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ABSTRACT. This paper is devoted to studying the following nonlinear Schrödinger equation
−∆u+ λu = µf(u) + h(x), x ∈ R2,

u ∈ H1(R2),

∫
R2

u2dx = σ,

where σ > 0 is given, µ > 0, h(x) acts as a perturbation, f satisfies an exponential critical growth, λ ∈ R is a Lagrange
multiplier. Without taking into account the Ambrosetti-Rabinowitz condition, we prove the existence of normalized
ground state solutions in two cases.
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1. INTRODUCTION

The nonlinear Schrödinger equation is an important class of mathematical and physical
problems, and a great deal of work has been done in the last few decades on the existence
of solutions to its ground state. Li [20] proved the existence of normalized ground states by
introducing the Sobolev subcritical approximation, and reprocess the Sobolev subcritical prob-
lem by using the Pohožaev constraint, the Schwarz symmetry rearrangement, and various scale
transformations. Chen and Zou [12] proved the existence of normalized ground state solutions
for the Schrödinger equation with a perturbation, this is the first contribution to the normalized
solution equation with a perturbation. Thomas Bartsch and Sébastien de Valeriola [3] proved
that there are infinitely many solutions to the nonlinear Schrödinger equation. For more results
on the existence of ground state solutions to the combinatorial nonlinear Schrödinger equation,
we refer to [24, 25, 26, 28] and references therein.

It is natural to ask what is the normalized ground state solution of the nonlinear Schrödinger
equation for the combination of these factors? Therefore, we investigate normalized ground
state solution for the following nonlinear Schrödinger equation with a perturbation

(1.1)
{

−∆u+ λu = µf(u) + h(x), x ∈ RN ,
u ∈ H1(RN ),

∫
RN u2dx = σ,

where σ > 0 is given, µ > 0, λ ∈ R is a Lagrange multiplier and f satisfies an exponential
critical growth when N = 2, and f(u) = |u|2∗−2u when N ≥ 3 and 2∗ = 2N

N−2 . Solving the
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normalized ground state solution of equation (1.1), we consider the following energy functional
J : H1(RN ) → R constrained on S(σ)

J(u) :=
1

2

∫
RN

|∇u|2dx− µ

∫
RN

F (u)dx−
∫
RN

hudx,(1.2)

where F (u) :=
∫ u

0
f(t)dt for N = 2, F (u) := 1

2∗ |u|
2∗ for N ≥ 3, and

S(σ) :=

{
u ∈ H1(RN ) :

∫
RN

u2dx = σ

}
.

Within this framework, every solution to (1.1) is a critical point of J on S(σ). For the L2

subcritical growth case of f , i.e., f has a growth |u|p−1 with p < 2∗ := 2 + 4
N , J on S(σ) is

bounded below and the global minimum can be found by minimization methods [6, 9, 16, 27].
For the L2 supercritical growth case for f , i.e., p > 2∗, J on S(σ) is unbounded from below.
For this case, in 1997, Jeanjean [18] used a mountain pass structure and s ⋆ u(·) := e

Ns
2 u(es·)

to study the L2 supercritical problems. In [17], Ikoma and Tanaka established a deformation
result for the L2 normalized solutions and gave alternative proofs from the results of [3, 18].
We note the importance in these studies of the following conditions on f .

(H1) f : R → R is continuous and odd.
(H2) There exist constants γ1, γ2 ∈ R with 2∗ < γ1 < 2∗, 2∗ := +∞ for N = 1, 2 and

2∗ := 2N
N−2 for N ≥ 3, such that

0 < γ1F (t) ≤ f(t)t ≤ γ2F (t), ∀t ∈ R\{0}.(1.3)

In [19], Jeanjean and Lu worked the normalized solutions of nonlinear Schrödinger equation
by replacing the Ambrosetti-Rabinowitz conditions with the following conditions:

(H3) lim
|t|→+∞

F (t)
|t|2∗ = +∞.

(H4)
G(t)
|t|2∗ is strictly increasing on (0,+∞) and strictly decreasing on (−∞, 0), where G(t) :=

f(t)t− 2F (t) and g(t) = G
′
(t).

In particular, they studied the case of an exponential subcritical growth of f when N =
2, i.e., for all α > 0.

lim
|t|→+∞

|f(t)|
eαt2

= 0.(1.4)

In [7], Bieganowski and Mederski studied the existence of normalized ground state solutions to
nonlinear Schrödinger equation when N ≥ 3 and without Ambrosetti-Rabinowitz conditions,
the results were determined with the following conditions:

(H5) g(t)t ≻ 2∗G(t).
In other words, g(t)t ≥ 2∗G(t) for any t ∈ R, and for any ρ > 0 there exists |t| < ρ such
that g(t)t > 2∗G(t).

Recently, Jeanjean in [18] worked on space H1
r (RN ) and obtained some compactness results

which enable to get over the lack of compactness of the Sobolev embedding in whole RN when
q > 4 if N = 2. Not assuming the Ambrosetti-Rabinowitz conditions, the existence of nor-
malized ground state solution to the stationary nonlinear Schrödinger equation when N = 2
for any ρ > 0 is proved by Chang [11] using the Trudinger-Moser inequality in R2 and the
constrained minimization method.
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Inspired by the Sobolev critical situation and previous studies, in this paper we focuses
on the exponential critical growth for N = 2 in (1.1) and without assuming the Ambrosetti-
Rabinowttz conditions, which is a novelty for this type of problems. Combining the above
papers and conditions, we make several assumptions on f :

(f1) f ∈ C1(R,R) and there exists α0 > 0 such that

lim
|t|→+∞

|f(t)|
eαt2

=

{
0, ∀α > α0,

+∞, ∀α < α0.

