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A short review on (p, q)-equations with Carathéodory
perturbation
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ABSTRACT. We review some recent works dealing with (p, q)-Laplacian equations in the setting of Sobolev spaces
and Dirichlet boundary condition. We aim to underline the key role of growth conditions on the Carathéodory pertur-
bation, in establishing both the existence and multiplicity of positive weak solutions. We focus on (p− 1)-superlinear
perturbations which do not satisfy the Ambrosetti-Rabinowitz condition, and a special attention is paid to those prob-
lems involving a singular term in the reaction. We refer both to variational tools and topological tools, and point out
the dependence of the multiplicity result on a real parameter, when possible.
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1. INTRODUCTION

We focus on some recent results concerning a class of (p, q)-Laplacian equations posed in a
bounded domain Ω ⊆ RN with a C2-boundary ∂Ω. We know that boundary value problems
driven by a combination of two, or more, operators of different nature, arise in many models of
physical systems. We recall the mathematical model described in the work of Cahn & Hilliard
(see [4]) to represent the process of separation of binary alloys, in the context of plasma physics
we refer to the work of Zakharov (see [30]), in the framework of quantum physics we cite the
work of Benci et al. (see [3]), for reaction-diffusion systems there is the work of Cherfils &
Il′yasov (see [5]), finally for transonic flow problems we refer to the paper of Bahrouni et al.
(see [2]). Now, for r ∈ (1,+∞), by ∆r we denote the r-Laplace differential operator defined by

∆ru = div(|∇u|r−2∇u) for all u ∈ W 1,r
0 (Ω),

where W 1,r
0 (Ω) is the usual Dirichlet Sobolev space. Then, we consider the following operator:

Lp,q(u) = −∆pu−∆qu for all u ∈ W 1,p
0 (Ω), with 1 < q < p < +∞.

Since we have the sum of two r-Laplacian operators, the differential operator Lp,q(·) is non-
homogeneous and this is a source of difficulties in the study of boundary value problems. We
note that Lp,q(·) is a special case of a more general operator, known as the double-phase oper-
ator, corresponding to the energy functional given as

u 7→
∫
Ω

[b(z)|∇u|p + |∇u|q]dz.
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The integrand in this functional, is the function

I(z, t) = b(z)tp + tq for all z ∈ Ω, all t ≥ 0, with 1 < q < p < +∞,

where b(·) ∈ L∞(Ω) \ {0}, b(z) ≥ 0 for a.a. z ∈ Ω, acts like a modulating coefficient. This is
because the behavior of the operator related to I(z, ·) changes its ellipticity switching between
two cases. Roughly speaking, on the set {z ∈ Ω : b(z) > 0} the operator is controlled by the
power of order p, and on the set {z ∈ Ω : b(z) = 0} it is controlled by the power of order q.
Consequently, a crucial hypothesis on b(·) is in imposing that it is bounded away from zero,
that is

ess inf
Ω

b > 0.

Under such hypothesis, the function I(z, ·) has balanced growth, given as

c1[t
p + tq] ≤ I(z, t) ≤ c2[t

p + tq]

for some c1, c2 > 0, for a.a. z ∈ Ω, all t ≥ 0. Differently from this, when we do not impose the
positivity condition on the essential infimum of modulating coefficient b(·), we have a more
complicate unbalanced growth, namely

tq ≤ I(z, t) ≤ c[tp + tq]

for some c > 0, for a.a. z ∈ Ω, all t ≥ 0. Referring to these growth conditions, suitable
integral functionals were first considered in the works of Marcellini (see [18, 19]) and of Zhikov
(see [31, 32]), in the situation of problems of the calculus of variations and nonlinear elasticity
theory. The unbalanced growth implies that for the study of such problems the right setting
is given by Musielak-Orlicz (-Sobolev) spaces. Differently, in the case of balanced growth, we
can pose the problem in the setting of classical Lebesgue and Sobolev spaces, with constant
or variable exponents (respectively, for isotropic and anisotropic problems). Here, we assume
b ≡ 1 and so, the function I(z, t) reduces to

I(z, t) = tp + tq for all z ∈ Ω, all t ≥ 0.

Based on this, we consider Dirichlet problems of the form

(1.1)

{
Lp,q(u) = λ1g(z, u) + λ2f(z, u) in Ω,

u
∣∣
∂Ω

= 0, u > 0, λ1, λ2 > 0, 1 < q < p < +∞.

In the reaction of (1.1), λi > 0 (i = 1, 2) is a parameter, and f(z, t) is a Carathéodory perturba-
tion, namely

• for all t ∈ R, z → f(z, t) is measurable;
• for a.a. z ∈ Ω, t → f(z, t) is continuous.

We concentrate on the case when for a.a. z ∈ Ω, the function t → f(z, ·) is somehow (p− 1)-
superlinear near +∞. However, the superlinear behavior of f(z, ·) is not formulated using the
common in the literature Ambrosetti-Rabinowitz condition (the AR-condition for short, see
[1]). We know that the AR-condition is very useful in giving the compactness condition (i.e.,
the Palais-Smale condition, the PS-condition for short) for the energy functional associated to
the problem. On the contrary, we employ a less restrictive condition to incorporate in our
framework also superlinear nonlinearities with slower growth near +∞, which may fail to
satisfy the AR-condition. Further, the function g(z, t) is built over a sigular term of the form
t−η , with η > 0, for all t ≥ 0, eventually combined with additional terms.

