as follows

CT
(2)
λ (x) ≤ 2|y′′(x, λ)|

(
1 +

∣∣∣∣o( 1

lnλ

)∣∣∣∣
)
8
√
λ

π

[∫ x− π

8
√

λ

0

dt

x− t
+

∫ π

x+ π

8
√

λ

dt

t− x

]

+ 4|y′(x, λ)|

(
1 +

∣∣∣∣o( 1

lnλ

)∣∣∣∣
)
8
√
λ

π

[∫ x− π

8
√

λ

0

dt

(x− t)2
+

∫ π

x+ π

8
√

λ

dt

(t− x)2

]

+ 2|y(x, λ)|

(
1 +

∣∣∣∣o( 1

lnλ

)∣∣∣∣
)
8
√
λ

π

[∫ x− π

8
√

λ

0

dt

(x− t)3
+

∫ π

x+ π

8
√

λ

dt

(t− x)3

]
+O

(√
λ
)
.

Thus, we obtain the ratio∫ x− π

8
√

λ

0

dt

x− t
+

∫ π

x+ π

8
√

λ

dt

t− x
= − ln(x− t)

∣∣x− π

8
√

λ

0 + ln(t− x)
∣∣π
x+ π

8
√

λ

≤

{
ln(λ) + ln 16 when x ∈ [ π

4
√
λ
, π − π

4
√
λ
],

1
2 ln(λ) + ln 8 when x ∈ [0, π

4
√
λ
] ∪ [π − π

4
√
λ
, π].

Now, let’s estimate the sums of the integrals∫ x− π

8
√

λ

0

dt

(x− t)2
+

∫ π

x+ π

8
√

λ

dt

(t− x)2
=

16
√
λ

π
− π

x(π − x)
,

∫ x− π

8
√

λ

0

dt

(x− t)3
+

∫ π

x+ π

8
√

λ

dt

(t− x)3
≤ 82λ

π2
.
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As a result, taking into account the asymptotic formulas of the Proposition 3.4, we get a uniform
x ∈ [0, π] assessment

CT
(2)
λ (x) ≤ |y′′(x, λ)|

(
1 +

∣∣∣∣o( 1

lnλ

)∣∣∣∣
)
16

√
λ

π

[
ln(λ) + ln 16

]

+ |y′(x, λ)|

(
1 +

∣∣∣∣o( 1

lnλ

)∣∣∣∣
)[

16
√
λ

π

]2

+ |y(x, λ)|

(
1 +

∣∣∣∣o( 1

lnλ

)∣∣∣∣
)
16

√
λ

π

[
82λ

π2

]
+O

(√
λ
)
.

The estimation of the operator norm has the form

CT
(2)
λ ≤ 16λ

π
ln(λ) +O (λ) .

This implies the existence of λ0 ≥ λ2 so large that for all λ > λ0 the estimate (3.42) is correct
in the case of the Cauchy problem (3.30). The validity of the estimate (3.42) in the case of the
Cauchy problem (3.28) is also established as the validity of the relation (3.41) in the case of the
Cauchy problem (3.28). The Proposition 3.7 is proved completely. □

Proposition 3.8. For any positive ε̃ the functions CTλ(f, x) + η(x, λ) + η̃(x, λ) satisfy the relation

lim
λ→∞

∥CTλ(f, ·) + η + η̃ − f∥C[σ1ε̃,π−σ̃1ε̃] = 0.

Proof. The function η(x, λ) + η̃(x, λ) is twice continuously differentiable on [0, π], and we have
the relation:

supp (η + η̃) ⊂

[
0,

π

|µ|
− 1

|µ|

(
arcsin

√
2

3
−

√
2

3

)]

∪

[
π − π

|µ̃|
+

1

|µ̃|

(
arcsin

√
2

3
−

√
2

3

)
, π

]
(3.60)

for λ > ln 4√
3

, by Proposition 3.7,[
0,

π

|µ|
− 1

|µ|

(
arcsin

√
2

3
−

√
2

3

)]
∩

[
π − π

|µ̃|
+

1

|µ̃|

(
arcsin

√
2

3
−

√
2

3

)
, π

]
= ∅,

∥η + η̃∥
C[σ1

(
π
|µ|−

1
|µ|

(
arcsin

√
2
3−

√
2

3

))
,π−σ̃1

(
π
|µ|+

1
|µ|

(
arcsin

√
2
3−

√
2

3

))
]
≤ max(ν, ν̃)

= O
(
e−λ

√
λ lnλ

)
(3.61)

for any third kind boundary conditions. In the case of the first kind boundary conditions, the
following estimate holds:

∥η + η̃∥C[0,π] ≤ max(ν, ν̃) = max(|CTλ(f, 0)|, |CTλ(f, π)|)O (1) .(3.62)

Now, Proposition 3.8 follows from the Proposition 3.6. □
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3.3. Estimate for Fourier Coefficients of CTλ(f, x).