(f2) lim
|t|→0

f(t)
|t|3 = 0.

(f3) g(t)t ≥ 4G(t), ∀t ∈ R.
(f4) there exist p > 4 and η > 0 such that

sgn(t)f(t) ≥ η|t|p−1, ∀t ∈ R,

where sgn : R\{0} → R and

sgn(t) =
{

1 if t > 0,

−1 if t < 0.

Using some of the minimax arguments in [18, 19] and the conditions of (f2) and (f4), Alves et al.
[1, 2] discussed the multiplicity and existence of normalized solutions to nonlinear Schrödinger
equation when N = 2 and f is allowed to grow as an exponential critical, i.e., (f1): there exists
α0 > 0 such that

(1.5) lim
|t|→+∞

|f(t)|
eαt2

=

{
0, ∀α > α0,

+∞, ∀α < α0.

In particular, in [2], the authors showed the existence of normalized ground state solutions
for nonlinear Schrödinger equation under some appropriate conditions on f and α0 = 4π
for ρ ∈ (0, 1) of (1.5). In [4, 5], Bartsch and Soave proved the multiplicity and existence of
normalized ground state solutions for nonlinear Schrödinger equation by the ideas of [15].
With the exception of (H1) and (H2), they also make the following assumption:
(H6) G is of class C1 and g(t)t ≥ 2∗G(t); for N = 2, g(t)t ≥ 4G(t), ∀t ∈ R.

For the perturbation h(x), we require it to have higher regularity. We introduce an auxiliary
function

H(x) := ∇h(x) · x.
H ∈ L2(R2). Define the Nehari-Pohozaev-type functional as follows:

P(u) :=

∫
R2

|∇u|2dx− µ

∫
R2

G(u)dx+ 2

∫
R2

hudx−
∫
R2

⟨∇h, x⟩udx, ∀u ∈ H1(R2).

Set

B := {u ∈ H1(R2)\{0} : P(u) = 0}.(1.6)

The assumption on h and H are needed:
(h1) h ∈ L2(R2) is radial, h(x) > 0 on a set with positive measure and H(x) > 2h(x).
(h2) h ∈ H1(R2) and h(x) = h(|x|) ≥ 0.

We first consider the mass-subcritical case: 1 < p < 4. By the G-N inequality, the lower limit
of functional J on S(σ) is bounded. Note that B includes all the nontrivial solutions of (1.1).
To obtain the normalized ground state solution of (1.1), as in [7, 23], we convert finding the
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minimizers for J on S(σ) into finding the minimizers for J on S(σ) ∩ B. Therefore, we simply
examine the following minimization problems:

c(σ) := min
u∈S(σ)∩B

J(u),(1.7)

c(σ)r := min
u∈S(σ)∩B∩H1

r (R2)
J(u).(1.8)

Definition 1.1. The solutions of (1.1) are the minimizers of (1.7). If the solution uσ ∈ S(σ) ∩ B of
(1.7) satisfies

(1.9) J(uσ) = inf{J(u) : u ∈ S(σ) ∩ B, (J |S(σ)∩B)
′
(u) = 0},

we call that it is the normalized ground state solution to (1.1).

We prove that uσ can be found for any positive perturbation h ∈ L2(R2), and we have the
following theorem.

Theorem 1.1. Assume N = 2, p < 4, if f satisfies (f1)−(f4) and h satisfies (h1). Then c(σ) is attained
for any σ > 0. Thus there exists a normalized ground state solution u to (1.1) and u ∈ S(σ) ∩ B.
Furthermore, u > 0.

As for the mass-supercritical case: p > 4, the functional J is boundless on S(σ). We will
prove that there still exists a mountain-pass structure after a small radial perturbation h(x). We
have the following theorem.

Theorem 1.2. Assume N = 2, p > 4, if f satisfies (f1)− (f4). Let σ > 0 be fixed and let L(µ, σ) > 0
be defined by

(1.10) L(µ, σ) < 1

2
σ− 1

2

(
m∞(σ) +

µ

2

(
7|F (un)|2 − 2|f(un)un|2

))
,

where m∞(σ) define by Lemma 2.3. If h satisfies (h2) and moreover

(1.11) max {|h|2, |H|2} < L(µ, σ),

then (1.1) has a mountain pass solution u and u > 0.

This paper is structured as follows. In Section 2, we present some preliminary results. In Sec-
tion 3 and Section 4, we give the proof of Theorem 1.1 and Theorem 1.2, respectively. Through-
out this paper, we use the symbol || · || and | · |p to indicate the H1 norm and Lp(R2) norm. Let
u⋆ be the symmetric decreasing rearrangement of u ∈ H1, and for p ∈ [1,∞)

|∇u⋆|2 ≤ |∇u|2, |u⋆|p = |u|p, and
∫
R2

undx ≤
∫
R2

u⋆n⋆dx,(1.12)

and let H⋆ :=
{
u ∈ H1, u = u⋆

}
. For simplicity, in the following, we use C1, C2,..., which may

be different positive constants in different places.

2. PRELIMINARIES

In this section, we present some preliminary results.

Lemma 2.1 (Trudinger-Moser inequality by [8]). If α > 0 and u ∈ H1(R2), we have the following
inequality in R2 ∫

R2

(eαu
2

− 1)dx < ∞.
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Moreover, if |u|2 ≤ D1 < +∞ with D1 > 0 and α < 4π, |∇u|2 ≤ 1, then there exists a constant
C > 0, which depends just on D1 and α, such that∫

R2

(eαu
2

− 1)dx < C(D1, α).