We look for positive solutions in integral form (i.e., weak solutions), in the situations when
the existence and multiplicity results can be established by using variational tools from the
critical point theory together with truncation and comparison techniques, as well as topological
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tools and tools from the operator theory (see, for example, the monography of Motreanu et al.
[20]). If possible, we provide a bifurcation-type theorem, producing a critical parameter value
λ∗
i > 0 (i = 1, 2) such that

• for all λi ∈ (0, λ∗
i ) problem (1.1) admits at least two positive solutions (multiplicity);

• for λi = λ∗
i problem (1.1) admits at least one positive solution (existence);

• for all λi > λ∗
i problem (1.1) has no positive solutions (non-existence).

Precisely, we refer to some recent works of Papageorgiou et al., namely [23, 25] (isotropic prob-
lems) and [24] (anisotropic problem), and the references cited therein. In details the strategy of
proofs is based on a judicious combinations of the tools provided in the works of Díaz & Saá [7],
Gilbarg & Trudinger [11], Guedda & Veron [12], Ladyzhenskaya & Ural′tseva [14], Lieberman
[16].

The manuscript is organized as follows. In Section 2, we introduce the notation and notions
about the framework spaces and some operator properties involved in the analysis. In Section
3, we discuss a suitable set of hypotheses to describe the growth of the Carathéodory pertur-
bation, in absence and in presence of a singular term in the reaction. In Section 4, we depict
the strategy to establish a multiplicity result of weak solutions to a singular parametric Dirich-
let problem with positive Carathéodory perturbation. Some variants are briefly discussed in
Section 5 (negative perturbation), in Section 6 (sign-changing perturbation), and in Section 7
(locally defined perturbation with convection).

2. MATHEMATICAL BACKGROUND

The study of anisotropic (resp. isotropic) (p, q)-Laplacian equations uses Lebesgue and
Sobolev spaces with variable (resp. constant) exponents. A comprehensive treatment of such
spaces can be found in the monography of Diening et al. (see [6]). According to the finding in
the works to review, we impose that p, q ∈ C1(Ω) so that we can apply the anisotropic global
regularity theory of Fan (see [9]). Also by c, c1, c2 > 0 we denote three constants that are not
necessarily the same at each occurrence, further by cm > 0 we mean that the constant depends
on m. To shorten notation we write r for r(z) (r = p, q), such way we formally identify the
notation of variable exponents with the one of constant exponents; some differences between
the two settings will be noted in the sequel.

Let p > 1, we denote p− = minΩ p and p+ = maxΩ p, the similar notation is used for the
exponent q. We now consider the set of measurable functions defined on Ω, namely M(Ω) =
{u : Ω → R : u is measurable}. Clearly, we identify two functions which differ only on a
Lebesgue-null set. Now, the (variable exponent) Lebesgue space Lp(Ω) is defined by

Lp(Ω) =

{
u ∈ M(Ω) :

∫
Ω

|u(z)|pdz < +∞
}
.

This space is endowed with the so-called Luxemburg norm given as

∥u∥p = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(z)λ

∣∣∣∣p dz ≤ 1

}
.

Remark 2.1. For readers convenience, we recall that the passage from the constant exponents p, q to
the variable exponents p(·), q(·) discussed in this section, is natural but not trivial. Differently from the
constant exponents setting, Kováčik & Rákosník note that the variable exponent Lebesgue space Lp(Ω)
is not invariant with respect to translation (see [13]). This aspect implies difficulties directly linked to
convolutions and continuity of functions in the mean.

We know that (Lp(Ω), ∥u∥p) is a separable Banach space which is uniformly convex (hence,
reflexive); further simple functions and continuous functions with compact support are dense
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in Lp(Ω). Suppose that p, q ∈ C1(Ω) with 1 < q(z), p(z) for all z ∈ Ω. Then, we have the
following classical embedding result

Lp(Ω) ↪→ Lq(Ω) continuously if and only if q(z) ≤ p(z) for all z ∈ Ω.
Also let p′ denote the Hölder conjugate exponent to p, that is 1

p(z) + 1
p′(z) = 1 for all z ∈ Ω.

Thus, by Lp′
(Ω) = Lp(Ω)∗ we denote the topological dual space of Lp(Ω), and we have the

Hölder-type inequality∫
Ω

|uv|dz ≤
[
1

p−
+

1

p′−

]
∥u∥p∥v∥p′ for all u ∈ Lp(Ω), all v ∈ Lp′

(Ω).

Referring to the (variable exponent) Lebesgue space, we can introduce the corresponding (vari-
able exponent) Sobolev space. Namely, we have

W 1,p(Ω) = {u ∈ Lp(Ω) : |∇u| ∈ Lp(Ω)} .
Let ∥∇u∥p := ∥|∇u|∥p, we endow W 1,p(Ω) with the following norm

∥u∥1,p = ∥u∥p + ∥∇u∥p for all u ∈ W 1,p(Ω).

Then we define W 1,p
0 (Ω) to be the completion of C∞

c (Ω) in W 1,p(Ω), that is

W 1,p
0 (Ω) = C∞

c (Ω)
∥·∥1,p

.

Recall that C∞
c (Ω) = {u ∈ C∞(Ω) : supp u is compact}. The spaces W 1,p(Ω) and W 1,p

0 (Ω) are
both separable and reflexive (in fact uniformly convex) Banach spaces. Moreover, on W 1,p

0 (Ω)
the Poincaré inequality holds, that is, there exists c > 0 such that

∥u∥p ≤ c ∥∇u∥p for all u ∈ W 1,p
0 (Ω).

Consequently, on W 1,p
0 (Ω) we can use the norm ∥ · ∥ given as

∥u∥ = ∥∇u∥p for all u ∈ W 1,p
0 (Ω).

Further, we recall the Sobolev critical exponent of p defined by

p∗(z) =

{
Np(z)
N−p(z) if p(z) < N,

+∞ if p(z) ≥ N,
z ∈ Ω.