Proposition 3.9. We assume that ρλn
≥ 0, ρλn

= o
(√

λn

lnλn

)
, as n → ∞, and Vρλn

[0, π] is the ball of
radius ρλn

in the space of functions of bounded variation that vanish at zero (additionally, h(λn) ̸= 0

for the Cauchy problem(3.30)). Let 0 < ϵ < 1 and j(n) :=
[
λn

(1+ 2ϵ
1−ϵ )

]
+ 1. If the function f is

continuous for x ∈ [0, π] and the potential q is of bounded variation, then

∥CTSL
n (f, ·) + η(·)− η̃(·)−

j(n)∑
m=0

ĈT
SL

n,m[f, η]Ûm(q, α, β, ·)∥C[0,π]

=∥f∥C[0,π]
n−2ϵ(1+ 2ϵ

1−ϵ )

ϵ
O(1).(3.63)

Proof. From the asymptotic formulas (3.3), (3.39), it follows that

(3.64) ∥Um∥L2[0,π] = O(1), as m → ∞.

We first consider the case where the boundary conditions in the Sturm-Liouville problem at
zero are the same as in the Cauchy problem (3.28). By (3.3) we have, up to a normalization,∣∣∣∣∣∣

π∫
0

CTλ(f, x)Um(x) dx

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

π∫
0

CTλ(f, x)

(
γ(x, λm, h) cos

√
λmx+ β(x, λm, h)

sin
√
λmx√
λm

)
dx

∣∣∣∣∣∣
+

∣∣∣∣∣∣
π∫

0

CTλ(f, x)
ρλm(1 + πρλm)

2λm

(
1 +

|h(λm)|√
λm

)
dx

∣∣∣∣∣∣
=

√
γ2(x, λm, h) +

β2(x, λm, h)

λm

×

∣∣∣∣∣∣
π∫

0

CTλ(f, x)
(
sinϕλm

cos
√
λmx+ cosϕλm

sin
√
λmx

)
dx

∣∣∣∣∣∣
+ ∥CTλ(f, ·)∥C[0,π]O

(
1

λm

)
,

where

sinϕλm
=

γ(x, λm, h)√
γ2(x, λm, h) + β2(x,λm,h)

λm

.

Integrating by parts (cf. [5, Ch. VIII, §6, p. 5]), we get∣∣∣∣∣∣
π∫

0

CTλ(f, x)Um(x) dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣

π∫
0

CTλ(f, x) sin
(
ϕλm

+
√
λmx

)
dx

∣∣∣∣∣∣+ ∥CTλ(f, ·)∥C[0,π]O

(
1

λm

)

=

∣∣∣∣−CTλ(f, x)
sin′

(
ϕλm +

√
λmx

)
λm

∣∣∣∣π
0

+AT ′
λ(f, x)

sin
(
ϕλm +

√
λmx

)
λm

∣∣∣∣π
0

− 1

λm

π∫
0

AT ′′
λ (f, x) sin

(
ϕλm

+
√
λmx

)
dx

∣∣∣∣+ ∥CTλ(f, ·)∥C[0,π]O

(
1

λm

)
.
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We again use the asymptotic formulas from the Proposition 3.3 and return to the eigenfunctions
in the firs two terms:∣∣∣∣∣∣

π∫
0

CTλ(f, x)Um(x) dx

∣∣∣∣∣∣ =
∣∣∣∣−CTλ(f, x)

U ′
m (x)

λm

∣∣∣∣π
0

+AT ′
λ(f, x)

Um (x)

λm

∣∣∣∣π
0

∣∣∣∣
+

∣∣∣∣∣∣− 1

λm

π∫
0

AT ′′
λ (f, x) sin

(
ϕλm +

√
λmx

)
dx

∣∣∣∣∣∣+ ∥CTλ(f, ·)∥C[0,π]O

(
1

λm

)
.

By (3.42), ∣∣∣∣∣∣
π∫

0

CTλ(f, x)Um(x) dx

∣∣∣∣∣∣ =
17πλ
π lnλ

λm
∥f∥C[0,π] + ∥CTλ(f, ·)∥C[0,π]O

(
1

λm

)

= ∥f∥C[0,π]
λ lnλ

λm
O(1).

