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set-valued maps have non-convex values.
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1. INTRODUCTION

The late literature abounds in papers concerning the study of systems governed by fractional
order derivatives. That is because this kind of systems proved to be more realistic models than
the ones using classical derivatives (see [2, 9, 13, 15, 17] etc.).

In [11], Hilfer introduced a generalization of both Riemann-Liouville and Caputo fractional
derivatives. In fact, this derivative is an interpolation between Riemann-Liouville and Caputo
derivatives. Properties and applications of Hilfer fractional derivative may be found in [12].
Recently, in [14], this derivative was also extended; namely to ¢-Hilfer generalized propor-
tional fractional derivative of a function with respect to another function. Some properties of
this derivative were studied in [14].

In this paper, we are concerned the following boundary value problem

{ Dy 7 (1) € Fy(t (), 22(1)),  ae.t € [a,0]

11 ,
(1.1) DS g (8) € Fy(t, a1 (t), 22(t)), a.e.t € [a,b]

with multi-point and integro-multi-strip boundary conditions of the form

12 { w1(a) =0, [ () ()ds = Sy ks [0 ($)ra(s)ds + 7 ()
ma(a) =0, [ W/ (s)eas)ds = Xy i [y 0/ (s)an (s)ds + 327 v ()

where Fy(+,+,-) : [a,b] x R? = P(R), Fa(-,,-) : [a,b] x R? — P(R) are given set-valued maps,
D?{’ﬂ 2% denotes the 1/-Hilfer generalized proportional fractional derivative operator of order
a € (1,2] and type § € [0, 1], respectively, o € (0,1],a < (; <& <mi <ba< z; < <€ <D,
ki 0j,0i,v; €R,j=1,m,i=1,nand ¢(-) € C(I,R) is such that ¢/(t) > 0V ¢ € [a, b].

The starting point of our study is a very recent paper [16], where problem (1.1)-(1.2) is stud-
ied in the single-valued case; namely, the right-hand side in (1.1) is given by single-valued
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maps. Existence and uniqueness results are provided by using well-known fixed point theo-
rems: Banach, Leray-Schauder and Krasnoselskii.
We also mention that in [8] is studied the problem

(1.3) DYV a(t) € F(t,z(t) ae. ([a,b]),

(1.4) 2(a) =0, [To'(s)z(s)ds =0, ¢ Jer ' (s)z(s)ds + 3251 052(G)-

Also, in [7], differential inclusion (1.3) is studied with another boundary condition.

Our goal is to extend the study in [16] to the set-valued framework, and on the other hand,
to generalize the study in [8] to the coupled case. The approach presented here avoids the
applications of fixed point theorems and takes into account the case when the values of F};
and F, are not convex; instead these set-valued maps are assumed to be Lipschitz in state
variables. We establish an existence result for problem (1.1)-(1.2) by using Filippov’s technique
[10]; namely, the existence of solutions is obtained by starting from a pair of given “quasi”
solutions. In addition, the result provides an estimate between the “quasi” solutions and the
solutions obtained.

Even if the approach used here may be found in other classes of coupled systems of frac-
tional differential inclusions [3]-[6], as far as we know, the present paper is the first in literature
which contains an existence result of Filippov type for coupled systems of differential inclu-
sions governed by 1-Hilfer generalized proportional fractional derivatives.

The paper is organized as follows: in Section 2, we recall some preliminary results that we
need in the sequel and in Section 3, we prove our main results.

2. PRELIMINARIES

Let (X, d) be a metric space. Recall that the Pompeiu-Hausdorff distance of the closed sub-
sets A, B C X is defined by

i (A, B) = max{d*(A, B),d"(B, A)}, d*(A, B) = sup{d(a, B);a € A},

where d(z, B) = inf,cp d(z,y).
Let I = [a, b], we denote by C(I, R) the Banach space of all continuous functions from I to R
with the norm ||z(+)||c = sup,¢; |z(t)| and L' (I, R) is the Banach space of integrable functions
u(.) : I — R endowed with the norm ||u(-)||y = f |u(t)|dt. In what follows ¢(-) € C*(I,R)
such that ¢/(t) >0V ¢ € I.