Then if q(z) ≤ p∗(z) for all z ∈ Ω (resp. q(z) < p∗(z) for all z ∈ Ω), we know about the following
embedding result

W 1,p(Ω) ↪→ Lq(Ω) continuously (resp. compactly).

By W 1,p
0 (Ω)∗ = W−1,p′

(Ω) we denote the topological dual space of W 1,p
0 (Ω). We refer the

readers to the works of Edmunds & Rákosník (see [8]), and Kováčik & Rákosník (see [13]) to
see more about Sobolev inequality and embedding theorems in the variable exponent setting,
with respect to the constant exponent setting. For r ∈ C1(Ω) (recall the assumption on the
exponents at the beginning of this section), useful in the study of the spaces Lr(Ω) and W 1,r(Ω)
is the following function

ρr(u) =

∫
Ω

|u|rdz for all u ∈ Lr(Ω),

which is known as modular function. Hence, we note a close relation between ρr and the
Luxemburg norm ∥ · ∥r. We can resume this by the following proposition. In the sequel by →
we denote the strong convergence and by w−→ we denote the weak convergence.

Proposition 2.1. For any u ∈ Lr(Ω), u ̸= 0, one has:
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• ∥u∥r = λ ⇔ ρr
(
u
λ

)
= 1;

• ∥u∥r < 1 (resp. = 1, > 1) ⇔ ρr(u) < 1 (resp. = 1, > 1);
• ∥u∥r < 1 ⇒ ∥u∥r+r ≤ ρr(u) ≤ ∥u∥r−r ;
• ∥u∥r > 1 ⇒ ∥u∥r−r ≤ ρr(u) ≤ ∥u∥r+r ;
• ∥un∥r → 0 ⇔ ρr(un) → 0;
• ∥un∥r → +∞ ⇔ ρr(un) → +∞.

By Ar : W 1,r
0 (Ω) → W−1,r′(Ω) we denote the nonlinear map defined by

⟨Ar(u), h⟩ =
∫
Ω

|∇u|r−2(∇u,∇h)RNdz for all u, h ∈ W 1,r
0 (Ω),

where ⟨· , ·⟩ denote the duality pairing of Banach spaces. The following useful properties of
Ar(·) are known in the literature, for more details and information we refer to the monography
of Rădulescu & Repovš [28].

Proposition 2.2. The map Ar : W 1,r
0 (Ω) → W−1,r′(Ω) is bounded (that is, maps bounded sets to

bounded sets), continuous, strictly monotone (hence maximal monotone too) and of type (S)+ (that is,
un

w−→ u in W 1,r
0 (Ω) and lim sup

n→+∞
⟨Ar(un), un − u⟩ ≤ 0 imply un → u in W 1,r

0 (Ω)).

Another space that we use in this work is the Banach space C1
0 (Ω) = {u ∈ C1(Ω : u|∂Ω =

0)}. Namely, this is an ordered Banach space with positive cone C+ = {u ∈ C1
0 (Ω) : u(z) ≥

0 for all z ∈ Ω}. This cone has a nonempty interior given as

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω

}
.

For t ∈ R, we set t± = max{±t, 0}. Then for u ∈ W 1,r(Ω), we define u±(z) = u(z)± for all
z ∈ Ω. We have

u± ∈ W 1,r(Ω), |u| = u+ + u−, u = u+ − u−.

Given u, v ∈ W 1,r(Ω) with u ≤ v, we also consider the two sets

[u, v] =
{
h ∈ W 1,r(Ω) : u(z) ≤ h(z) ≤ v(z) for a.a. z ∈ Ω

}
,

[u) =
{
h ∈ W 1,r(Ω) : u(z) ≤ h(z) for a.a. z ∈ Ω

}
,

intC1
0 (Ω)[u, v] = the interior in C1

0 (Ω) of [u, v] ∩ C1
0 (Ω).

Given h1, h2 ∈ L∞(Ω), we write h1 ≺ h2 if for all K ⊆ Ω compact we have

0 < cK ≤ h2(z)− h1(z) for a.a. z ∈ K.

If h1, h2 ∈ C(Ω) and h1(z) < h2(z) for all z ∈ Ω, then h1 ≺ h2. Let X be a Banach space and
Φ ∈ C1(X) be a functional, then we set

KΦ = {u ∈ X : Φ′(u) = 0} (the critical set of Φ).

Also, we say that Φ(·) satisfies the PS-condition, if the following property holds:
“Every sequence {un}n≥1 ⊆ X such that {Φ(un)}n≥1 ⊆ R is bounded and Φ′(un) → 0 in X∗

as n → +∞, admits a strongly convergent subsequence”.
Further, we say that Φ(·) satisfies the Cerami condition (C-condition for short), if the following
property holds:

“Every sequence {un}n≥1 ⊆ X such that {Φ(un)}n≥1 ⊆ R is bounded and (1+∥un∥X)Φ′(un) →
0 in X∗ as n → +∞, admits a strongly convergent subsequence”.

These are compactness-type conditions on the functional Φ(·). This is needed since in gen-
eral the ambient space X is not locally compact (being infinite dimensional). Roughly speaking,
the compactness-type conditions lead to a deformation theorem from which one can derive the
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minimax characterizations of the critical values of Φ(·) (see, for example, Papageorgiou et al.
[21]). A basic result in that theory is the well-known mountain pass theorem of Ambrosetti and
Rabinowitz which we recall here (see the monography of Gasiński & Papageorgiou [10]).