Lemma 2.2 ([29]). Assume that N = 2, for any u ∈ H1(R2) and p > 1, we have the following
Gagliardo-Nirenberg inequality

|u|p ≤ C2,p|∇u|βp

2 |u|(1−βp)
2 , βp :=

p− 2

p
,

and the Sobolev inequality
Sp|u|2p ≤ ||u||2H1 , u ∈ H1,

where Sp is the best embedding constant for the Sobolev inequality.

Let σ, µ > 0 and N = 2. The pair (λ, u) ∈ R×H1 is the solution to the following equation:

(2.13)


−∆u+ λu = µf(u) in R2,∫

R2

u2dx = σ,

where f satisfies an exponential critical growth. The critical points of J∞ : H1 → R can be
considered as solutions of (2.13), and

(2.14) J∞(u) :=
1

2

∫
R2

|∇u|2dx− µ

∫
R2

F (u)dx,

restricted on S(σ). For the L2 subcritical growth case of f , i.e., p < 4, then J on S(σ) is bounded
below. For the L2 supercritical growth case of f , i.e., p > 4, then J on S(σ) is boundless. We
introduce the Nehari-Pohozaev-type constraint for individual equations

(2.15) P∞ :=
{
u ∈ H1\ {0} : P∞(u) = 0

}
,

where

(2.16) P∞(u) :=

∫
R2

|∇u|2dx− µ

∫
R2

G(u)dx.

We discuss the following minimization problems:

c∞(σ) = inf
u∈S(σ)

J∞(u),

m∞(σ) = inf
u∈S(σ)∩P∞

J∞(u).

We have the following lemma.

Lemma 2.3. Suppose σ > 0, p > 1 and p ̸= 4, then (2.13) has only one solution u∞ and is positive.
Furthermore,

(i) if 1 < p < 4, then

(2.17) c∞(σ) = inf
u∈S(σ)

J∞(u) = J∞(u∞) < 0,

more precisely, c∞(σ) and hence c∞(σ) is strictly decreasing for σ > 0.
(ii) if p > 4, then

(2.18) m∞(σ) = inf
u∈S(σ)∩P∞

J∞(u) = J∞(u∞) > 0,

more precisely, m∞(σ) and hence m∞(σ) is strictly decreasing for σ > 0.
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Jeanjean [18] and Chang [11] et al. have studied the existence of a ground state solution to
equation (2.13). The expression of c∞(σ) and m∞(σ) in Lemma 2.3 can also be found in Lemma
2.1 in [21].

Lemma 2.4. Assume that (f1)− (f3) hold. Then

(i) G(t)
t4 is non-decreasing on (0,+∞) and non-increasing on (−∞, 0) .

(ii) I(t) := f(t)t−4F (t)
t2 is non-decreasing on (0,+∞) and non-increasing on (−∞, 0) .

(iii) f(t)t ≥ 4F (t), for all t ∈ R .

Proof. Let I1(t) := G(t)
t4 . Since G(t) = f(t)t − 2F (t) is C1 and g(t) = G

′
(t), we can see that

I
′

1(t) =
g(t)t−4G(t)

t5 . Since f ∈ C1, by (f3), we have I
′

1(t) ≤ 0 for t < 0, I
′

1(t) ≥ 0 for t > 0, hence
(i) holds. Identical, I

′
(t) = g(t)t−4G(t)

t3 , we have I
′
(t) ≤ 0 for t < 0, I

′
(t) ≥ 0 for t > 0, hence we

obtain (ii). Let

I2(t) =


f(t)t− 4F (t)

t2
for t ̸= 0

0 for t < 0
.

By (f1)− (f3), it can be shown that I2(t) is a continuous function on R. It follows from (ii) that
I2(t) ≥ 0 for all t ∈ R, this means that (iii) holds. □

Lemma 2.5. Assume (f1)− (f4) hold and h > 0. Set s ⋆ u(·) = esu(es·). Then, for any u ∈
H1(R2)\{0}, we conclude

(i) J(s ⋆ u) → 0+ as s → −∞ .
(ii) J(s ⋆ u) → −∞ as s → +∞ .

Proof. By (f1) and (f2), there exist l > p > 4 and α > α0, such that there exists Cε > 0 for any
ε > 0, we have

|F (t)| ≤ ε|t|4 + Cε|t|l+1
(
eα|t|

2

− 1
)
,∀t ∈ R.

Then, by the Hölder inequality and (er − 1)p ≤ erp − 1 for p > 1, r ≥ 0, we have∫
R2

|F (u)|dx ≤ ε

∫
R2

|u|4dx+ Cε

∫
R2

|u|l+1
(
eα|u|

2

− 1
)
dx

≤ ε

∫
R2

|u|4dx+ Cε

( ∫
R2

|u|2l+2

) 1
2
( ∫

R2

(
e2α|u|

2

− 1
)
dx

) 1
2

.

Define w(x) :=
√

α
π e

su(esx). Then∫
R2

|∇w|2dx = e2s
α

π

∫
R2

|∇u|2dx → 0 as s → −∞

and ∫
R2

|w|2dx =
α

π

∫
R2

|u|2dx.