The function η(x, λ) + η̃(x, λ) is twice continuously differentiable on [0, π]. Taking into account
(3.61), (3.62), and the estimate mes (supp(η + η̃)) = O

(
e−λ

)
and arguing as above, we obtain

the estimate

(3.65) |ĈTλ,m[f, η]| = ∥f∥C[0,π]
λ lnλ

λm
O(1).

Let us estimate the error of partial sums of the Fourier series of CTλ(f, ·). The asymptotic
behavior of the eigenvalues of the problem (2.11)-(2.13) is known (cf. [4, Ch.1, §2, (2.12)]. If for
every λ > 0, we consider an eigenvalue such that

λ lnλ

λm

∼=
λ lnλ

m2
≤ m−1−ϵ

for some 0 < ϵ < 1, then the approximation error for CTλ(f, ·) is uniformly majorized by using
the remainder in the series

∑∞
m=1 m

−1−ϵ. We extend the estimate for sufficiently large λ and
0 < ϵ < 1. Let

j(λ) :=
[
λ1+ε

]
+ 1,

here ε := 2ϵ
1−ϵ > 0. By (3.65), (3.64), there is λ0 > 0 such that (3.63) holds for all λ > λ0. The left

boundary condition is treated in the same way as in the Cauchy problem (3.30). □

3.4. Proof of the Main Results.

Proof of Theorem 2.1. We fix ε > 0 and introduce j(n) as in (2.22). By Propositions 3.8 and 3.9
for any t ∈ [0, T ], we represent the following functions via the operator (2.20)

(3.66) lim
n→∞

CTSL
n,j(n)(f(·, t), x) = lim

λn→∞

j(n)∑
m=0

ĈT
SL

n,m[f(·, t), η]Ûm(q, α, β, x) = f(x, t),

(3.67) lim
n→∞

CTSL
n,j(n)(φ, x) = lim

λn→∞

j(n)∑
m=0

ĈT
SL

n,m[φ, η]Ûm(q, α, β, x) = φ(x).
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We consider the following family of mixed problems depending on the parameter λn:

uλnt − uλnxx + q(x)uλn = CTSL
n,j(n)(f(·, t), x),(3.68)

uλn
(0, t) cosα+ uλnx(0, t) sinα = 0,(3.69)

uλn
(π, t) cosβ + uλnx(π, t) sinβ = 0,(3.70)

uλn
(x, 0) = CTSL

n,j(n)(φ, x).(3.71)

The function (3.71) and the right-hand side of Equation (3.68) possess absolutely continuous
derivatives with respect to x. Each of the problems (3.68)-(3.71) has a unique classical dolution.
By the method of separation of variables, the classical solution satisfying the initial conditions
can be represented as a uniformly convergent Fourier series on [0, π]× [0, T ] with respect to the
eigenfunctions of the Sturm-Liouville problem (2.11)-(2.13). If j(n) < ∞, the series becomes
the finite sum

uλn
(x, t) =

j(n)∑
m=0

(
ĈT

SL

n,m[φ, η]e−λ̂mt

+

∫ t

0

e−λ̂m(t−τ)ĈT
SL

n,m[f(·, τ), η] dτ
)
Um(q, α, β, x).(3.72)

By (2.21), (3.60), (3.61) and (3.62), the measure of the support of the bounded function η + η̃
decreases as O(e−λn). Consequently,∫ t

0

e−λ̂m(t−τ)ĈT
SL

n,m[f(·, τ)] dτ −
∫ t

0

e−λ̂m(t−τ)ĈT
SL

n,m[f(·, τ), η] dτ = O(e−λn).

By the Cauchy criterion for uniform convergence of series, the perturbed data η(x, λn)+η̃(x, λn)

substituted into the third term in (3.72) yield an of order O(e−
−λn

2 ). By formulas (2.16), (2.17),
(3.60), (3.61), (3.62), Propositions 3.8, 3.9 and [16, §34], the solutions to the problems (3.68)-
(3.71) uniformly converge on [σ1ε̃, π− σ̃1ε̃]× [0, T ] to the solution to the mixed boundary value
problem (1.1)-(1.4):

lim
n→∞

uλn(x, t) = u(x, t).

It remains to use (2.22) and asymptotic formula λn ≃ n2 for the eigenvalues of the Sturm-
Liouville problem. □
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