Theorem 2.1. If Φ ∈ C1(X) satisfies the C-condition, u0, u1 ∈ X , ∥u1 − u0∥ > r > 0,

max{Φ(u0),Φ(u1)} < inf{Φ(u) : ∥u− u0∥ = r} = mr,

and
c = inf

γ∈Γ
max
0≤t≤1

Φ(γ(t)) where Γ = {γ ∈ C([0, 1], X) : γ(0) = u0, γ(1) = u1},

then c ≥ mr and c is a critical value of Φ(·) (namely, there exists u ∈ X such that Φ(u) = c, Φ′(u) = 0).

Evidently, the Cerami condition is weaker than the Palais-Smale condition however these
conditions are equivalent provided that Φ ∈ C1(X) is bounded below. Finally, we mention
that in the proofs of forthcoming results we will use the following properties of operators.

Definition 2.1. We say that the operator A : X → X∗ is
• pseudomonotone if un

w−→ u in X and lim supn→+∞⟨A(un), un − u⟩ ≤ 0 imply

lim inf
n→+∞

⟨A(un), un − v⟩ ≥ ⟨A(u), u− v⟩ for all v ∈ X;

• coercive if

lim
∥u∥X→+∞

⟨A(u), u⟩
∥u∥X

= +∞.

We remark that pseudomonotone operators have remarkable surjectivity properties.

3. HYPOTHESES ON THE DATA

Now, we are ready to introduce a suitable set of hypotheses on the data of problem (1.1), in
the case when g ≡ 0. First we give the precise relation between the exponents p and q, namely
we assume the following:

Hp&q : p, q ∈ C1(Ω) and 1 < q− ≤ q+ < p− ≤ p+ < +∞.

Clearly, this assumption reduces just to the usual condition 1 < q < p < +∞ in the case of
constant exponents. Then, we depict the growth of the Carathéodory function f : Ω× R → R,
namely we impose that
Hf : f(z, 0) = 0 for a.a. z ∈ Ω and

(i) 0 ≤ f(z, t) ≤ a(z)[1 + tr−1] for a.a. z ∈ Ω, all t ≥ 0, with a ∈ L∞(Ω), p+ < r < p∗;
(ii) if F (z, t) =

∫ t

0
f(z, s)ds, then

lim
t→+∞

F (z, t)

tp+
= +∞ uniformly for a.a. z ∈ Ω;

(iii) if α(z, t) = f(z, t)t− p+F (z, t), then there exists β ∈ L1(Ω) such that

α(z, t) ≤ α(z, s) + β(z) for a.a. z ∈ Ω, all 0 ≤ t ≤ s;

(iv) there exist x > 0 and 1 < τ < q− such that

c tτ−1 ≤ f(z, t) for a.a. z ∈ Ω, all 0 ≤ t ≤ x, with c > 0

and for all y > 0, we have

cy ≤ f(z, t) for a.a. z ∈ Ω, all t ≥ y, some cy > 0;

(v) for every ρ > 0, there exists cρ > 0 such that for a.a. z ∈ Ω, the function t 7→ f(z, t) +
cρt

p−1 is nondecreasing on [0, ρ].
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Remark 3.2. The goal of this short survey is to discuss positive solutions for the prototype problem (1.1),
and we note that all the above assumptions concern the positive semiaxis, that is the interval [0,+∞).
Then, without any loss of generality, one can assume the following condition

(3.2) f(z, t) = 0 for a.a. z ∈ Ω, all t ≤ 0.

Hypotheses Hf (ii), (iii) imply that

lim
t→+∞

f(z, t)

tp+−1
= +∞ uniformly for a.a. z ∈ Ω,

namely, for a.a. z ∈ Ω the perturbation f(z, ·) is (p+−1)-superlinear. Often in the literature superlinear
problems are treated using the AR-condition (see again [1], and also Willem [29]). In our case, on
account of (3.2), we will state a unilateral version of this condition. According to the AR-condition,
there exist µ > p and M > 0 such that

0 < µF (z, t) ≤ f(z, t)t for a.a. z ∈ Ω, all t ≥ M,(3.3)

0 < essinf
Ω

F (·,M).(3.4)

Integrating (3.3) and using (3.4), we obtain the following weaker condition

c tµ ≤ F (z, t) for a.a. z ∈ Ω, all t ≥ M , some c > 0,

which means that
c tµ−1 ≤ f(z, t) for a.a. z ∈ Ω, all t ≥ M , some c > 0.

So, the AR-condition restricts f(z, ·) to have at least (µ − 1)-polynomial growth near +∞. The
quasimonotonicity condition in hypothesis Hf (iii) does not imply such a restriction on the growth of
f(z, ·). Consequently, it permits also the consideration of superlinear nonlinearities with slower growth
near +∞. We mention that hypothesis Hf (iii) is an assumption used by Li & Yang (see [17]) in
dealing with a Dirichlet problem driven by a single p-Laplace differential operator, in the case of constant
exponent p. As known in the literature, there are convenient ways to verify Hf (iii). So, this situation
holds if we can find M > 0 such that for a.a. z ∈ Ω we get one of the following outcomes:

t → f(z, t)

tp+−1
is nondecreasing on [M,+∞),

t → α(z, t) is nondecreasing on [M,+∞).

About the remaining hypotheses, we note that assumption Hf (iv) leads to the presence of a concave
term near zero, while the situation in Hf (v) gives us a one sided Hölder condition. We know that
Hf (iv) is satisfied if for a.a. z ∈ Ω, f(z, ·) is differentiable and for every ρ > 0 one can find a positive
constant cρ > 0 satisfying the following inequality

−cρt
p−1 ≤ f ′

t(z, t)t for a.a. z ∈ Ω, all 0 ≤ t ≤ ρ.

According to the finding in the work of Papageorgiou et al. (see [22]) and other studies, we
present the following illustrative example depicting the role of assumptions Hf stated above.
For the sake of clarity and simplicity, we drop the z-dependence of f(z, t), hence we refer to a
real valued function f : R → R.