By Lemma 2.1, we have that there exists |s0| sufficiently large and s0 < 0 such that for all s ≤ s0,∫
R2

(
e2α|e

su(esx)|2 − 1
)
dx =

∫
R2

(
e2π|w|2 − 1

)
dx ≤ C1

for some C1 > 0. Thus, for s ≤ s0,

(2.19)
∫
R2

|F (esu(esx))|dx ≤ εe2s
∫
R2

|u(x)|4dx+ CεC
1
2
1 e

ls

( ∫
R2

|u(x)|2l+2dx

) 1
2

.
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Then

J(s ⋆ u) =
1

2

∫
R2

|∇(esu(esx))|2dx− µ

∫
R2

F (esu(esx))dx− es
∫
R2

hudx

≥ 1

2
e2s

∫
R2

|∇u|2dx− µεe2s
∫
R2

|u(x)|4dx− µCεC
1
2
1 e

ls

( ∫
R2

|u(x)|2l+2dx

) 1
2

− es
∫
R2

hudx.

By l > p > 4, taking ε > 0 small when necessary, we obtain that there exists s1 ≤ s0 such that
J(s ⋆ u) ≥ 0 for s ≤ s1. Moreover, according to (2.19), it can be derived∫

R2

F ( esu(esx)) dx → 0 as s → −∞,

which means that J(s ⋆ u) → 0+ for s → −∞, hence (i) holds.
For (ii), by (f1), (f2) and (f4), we have that there exist p > 4, t0 ∈ (0, 1], C2, C3 > 0 such that

F (t) ≥ C2|t|p,∀|t| ≥ t0,

F (t) ≤ C3|t|2,∀|t| ≤ t0.

Then, for some C4 > 0,∫
R2

F (u)dx =

∫
{|u(x)|≥t0}

F (u)dx+

∫
{|un|<t0}

F (u)dx

≥ C2

∫
{|u(x)|≥t0}

|u|pdx− C3

∫
{|u(x)|<t0}

|u|2dx

= C2

∫
R2

|u|pdx−
∫
{|u(x)|<t0}

[
C2|u|p + C3|u|2

]
dx

≥ C2

∫
R2

|u|pdx− C4

∫
R2

|u|2dx,

(2.20)

which means that

J(s ⋆ u) ≤ 1

2
e2s

∫
R2

|∇u|2dx+ µC4

∫
R2

|u|2dx− µC2e
(p−2)s

∫
R2

|u|pdx− es
∫
R2

hudx.

By p > 4, it can be seen that J(s ⋆ u) → −∞ for s → +∞, hence we get (ii). □

Lemma 2.6. Assume (f1)− (f3) hold and h ≥ 0. We have
(i) for any u ∈ H1(R2)\ {0}, we have that there exists su ∈ R such that P(su ⋆ u) = 0 and

(2.21) J(su ⋆ u) ≥ J(s ⋆ u), ∀s ̸= su,

furthermore, if u ∈ B, then J(u) = max
s∈R

J(s ⋆ u),

(ii) S(σ) ∩ B ̸= ∅,
(iii) there exists ρ0 > 0 such that inf

u∈s(σ)∩B
||∇u||2 ≥ ρ0.

Proof. By Lemma 2.5, we can prove that J(s ⋆ u) has a global maximum at some su ∈ R. By
d
dsJ(s ⋆ u) = P(s ⋆ u), we get (i). Take u ∈ S(σ), by (i), we have su ∈ R such that su ⋆ u ∈ B.
Recall that su ⋆ u ∈ S(σ), then (ii) holds.

For the proof of (iii), we can paradoxically suppose that there exists a sequence {un} ⊂
S(σ) ∩ B such that ||∇un||2 → 0 as n → +∞ and then, according to Lemma 2.1, there exists
C1 > 0 such that ∫

R2

(
e2α|un|2 − 1

)
dx ≤ C1.
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Using arguments similar to those in Lemma 2.5, by Lemma 2.2, we have that there exists l >
p > 4, C2 > 0, and Cε > 0 for any ε > 0, we have∫

R2

|f(un)un|dx ≤ε

∫
R2

|un|4dx+ Cε

(∫
R2

|u|2l+2

) 1
2
(∫

R2

e2α|un|2 − 1

) 1
2

≤εC2ρ

∫
R2

|∇un|2dx+ CεC
1
2
1 C2ρ

1
2

(∫
R2

|∇un|2dx
) l

2

.

Then taking ε = 1
2C2ρ

, in view of F (t) ≥ 0, ∀t ∈ R, we infer that∫
R2

|∇un|2dx =

∫
R2

[f(un)un − 2F (un)] dx

≤ 1

2

∫
R2

|∇un|2dx+ CεC
1
2
1 C2ρ

1
2

(∫
R2

|∇un|2dx
) l

2

,

which implies that 1
2 ≤ CεC

1
2
1 C2ρ

1
2 ||∇||l−2

2 . Since l > 4, we get a contradiction. □

3. PROOF OF THEOREM 1.1

In this section, we shall give the proof of Theorem 1.1.

Lemma 3.7. Assume that 2 < p < 4, (f1)− (f3) hold and h(x) satisfying (h1). Then c(σ) = c(σ)r.

Proof. For any s ∈ R and u ∈ S(σ), according to Lemma 2.4 (ii), we obtain

J(su ⋆ u)− 1

2
P(s ⋆ u)

=
µ

2

∫
R2

[f (esu(esx)) esu(esx)− 4F (esu(esx))] dx

−2

∫
R2

hesu(esx)dx+

∫
R2

⟨∇h · x⟩esu(esx)dx

=
µ

2

∫
R2

f(esu)esx− 4F (esu)

e2su2
u2dx− 2es

∫
R2

hudx+ es
∫
R2

⟨∇h · x⟩udx.