Example 3.1. Let 1 < τ < q < p and consider two functions fi : R → R (i = 1, 2) defined by

f1(t) =

{
tτ−1 if 0 ≤ t ≤ 1

tr−1 if 1 < t
with p < r < p∗,

f2(t) =

{
tτ−1 if 0 ≤ t ≤ 1

ts−1 + tp−1 ln t if 1 < t
with 1 < s < p.
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By routine calculations, one can show that both f1(·) and f2(·) satisfy hypotheses Hf , but only the first
one fulfills the AR-condition, namely f2(·) has a slower growth near +∞ in respect to the corresponding
growth of f1(·).

From the above discussion, the crucial role of hypotheses Hf should be evident, however we
remark this point by showing what need to be revised in the case we also deal with a non-null
term g. As mentioned in Section 1 (on page 3), we first consider the basic situation where

(3.5) g(z, t) = t−η for some η > 0, all t ≥ 0,

namely g is a singular term. To approach this situation is sufficient to change Hf (iii) in the
definition of function α(z, t) as follows

(3.6) α(z, t) =

[
1− p+

1− η

]
t1−η + f(z, t)t− p+F (z, t).

For more discussion on this condition, see Papageorgiou et al. [24]. In the next sections, we
will consider some special cases of problem (1.1).

4. SINGULAR PROBLEM - WEAK SOLUTIONS

In this section, we consider the isotropic version of problem (1.1) assuming g is the purely
singular term given in (3.5), and a unique parameter λ1 = λ2 = λ (λ-problem (1.1)-(3.5) for
short). Further, we make the following hypothesis about the singular term:

Hη : There exists t∗ ∈ C+ such that (t∗)−η ∈ Lr(Ω) with r > N.

Remark 4.3. In the isotropic context, let us denote by û1(p) the positive, Lp-normalized (that is,
∥û1(p)∥p = 1) principal eigenfunction of the Dirichlet p-Laplacian problem. We know that û1(p) ∈
int C+ (see [10]). So, we note that if η < 1

N , then assumption Hη is satisfied with t∗ = û1(p). The
reader can see this, using the Lemma in Lazer & McKenna (see [15]). We remark that this lemma (orig-
inally proved for the Laplacian, case p = 2) is valid also in the case p ̸= 2, this because its proof depends
only on the fact that the principal positive eigenfunction is in int C+. For more details and information
on hypothesis Hη , we also refer to the work of Perera & Silva (see condition (H) in [26] and related
discussion).

As mentioned above, we are interested to weak solutions (namely, solutions in integral
form). We know that a weak solution of λ-problem (1.1)-(3.5) is a function u ∈ W 1,p

0 (Ω) such
that u−ηh ∈ L1(Ω) for all h ∈ W 1,p

0 (Ω) and

⟨Ap(u), h⟩+ ⟨Aq(u), h⟩ =
∫
Ω

λ
[
u−η + f(z, u)

]
hdz for all h ∈ W 1,p

0 (Ω).

We note that, due to the singular term, the energy functional of the problem, namely Ψ :

W 1,p
0 (Ω) → R defined by

Ψ(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq − λ

∫
Ω

[
1

1− η
(u+)1−η + F (z, u+)

]
dz

for all u ∈ W 1,p
0 (Ω), is not C1. This is a source of difficulties in the analysis of λ-problem (1.1)-

(3.5), since we cannot use the minimax methods of critical point theory directly on Ψ(·) (see
[21, Chapter 5]. In such situation, we need to bypass the singularity, so that we can deal with
C1-functionals. Briefly, we describe a consolidated strategy used to get this goal. Precisely, if
Hf (i), (iv) hold, then one can find c1 > 0 satisfying

(4.7) f(z, t) ≥ c tτ−1 − c1t
r−1 for a.a. z ∈ Ω, all t ≥ 0,
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where c > 0 is the constant given in Hf (iv). This growth bound for the Carathéodory function
f(z, ·) gives us the possibility to introduce the auxiliary problem in the form

(4.8)

{
Lp,q(u) = λ

[
c uτ−1 − c1u

r−1
]

in Ω,

u
∣∣
∂Ω

= 0, u > 0, λ > 0, 1 < τ < q < p < r.

This way, we are in position to introduce the associated C1-functional Φ : W 1,p
0 (Ω) → R defined

by

Φ(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq + λ

c1
r
∥u+∥rr − λ

c

τ
∥u+∥ττ for all u ∈ W 1,p

0 (Ω).

Now, one can show the regularity of this functional, referring to classical tools and notions
in the theory of energy functionals, hence linking to the general theory of operators. The re-
strictions on the involved exponents, namely 1 < τ < q < p < r, give us the coercivity of Φ(·).
Next, using Sobolev embedding result, one can conclude that it is sequentially weakly lower
semicontinuous. By the Weierstrass-Tonelli theorem, there exists uλ ∈ W 1,p

0 (Ω) such that

Φ(uλ) = min
[
Φ(u) : u ∈ W 1,p

0 (Ω)
]
.

By routine calculations, one can show that uλ ∈ L∞(Ω) (according to Theorem 7.1 of Ladyzhen-
skaya & Ural′tseva [14]), hence the nonlinear regularity theory of Lieberman (see [16]) permits
to conclude that uλ ∈ C+ \{0}. Finally, the nonlinear maximum principle of Pucci & Serrin (see
[27]) implies that uλ ∈ intC+. This way, one can establish the following existence result.

Proposition 4.3. Problem (4.8) admits a positive solution uλ ∈ intC+, for every λ > 0. Further,
uλ → 0 in C1

0 (Ω) as λ → 0+.

By contradiction, one can easily show that the solution uλ ∈ intC+ is unique (namely, one
can adapt the similar arguments in the proof of Proposition 5 in [24]). Next we introduce the
following auxiliary problem

(4.9)

{
Lp,q = λu−η

λ + 1 in Ω,

u
∣∣
∂Ω

= 0, u > 0, λ > 0, η > 0, 1 < q < p.

For this problem, we can establish an existence (and uniqueness) result of positive weak
solution, that can be linked to the solution obtained for problem (4.8). Precisely, we mean the
following result.

Proposition 4.4. If hypothesis Hη holds then problem (4.9) admits a unique positive solution uλ ∈
intC+, for every λ > 0. Further, we can find λ0 > 0 such that uλ ≤ uλ for all λ ∈ (0, λ0].

A salient point in introducing problem (4.9) is linked to the fact that hypothesis Hf (i) en-
sures that one can find a value λ0 ∈ (0, 1] such that

λf(z, uλ(z)) ≤ 1 for a.a. z ∈ Ω, all λ ∈ (0, λ0].

In details, the proof of this proposition is based on a discussion of the regularity properties of
the operator Ap,q : W 1,p

0 (Ω) → W−1,p′
(Ω) = W 1,p

0 (Ω)∗ defined by

(4.10) Ap,q(u) = Ap(u) +Aq(u) for all u ∈ W 1,p
0 (Ω).

We just remark that Ap,q(·) is continuous, strictly monotone (hence maximal monotone too),
and coercive. Therefore Ap,q(·) is surjective (see the monography of Papageorgiou et al. [21]).
Hence by the surjectivity and strict monotonicity of Ap,q(·), we can find a unique uλ ∈ W 1,p

0 (Ω),
uλ ≥ 0, uλ ̸= 0 to infer the properties stated in Proposition 4.4 for all 0 < λ ≤ λ0. The two
unique positive solutions established in Propositions 4.3 and 4.4 can be successfully involved in
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defining truncation of the reaction of λ-problem (1.1)-(3.5). So, referring again to the classical
approaches (see [7, 12, 14, 16]) and results mentioned above, one can define suitable energy
functionals associated to this problem to obtain the following abstract result, involving a critical
value of the parameter λ, namely λ∗.

Theorem 4.2. If hypotheses Hp&q , Hf , Hη hold, then there exists λ∗ > 0 such that

(a) for every λ ∈ (0, λ∗), λ-problem (1.1)-(3.5) has at least two positive solutions u0, u1 ∈ intC+,
u0 ≤ u1, u0 ̸= u1;

(b) λ∗-problem (1.1)-(3.5) has at least one positive solution u∗ ∈ intC+;
(c) for every λ > λ∗, λ-problem (1.1)-(3.5) has no positive solutions.

Remark 4.4. Cleary in Theorem 4.2, hypothesis Hf (iii) is given for the function α(z, t) defined by
(3.6).

5. SINGULAR PROBLEM - NEGATIVE PERTURBATION

In this section, we show how the finding described in previous section changes if we assume
a negative Carathéodory perturbation term. According to Papageorgiou et al. (see [25]), we
will remark that this time there is not need to involve a parameter λ in the problem. So, we
consider the following isotropic model problem

(5.11)

{
Lp,q(u) = u−η − f(z, u) in Ω,

u
∣∣
∂Ω

= 0, u > 0, 0 < η < 1, 1 < q < p.

The salient point of this model is the fact that the negative perturbation, originates some diffi-
culties in producing lower solutions for the problem. We note that in previous section, lower
solutions (recall the solution to auxiliary problem) are used to bypass the singularity, so that
we can retrieve C1-energy functionals. Roughly speaking, this time we can not use solution of
the associated auxiliary purely singular problem to act as a lower solution, differently from the
above studied situation of problems with positive perturbation. However, Papageorgiou et al.
(see [25]) devoloped a suitable strategy based on both upper solutions and regularizations of
the singular term, of course they continue to use certain truncation and other tools of critical
point theory. For readers convenience we recall the precise hypotheses about the Carathéodory
function f : Ω× R → R, namely we consider the case when
H−

f : f(z, 0) = 0 for a.a. z ∈ Ω and

(i) 0 ≤ f(z, t) ≤ a(z)[1 + tr−1] for a.a. z ∈ Ω, all t ≥ 0, with a ∈ L∞(Ω), p+ < r < p∗;

(ii) there exists 1 < τ ≤ q such that x → f(z, t)

tτ−1
is nondecreasing on the interval (0,+∞).

Here, we note that substantially we use the classical growth condition in hypothesis Hf (i) (here
called H−

f (i)), while we already encountered the hypothesis H−
f (ii) in our discussion about the

(p+ − 1)-superlinearity of f with respect to the AR-condition and the other assumptions in Hf .
On this basis (recall the discussion on problems (4.8) and (4.9) too), the purely singular problem{

Lp,q(u) = u−η in Ω,

u
∣∣
∂Ω

= 0, u > 0, 0 < η < 1, 1 < q < p

admits a unique positive solution u∗ ∈ intC+ (see Proposition 3.1 of [25]). One can use this
solution to define appropriate truncation of the reaction in the following regularized version of
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problem (5.11), namely

(5.12)

{
Lp,q(u) = [u+ ε]−η − f(z, u) in Ω,

u
∣∣
∂Ω

= 0, u > 0, 0 < η < 1, 1 < q < p, ε > 0.