(3.22)

Clearly, J(su ⋆u)− 1
2P(s⋆u) is non-decreasing for s ∈ R. Denote by {un} a sequence of minima

of J on S(σ) ∩ B and by {u∗
n} the Schwarz symmetrization of {un}. Then∫

R2

|∇u∗
n|2dx ≤

∫
R2

|∇un|2dx,

∫
R2

|u∗
n|2dx =

∫
R2

|un|2dx,

∫
R2

F (u∗
n)dx =

∫
R2

F (un)dx,

∫
R2

f(u∗
n)u

∗
ndx =

∫
R2

f(un)undx.

∫
R2

hu∗
ndx =

∫
R2

hundx,

∫
R2

⟨∇h · x⟩u∗
ndx =

∫
R2

⟨∇h · x⟩undx.
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It can be seen that u∗
n ∈ S(σ) ∩ H1

r (R2) and P(u∗
n) ≤ P(un) = 0. By (f3), there exists s∗u :=

s∗u(u
∗
n) ≤ 0 such that P(s∗u ⋆ u∗

n) = 0. Hence, according to Lemma 2.6, we get

c(σ) ≤ c(σ)r

≤J(s∗u ⋆ u∗
n)

=J(s∗u ⋆ u∗
n)−

1

2
P(s∗u ⋆ u∗

n)

≤J(u∗
n)−

1

2
P(u∗

n)

=
µ

2

∫
R2

[f(u∗
n)u

∗
n − 4F (u∗

n)] dx− 2

∫
R2

hu∗
ndx+

∫
R2

⟨∇h · x⟩u∗
ndx

=
µ

2

∫
R2

[f(un)un − 4F (un)] dx− 2

∫
R2

hudx+

∫
R2

⟨∇h · x⟩udx

=J(un) = c(σ) + on(1),

(3.23)

which means that c(σ) = c(σ)r. □

Lemma 3.8. Suppose 2 < p < 4, (f1)− (f3) hold and h(x) satisfying (h1). Assume that {un} ⊂
H1

r (R2) is a sequence of bounded minimisations of J on S(σ) and there exists u0 ∈ H1
r (R2) such that

un(x) → u0(x), x ∈ R2 and ∫
R2

F (un)dx →
∫
R2

F (u0)dx,(3.24) ∫
R2

f(un)undx →
∫
R2

f(u0)u0dx.(3.25)

Then from c(σ) > 0 and u0, c(σ) is attained.

Proof. First, we claim that the following result holds under (f1)− (f3),

τ(u) :=

∫
R2

[f(u)u− 4F (u)]dx > 0, ∀u ∈ H1
r (R2)\ {0} .(3.26)

Indeed, according to the Strauss radial lemma in [6], we can suppose that u is continuous.
Because of u ∈ H1

r (R2), we obtain |u(x)| → 0 for |x| → +∞. According to Lemma 2.4 (iii), we
obtain τ(u) ≥ 0. If τ(u) = 0, then for all x ∈ R2, f(u(x))u(x)− 4F (u(x)) = 0. Then, there exists
an open interval I such that 0 ∈ Ī and f(u)u− 4F (u) = 0 for u(x) ∈ Ī . By direct computations,
we obtain that F (u) = C|u|4 for some C > 0 and u ∈ Ī . But by (f1) and (f2), we know that this
is a paradox. Hence (3.26) holds.

Since {un} ⊂ S(σ), by (3.24)-(3.25) and the Fatou lemma, we have∫
R2

u2
0dx ≤ lim inf

n→+∞

∫
R2

u2
ndx ≤ σ

and ∫
R2

|∇u0|2dx ≤ lim inf
n→+∞

∫
R2

|∇un|2dx = lim inf
n→+∞

∫
R2

T (un)dx =

∫
R2

T (u0)dx,

where T (u) = µG(u)− 2hu+ ⟨∇h · x⟩u. If
∫
R2 |∇u0|2dx <

∫
R2 T (u0)dx, defining

t0 :=
( ∫

R2 |∇u0|2dx∫
R2 T (u0)dx

) 1
2

, we have t0 ∈ (0, 1). Note that

P(u0

( x
t0
)
)
=

∫
R2

|∇u0|2dx− t20

∫
R2

T (u0)dx = 0
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and ∫
R2

(
u0(

x

t0
)
)2
dx = t20

∫
R2

u2
0dx < σ,

it follows that u0(
·
t0
) ∈ S(σ) ∩ B. By (3.24)-(3.26) and Fatou lemma, we obtain

c(σ) ≤ J
(
u0(

x

t0
)
)
=

1

2

∫
R2

∣∣∇(
u0(

x

t0
)
)∣∣2dx− µ

∫
R2

F
(
u0(

x

t0
)
)
dx−

∫
R2

hu0(
x

t0
)dx

=
1

2

∫
R2

∣∣∇u0

∣∣2dx− µt20

∫
R2

F (u0)dx− t20

∫
R2

hu0dx

=
1

2
t20

∫
R2

T (u0)dx− µt20

∫
R2

F (u0)dx− t20

∫
R2

hu0dx

=
1

2
t20

∫
R2

[
T (u0)− 2µF (u0)− 2hu0

]
dx

<
1

2

∫
R2

[
µ
(
f(u0)− 4F (u0)

)
− 4hu0 + ⟨∇h · x⟩u0

]
dx

= lim inf
n→+∞

1

2

∫
R2

[
µ
(
f(un)− 4F (un)

)
− 4hun + ⟨∇h · x⟩un

]
dx

≤ lim inf
n→+∞

J(un) = c(σ),(3.27)

which gives a contradiction. Hence
∫
R2 |∇u0|2dx =

∫
R2 T (u)dx =

∫
R2

[
µG(u) − 2hu + ⟨∇h ·

x⟩u
]
dx. Thus u0 ∈ S(σ) ∩ B and

∫
R2 |∇un|2dx →

∫
R2 |∇u0|2dx. Using Lemma 3.7, we get

J(u0) = c(σ). Now, we prove c(σ) > 0. In fact, by (f1)− (f3) and u0 ∈ S(σ) ∩ B ∩ H1
r (R2),

using (3.26), Lemma 3.7 and (h1), we get

c(σ) = J(u0) =
µ

2

∫
R2

(
f(u0)u0 − 4F (u0)

)
dx− 2

∫
R2

hu0dx+

∫
R2

⟨∇h · x⟩u0dx > 0.

□

Lemma 3.9 ([12]). Assume that p < 4, (f1)− (f3) hold and h(x) satisfying (h1). Let {un}n⩾1 ⊂
S(σ) ∩ B be a sequence for c(σ) such that un ⇀ u0 in H1 and let σ1 := |u0|22. If σ1 < σ, then there
exists yn ⊆ R2 and µ0 ∈ H1\{0} such that

|yn| → ∞, un(·+ yn) ⇀ µ0 in H1(3.28)

lim
n→∞

|un − u0 − µ(· − yn)|22 = 0,(3.29)

and σ = σ1 + σ2, where σ2 := |µ0|22. Moreover, the following hold

J(u0) = c(σ1), J∞(µ0) = c∞(σ2)(3.30)

and

c(σ) = c(σ1) + c∞(σ2).(3.31)

Since {un} ⊂ S(σ) ∩ B is the minimizing sequence of c(σ), we have dJ |S(σ)∩B(un) → 0 and
there exists a real numbers sequence of {λn} such that

J
′
(un)[η] + λn

∫
R2

unηdx → 0(3.32)

for every η ∈ H1. Now, we have the following lemma.
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Lemma 3.10. Under the assumptions of Lemma 3.9, if there exists σ1 < σ and σ1 =
∫
R2 u

2
0dx, then u0

and µ0 satisfy

(3.33)


−∆u0 + λ̄u0 = µf(u0) + h in R2,∫

R2

u2
0dx = σ1,

and

(3.34)


−∆µ0 + λ̄µ0 = µf(µ0) in R2,∫

R2

µ2
0dx = σ − σ1.

Moreover, µ0 > 0 in R2.

Proof. By the assumption of Lemma 3.9, there exists a bounded sequence {λn}, and there is a
subsequence of {λn} which converges to λ̄. Using un as the test functions in (3.32), one can be
found the values of λn and

(3.35) −λnσ =

∫
R2

|∇un|2dx−
∫
R2

F (un)dx−
∫
R2

h(un)dx+ o(1)

with o(1) → 0 as n → ∞. Therefore, the boundedness of {λn} comes out of the boundedness of
{un} in H1. Up to a subsequence, we assume that λn → λ̄. Since (3.32), if there exists σ1 < σ,
by [12], it follows that

(3.36)


−∆µ0 + λ̄µ0 = µf(µ0) in R2,∫

R2

µ2
0dx = σ − σ1.

Since µ0 > 0 and (H2), we have

−∆µ0 + (λ̄)+µ0 ≥ −∆µ0 + λ̄µ0 = µf(µ0) ≥ 0.

Using the strong maximum principle and σ−σ1 > 0, we obtain that µ0 > 0. By a similar proof,
it can be shown that u0 satisfies (3.33). □

Proof of Theorem 1.1. By Lemma 3.8, the minimizing sequence {un} satisfy un → u0 and c(σ) =
J(u0), so according to (3.32), we obtain that

(3.37)


−∆u0 + λ̄u0 = µf(u0) + h in R2,∫

R2

u2
0dx = σ.

Observe that h(x) ≥ 0, then according to the maximum principle, u0 > 0 and we complete the
proof of Theorem 1.1. □

4. PROOF OF THEOREM 1.2

In this section, for p > 4, we shall give the prove of Theorem 1.2. In the following, we will
prove that J on S(σ) has a sort of mountain-pass geometry.

Define φ0 := σ
π e

−|x|2 , ∀x ∈ R2. Clearly,
∫
R2 |φ0|2dx = σ, which implies that φ0 ∈ S(σ). By

(f4), for any s ∈ R and η > 0, we obtain

(4.38) J(s ⋆ φ0) ≤
1

2
e2s

∫
R2

|∇φ0|2dx− η

p
e(p−2)sµ

∫
R2

|φ0|pdx− es
∫
R2

hφ0dx.
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To understand the geometry of the generalized function J on S(σ), it will be useful to consider
the function ζ : R+ → R defined by the following equation:

ζ(t) :=
1

2
A1t

2 − η

p
A2t

p−2 − |h|2σ
1
2 t,

where

A1 :=

∫
R2

|∇φ0|2dx, A2 := µ

∫
R2

|φ0|pdx.

Since 0 < 1 < 2 < p− 2, we obtain that ζ(0+) = 0− and ζ(+∞) = −∞. The role of assumption
(1.11) is clarified by the following lemma.

Lemma 4.11. Suppose that (f1)− (f4) hold. By (h2), if

max {|h|2, |H|2} < L(µ, σ),

then the function ζ(t) has a global strict maximum at positive level and a local strict minimum at
negative level. Moreover, there exist 0 < T1 < T2, both depending on σ, such that ζ(T1) = 0 = ζ(T2)
and ζ(t) > 0 if and only if t ∈ (T1, T2).