Working on the energy functional associated to problem (5.12) and adapting the similar ar-
guments mentioned in the proof of previous results (namely, coercivity, convexity and mono-
tonicity properties of energy functional associated to the involved Dirichlet problem), one can
establish the existence and uniqueness of positive solution to (5.12) in the sense that, for every
ε > 0 problem (5.12) has a unique positive solution u∗

ε ∈ intC+. Involving another appropri-
ate truncation of the reaction, and developing some standard calulations, is also possible to
prove the non-decreasing monotonicity property of the solution map ε 7→ u∗

ε . Next, under the
assumptions on the Carathéodory perturbation, and passing to the limit as ε → 0+, one can
obtain a positive solution for problem (5.11). The proof is based on a precise analysis of the
operator Ap,q and usual convergence processes (for details see again [25]). Summarizing, the
authors established the following result.

Theorem 5.3. If hypotheses H−
f hold, then problem (5.11) admits a unique positive solution u∗ ∈

intC+.

Remark 5.5. Since no critical value of some parameter is required in establishing the proof of this result,
we can conclude that there is no need to involve it in the model problem (5.11), see Remark 3.5 of [25].

6. SINGULAR PROBLEM - SIGN-CHANGING PERTURBATION

In this section, we consider problem (1.1) assuming g is the purely singular term given in
(3.5) plus a power term, and we have a unique parameter λ1 = λ as we pose λ2 = 1. Precisely,
we refer to the following anisotropic model problem

(6.13)

{
Lp,q(u) = λ[u−η + uτ−1] + f(z, u) in Ω,

u
∣∣∣
∂Ω

= 0, u > 0, λ > 0, 0 < η < 1, 1 < τ < q < p.

To complicate the context, Papageorgiou et al. ([24]) assume an indefinite Carathéodory pertur-
bation f(z, t), that is, it may change sign. As in previous sections, the perturbation continues to
exhibit a superlinear (convex) behavior without satisfying the AR-condition. Finally, we note
that the additional power term λuτ−1 is assumed to be concave. Precisely, the set of hypotheses
on the exponents of the problem (recall Hp,q and Hη) are given as follows

p, q ∈ C1(Ω), τ ∈ C(Ω), 1 < τ− ≤ τ+ < q− ≤ q+ < p− ≤ p+ < N,

η ∈ C(Ω), 0 < η− ≤ η+ < 1.

Summing up, (6.13) is a singular concave-convex problem. To design their strategy, the
authors in [24] point their attention on a parametric auxiliary problem of the form (that is,
without singular term and Carathéodory perturbation)

(6.14)

{
Lp,q(u) = λuτ−1 in Ω,

u
∣∣
∂Ω

= 0, u > 0, λ > 0, 1 < τ < q < p.

The interest in establishing the existence and uniqueness of positive solution to (6.14) reflects in
bypassing the singular term in problem (6.13), this way authors identify suitable parameters for
problem (6.13) too. Briefly, one can manipulate problem (6.14) following the similar arguments
mentioned with respect to the problem in Section 4 (namely, using coercivity and monotonicity
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properties of suitable energy functionals, standard Sobolev embedding results, the Weierstrass-
Tonelli theorem, and so on). Hence, one can start the study referring to the C1-functional
Φ : W 1,p

0 (Ω) → R defined by

Φ(u) =
1

p
∥∇u∥pp +

1

q
∥∇u∥qq − λ

1

τ
∥u+∥ττ for all u ∈ W 1,p

0 (Ω),

and properly discuss its regularity. So, using variational tools together with truncation and
comparison techniques, one can obtain the counterparts of Proposition 4.3 (uniqueness of pos-
itive solution to (6.14)) and Theorem 4.2 (bifurcation-type theorem for (6.13), depending on
λ > 0). Since the perturbation here can be sign-changing, the set of hypotheses Hf need to be
revisited as follows. Here, f : Ω× R → R is a Carathéodory function such that
H±

f : f(z, 0) = 0 for a.a. z ∈ Ω, and

(i) |f(z, t)| ≤ a(z)[1 + tr−1] for a.a. z ∈ Ω, all t ≥ 0, with a ∈ L∞(Ω), r ∈ C(Ω), p+ < r− ≤
r+ < p∗−;

(ii) if F (z, t) =
∫ x

0
f(z, s)ds, then lim

t→+∞
F (z,t)
tp+ = +∞ uniformly for a.a. z ∈ Ω;

(iii) if α(z, t) = λ
[
t1−η + tτ

]
+ f(z, t)t− λp+

[
1

1−η t
1−η + 1

τ t
τ
]
+ p+F (z, t), then there exists

β ∈ L1(Ω) such that

α(z, t) ≤ α(z, s) + β(z) for a.a. z ∈ Ω, all 0 ≤ t ≤ s;

(iv) lim
t→0+

f(z,t)

tq+−1 = 0 uniformly for a.a. z ∈ Ω and there exists δ > 0 such that

0 < cδ ≤ f(z, t) for a.a. z ∈ Ω, all 0 < s ≤ t ≤ δ;

(v) for every ρ > 0 there exists cρ > 0 such that for a.a. z ∈ Ω, the function t 7→ f(z, t) +
cρ|t|p−1 is nondecreasing on [0, ρ].

7. SINGULAR PROBLEM - LOCALLY DEFINED PERTURBATION

In this section, we conclude our survey focusing on the situation where the reaction exhibits
dependence on the gradient of the solution, and the Carathéodory perturbation is defined only
locally. Referring to the work of Papageorgiou et al. (see [23]), we recall the following isotropic
model problem

(7.15)

{
Lp,q(u) = λ1u

−η + λ2|∇u|p−1 + f(z, u) in Ω,

u
∣∣
∂Ω

= 0, u > 0, λi > 0 (i = 1, 2), 0 < η < 1, 1 < q < p.