Proof. For t > 0, we see that ζ(t) > 0 if and only if

ξ(t) > |h|2σ
1
2 ,

where ξ(t) := 1
2A1t− η

pA2t
p−3. Clearly, A1, A2 > 0. Then

ξ′(t) =
1

2
A1 −

η(p− 3)

p
A2t

p−4.

Observe that p− 3 > 1 > 0, then ξ(t) has a unique critical point t̄ on (0,+∞), which is a global
maximum point at positive level. Indeed, the expression of t̄ is

t̄ =
( A1p

2η(p− 3)A2

) 1
p−4

(4.39)

and the maximum value of ξ(t) is

ξ(t̄) = η
−1
p−4A3 > 0

with

A3 := A
p−3
p−4

1

( p

2(p− 3)A2

) 1
p−4 p− 4

2(p− 3)
> 0.

Consequently, if (1.11) holds, then ξ(t̄) > |h|2σ
1
2 , thus the equation ζ = 0 has two roots T1,

T2 and ζ is positive on (T1, T2). Moreover, ζ has a global maximum point t2. Based on the
expression of ζ, we can derive that ζ also has a local minimum point t1 in (0, T1) with a negative
level. □

Set

Rϑ := {u ∈ S(σ) : |∇u|2 < ϑ} ,
Jc := {u ∈ S(σ) : J(u) < c} .

By Lemma 2.5 and Lemma 4.11, there exists a ϑ1 > 0 small enough, such that

(4.40) J(u) <
1

2
ζ(t2), for any u ∈ Rϑ1 .



On prescribed mass solutions for a kind of nonlinear elliptic systems 167

Moreover, Jζ(t1) ⊂ {|∇u|2 > T2} since J(u) ≥ ζ(|∇u|2). Now, a mountain pass structure of J
on manifold S(σ) is obtained. Let

(4.41) Γ :=
{
γ ∈ C([0, 1], S(σ) : γ(0) ∈ Rϑ1

, γ(1) ∈ Jζ(t1)
}
,

and the mountain pass value is

(4.42) m(σ) := inf
γ∈Γ

max
t∈[0,1]

J(γ(t)).

The classical mountain-pass theorem shows that there exists a P-S sequence {un}n≥1 which
satisfy

(i) J(un) → m(σ),
(ii) J

′ |S(σ)(un) → 0.

However, we cannot prove that {un}n≥1 is bounded in H1. To resolve this difficulty, we intro-
duce an auxiliary function

J̃(t, u) := J(t ⋆ u).

The corresponding minimax of J̃ on R× S(σ) is structured as follows

Γ̃ :=
{
γ = (γ1, γ2) ∈ C([0, 1],R× S(σ) : γ(0) ∈ (0, Rϑ1

), γ(1) ∈ (0, Jζ(t1))
}
,

and its minimax value is

(4.43) m̃(σ) := inf
γ∈Γ̃

max
t∈[0,1]

J̃(γ(t)).

Using the method introduced by Jeanjean in [18], one can derive that m̃(σ) = m(σ). Recall that
h(x) ≥ 0 and h(x) = h(|x|), we have

(4.44) J̃(t, |u|∗) ≤ J̃(t, u).

Thus,

(4.45) m̃(σ) = m̃r(σ) := inf
γ∈Γ̃r

max
t∈[0,1]

J̃(γ(t)),

where

Γ̃r :=
{
γ = (γ1, γ2) ∈ C([0, 1],R× Sr(σ) : γ(0) ∈ (0, Rϑ1

), γ(1) ∈ (0, Jζ(t1))
}
,

and Sr(σ) = S(σ) ∩ H1
r . Let F = {γ([0, 1]) : γ ∈ Γ}. Then, F is a cohomology stable family

of compact subsets of R × Sr(σ) with extended closed boundary {0} × R̄ϑ1
∪ {0} × Jζ(t1) (by

the terminology in [15, Sect.5]), and the superlevel set
{
J̃ ≥ m(σ)

}
is a dual set for F , which

implies that the F = {γ([0, 1]) : γ ∈ Γ} satisfies the assumptions of [15, Theorem 5.2]. Hence,
combining with (4.44), we obtain a minimisation sequence {γn([0, 1]), γn(t) = (γ1,n(t), γ2,n(t))}
for m(σ) such that γ1,n(t) = 0, γ2,n(t) ∈ S(σ)∩H⋆, ∀ t ∈ [0, 1], there exists a sequence (sn, ũn) ⊂
R× S(σ) ∩H⋆ such that when n → ∞, J̃(sn, ũn) → m(σ) and

(4.46) ∂sJ̃(sn, ũn) → 0, ||∂nĨ(sn, ũn)||TunSr(σ) → 0,

(4.47) |sn|+ dist(ũn, γ2,n[0, 1]) → 0.

Let un = sn ⋆ ũn ∈ Sr(σ). By (4.47), it follows that {sn} is bounded and u−
n → 0 a.e. in R2.

Moreover, (4.46) implies that
P(un) = ∂sJ̃(sn, ũn) → 0,
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and for any ϕ ∈ Tun
Sr(σ),

J
′
(un)[ϕ] = ∂uJ̃(sn, ũn)[(−sn) ⋆ ϕ]

= o(1)||(−sn) ⋆ ϕ||H1
r

= o(1)||ϕ||H1
r
.

(4.48)

In summary, we can get the following lemma.