Precisely, we deal with a parametric Dirichlet problem where the reaction is built over a para-
metric singular term, a gradient dependent term (convection) and f(z, ·) is defined only near
0+ (hence locally). However, the main feature of problem (7.15) is the presence of the gradient
of u in the reaction, since this fact implies that the problem loses its variational structure. Con-
sequently the right way to study the problem is in developing a topological approach based on
truncation techniques and on the theory of nonlinear operators of monotone type. Papageor-
giou et al. [23] in designing their hypotheses, make use of the first eigenvalue of the q-Laplace
Dirichlet problem, we denote by λ̂1(q) this eigenvalue. According to the classical theory we
know that λ̂1(q) > 0, it is simple and isolated and all the eigenfunctions corresponding to it,
have fixed sign. We note that λ̂1(q) is the only eigenvalue with eigenfunctions of fixed sign, and
we have already mentioned the properties of the corresponding eigenfunction in Remark 4.3.
On this basis, we get the precise assumptions used in this investigation, namely we consider a
Carathéodory function f : Ω× [0, d] → R such that
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Hℓ: f(z, 0) = 0 for a.a. z ∈ Ω, and
(i) |f(z, t)| ≤ ad(z) for a.a. z ∈ Ω, all 0 ≤ t ≤ d, with ad ∈ L∞(Ω);
(ii) f(z, d) ≤ −c < 0 for a.a. z ∈ Ω;
(iii) there exist 0 < x < d and η ∈ L∞(Ω) \ {λ̂1(q)} such that

λ̂1(q) ≤ η(z) for a.a. z ∈ Ω,

η(z)tq−1 ≤ f(z, t) for a.a. z ∈ Ω, all 0 ≤ t ≤ x;

(iv) there exists cd > 0 such that for a.a. z ∈ Ω, the function t 7→ f(z, t) + cdt
p−1 is nonde-

creasing on [0, d].
Hypotheses Hℓ (ii), (iii) imply that we can find c > 0 such that

(7.16) f(z, t) ≥ η(z)tq−1 − c tp−1 for a.a. z ∈ Ω, all 0 ≤ t ≤ d.

This permits us to consider the following auxiliary problem

(7.17)

Lp,q(u) =

{
η(z)(u+)q−1 − c(u+)p−1 if u+(z) ≤ d,

η(z)dq−1 − c dp−1 if d < u+(z),

u
∣∣
∂Ω

= 0, u > 0, 0 < η < 1, 1 < q < p,

and conclude by previous arguments in Section 4 that (7.17) admits a unique solution u∗ ∈
intC1

0 (Ω)[0, d]. We recall that a growth bound similar to (7.16) is given in (4.7). Instead of un-
derlining the similarities between the new setting and the previous ones, we prefer to briefly
pointing out the new features of problem (7.15). This means that to complement the arguments
of proofs in previous sections, here we use the Lipschitz function ω : R → R given as

ω(t) =

{
t if t ≤ d,
d if d < t.

Referring to [21], one can use the chain rule for Sobolev functions to deduce the following
implications

u ∈ W 1,p
0 (Ω) =⇒ u+ ∈ W 1,p

0 (Ω) =⇒ ω(u+(·)) ∈ W 1,p
0 (Ω).

Further, one has

∇ω(u+) = ω′(u+)∇u+ =

{
∇u+ if u+(z) ≤ d,

0 if d < u+(z).

The above truncation and related remarks, give us a technical tool that we use to properly
define a concept of Nemitsky operator as follows

G(u)(z) =

{
λ1u(z)

−η + f(z, u(z)) if u(z) ≤ u(z),

λ1u(z)
−η + f(z, ω(u(z))) if u(z) < u(z).

This type operator is usually involved in the topological approach to various classes of bound-
ary value problems with reaction exhiniting dependence on the gradient of solution. We refer
to the monographies of Motreanu et al. [20], and Gasiński & Papageorgiou [10] for more details
and information. Under the hypotheses Hℓ, we remark that this operator is well-defined, in the
sense that G(u) ∈ W−1,p′

(Ω). Further, we know the following embedding result

Lp′
(Ω) ↪→ W−1,p′

(Ω) continuously and densely (see Lemma 2.2.27 of [10]),

then one can conclude that |∇ω(u+)|p−1 ∈ Lp′
(Ω) ↪→ W−1,p′

(Ω).
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Now, hypotheses Hℓ guarantee that Proposition 2.2 can be applied to the operator AG :

W 1,p
0 (Ω) → W−1,p′

(Ω) defined by

AG(u) = Ap,q(u)− λ2|∇ω(u+)|p−1 −G(u) (see also (4.10)).

This says us that the operator is pseudomonotone, and hence one can conclude that it is surjec-
tive too. Using properly G(·) and proving suitable estimates (with respect to the growth bound
of f ), Papageorgiou et al. [23] established the existence of a positive solution in the following
form.

Theorem 7.4. If hypotheses Hℓ hold, then problem (7.15) admits a positive solution u∗ ∈ intC+ for
every λ1 > 0 small. Further, u∗(z) < d for all z ∈ Ω.

8. CONCLUSIONS

The qualitative study of weak solutions to anisotropic problems, as well as isotropic prob-
lems, is interesting to deal with framework structures useful in modeling materials’ properties
and diffusion processes. We have discussed the impact of different singular reaction terms on
the solvability of a parametric Dirichlet (p, q)-problem. Special attention is paid to the role of
Carathéodory perturbation, comparing the situations when this perturbation is positive, neg-
ative, sign-changing and only locally defined. We just referred to classical tools of variational
and topological methods to cover the cases when the energy functional associated to the main
problem are not C1 (due to the singular term) and when the problem itself loses the variational
structure (due to a convection term). Auxiliary results for certain purely singular problems, as
well as some regularized problems, are designed to obtain the regularity properties of weak
solutions. If possible the multiplicity of solutions is established, with respect to a positive pa-
rameter involved in the reaction.
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