Lemma 4.12. Assume that h satisfies (1.11), then there exists a radial P-S sequence {un} of J |Sr(σ),
such that

J(un) → c(σ),(4.49)

J
′
|Sr(σ) → 0,(4.50)

P(un) → 0,(4.51)

as n → ∞, where

P(u) :=

∫
R2

|∇u|2dx− µ

∫
R2

G(u)dx+ 2

∫
R2

hudx−
∫
R2

⟨∇h · x⟩udx, ∀u ∈ H1(R2).

We note that (4.50) implies that there exists {λn}n≥1, such that

(4.52) J
′
(un)[η] + λn

∫
R2

unηdx → 0.

For any ϕ ∈ C∞
0,r(R2). By the assumption (1.11), we will show that the Lagrange multipliers

{λn} and P-S sequence are bounded in the following.

Lemma 4.13. Assume that h satisfies (1.11). Let {un} ⊂ S(σ) be a radial non-negative P-S sequence
satisfies (4.49)− (4.51), then {un} is bounded in H1. Furthermore, {λn} in (4.52) are bounded.

Proof. According to (4.49), {un} ⊂ S(σ) as a P-S sequence, we have

m(σ) = J(un) + o(1)

=
1

2

∫
R2

|∇un|2dx− µ

∫
R2

F (un)dx−
∫
R2

hundx+ o(1).(4.53)

Therefore {un} is bounded in H1 since h ∈ H1 and |∇h · x|2 < ∞. We evaluate {λn}. Using
{un} as the test function for (4.52), we can conclude that

(4.54) o(1)||un||H1 =

∫
R2

|∇un|2dx− µ

∫
R2

F (un)dx−
∫
R2

hundx+ λnσ.

So

(4.55) |λn| =
1

σ

∣∣∣∣o(1)||un||H1 −
∫
R2

|∇un|2dx+ µ

∫
R2

F (un)dx+

∫
R2

hundx

∣∣∣∣ < +∞.

Therefore, {λn} are also bounded. □

Proof of Theorem 1.2. We show the compactness of the P-S sequence. We first show that {λn}
has lower bounded. Indeed, under (4.51) and (4.52), we have

λnσ = λn

∫
R2

u2
ndx

= −
∫
R2

|∇un|2dx+ µ

∫
R2

F (un)dx+

∫
R2

hundx
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= µ

∫
R2

(
3F (un)− f(un)un

)
dx+ 3

∫
R2

hundx−
∫
R2

⟨∇h · x⟩undx+ o(1).(4.56)

We also have that

m(σ) =
1

2

∫
R2

|∇un|2dx− µ

∫
R2

F (un)dx−
∫
R2

hundx+ o(1)

=
1

2

[
µ

∫
R2

(
f(un)un − 4F (un)

)
dx− 4

∫
R2

hundx+

∫
R2

⟨∇h · x⟩undx
]
+ o(1).(4.57)

We prove that for any σ > 0, there holds

(4.58) m(σ) ≥ m∞(σ)− |h|2σ
1
2

by (1.11), we can conclude that

λnσ + o(1) = 2m(σ) + µ

∫
R2

(
7F (un)− 2f(un)un

)
dx+ 7

∫
R2

hundx− 2

∫
R2

⟨∇h · x⟩undx

≥ 2(m∞(σ)− |h|2σ
1
2 ) + µ

(
7|F (un)|2 − 2|f(un)un|2

)
− 2|∇h · x|2σ

1
2

≥ 2m∞(σ) + µ
(
7|F (un)|2 − 2|f(un)un|2

)
− 4L(µ, σ)σ 1

2

≥ 2σ
1
2

(
σ− 1

2

(
m∞(σ) +

µ

2

(
7|F (un)|2 − 2|f(un)un|2

))
− 2L(µ, σ)

)
.(4.59)

Since

(4.60) L(µ, σ) < 1

2
σ− 1

2

(
m∞(σ) +

µ

2

(
7|F (un)|2 − 2|f(un)un|2

))
.

Note that for any γ(t) ⊂ Γ, we have that there exists t∗ ∈ R+ such that

(4.61) J∞(t∗ ⋆ γ(1)) = max
t>0

J∞(γ(t)).

Furthermore, because of the structure of Γ in (4.41), we derive that t∗ < 1. Hence if J(γ(t̄)) =
maxt∈[0,1] J(γ(t)), then

max
t∈[0,1]

J(γ(t)) = J(γ(t̄))

≥ J(t∗ ⋆ γ(1))

≥ J∞(t∗ ⋆ γ(1))− |h|2σ
1
2

= max
t>0

J∞(γ(t))− |h|2σ
1
2 .(4.62)

Because of the γ is arbitrary, we obtain that (4.58) holds. By the constructions of {un}, we have
that {un} ∈ S(σ) ∩H⋆, therefore, together with Lemma 4.13, there exists ũ ∈ S(σ) such that

(4.63) un ⇀ ū in H1, un → ū in Lp(R2).

Notice that {λn} has lower bound and is positive, then up to a subsequence, we suppose that
λn → λ̄ > 0. Because of the weak convergence of {un} in H1 and the strong convergence in
Lp(R2), using (4.52), we obtain

o(1) = (dJ(un)− dJ(ū))[un − ū] + λ̄

∫
R2

|un − ū|2dx

=

∫
R2

|∇un −∇ū|2dx+ λ̄

∫
R2

|un − ū|2dx+ o(1)(4.64)

with o(1) → 0 as n → ∞. Since λ̄ > 0, thus we have that
∫
R2 |∇un −∇ū|2dx → 0 and

∫
R2 |un −

ū|2dx → 0. Thus we get that in H1, un strongly converges to ū . □
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