Definition 2.1. Let o € (0, 1] and o € R. The generalized proportional fractional integral of order o
of f(-) € LY(I,R) with respect to 1)(-) is defined by

1 b oo
0, - (@) —(s) — a=1,/
e = g [ e (6(t) — ()" () ().
where T is the (Euler’s) Gamma function defined by T'(a) = [;° t*Le~'dt.

Remark 2.1. If o = 1, ¢(t) = t the above definition yzelds the Riemann-Liouville fractional integral,
if o = 1, ¢(t) = Int the previous definition gives the Hadamard fractional integral and if o = 1,
P(t) = %, p > 0, Definition 2.1 covers the Katugampola fractional integral.

Definition 2.2. Let 0 € (0, 1] and o € R.;. The generalized proportional fractional derivative of order
aof f() € C(I,R) with respect to 1(-) is defined by

1

0.0 f(4) — _ n ([ oEEE @O0 (1) — ()L (8) £ 5)ds
D) = a2 (000) = )" 6 (s )
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where n = [a] + 1, [a] is the integer part of o € R.

Definition 2.3. Let f(-),9(:) € C™(I,R) such that ¢ (t),'(t) > 0V t € 1. The y)-Hilfer generalized
proportional fractional derivative operator of order o and type 3, respectively, o with respect to 1)(-) is
defined by

D7 f(t) = (P (Do) 1Dy ),

wheren —1 <a <n, B e[0,1],0 € (0,1 andn € N.

In what follows «; € (1 2} and v; = a; + 5;(2 — o), i = 1,2, we use the notations:
4= [ ETIITEOD W) @) ),
7T () 2
i 0% 2=L (4p(s)— ’l’(a))(qp( ) 1}[}(&))72711/}/(5)
Bi=) ki ds,
' ; / o271 () i
o, [ ET OO () — @) T (s)
B = Z/ 87
i ;(p 5 o1l (m)
T e T W) =@ (g (25) — p(a)) 12
o ;oj 072710 (72) ’
DL e ()Y@ (y(¢) — ap(a)) L
C2=2 o1 ()

and L = A1 Ay — (By + C1)(B2 + C3). The next result is proved in [16].

Lemma 2.1. Let p1(-) : [a,b] = R, p2(:) : [a,b] — R be continuous mappings and assume that L # 0.
Then, the solution of the system

{ DS PV (8) = pu(t), t € [a,b]
Dz27,3270'a¢x2(t) o pQ(t)’ t (S [a,b] ’

with boundary conditions (1.2) is given by

e (WO=Y(@) (4 (4) — p(a)) L
LoD ()

X{Agzk‘/ Y ()17, ds+Z€I°"“’”¢ () /w V1007 py (5)ds)

T (t) =" ’U’wpl (t) +

+(B1 + C1)( Zﬁpz/ Y ()10 dS“‘ZVIalU’w 1(25)

j=1

2.5) / B ()17 py (3)ds) ).

e WO=¥(@) (4 (¢) — ()72~
Lo=~1T(7,)

X{Al(zwl/é w/( Iaho’w d$+zy Icn,aw ZJ / 1/1 Iaz Ulﬁ ( )ds)
=1 i

T (t) :Iaz’a’wpg (t) +
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+(By + Cs)( Zk/ Y ()17, ds+291a2w 1(&)

Jj=1

2.6) / ()T py (5)ds)}

Definition 2.4. The mappings x1(-), z2(-) € C(I,R) are said to be solutions of problem (1.1)-(1.2) if
there exists D1 (), pg(') et (I, R) with D1 (t) €En (t, X1 (t), X9 (t)) a.e. (I), P2 (t) e Fy (t, 1 (t), T2 (t))
a.e. (I) and x1(-) and x5 (-) are given by (2.5)-(2.6).

In what follows, x 4(-) denotes the characteristic function of the set A C R.

Remark 2.2. We denote

T WO=0() (1) — gh(s)) ™1~

o (aq)

e T (WO=¥(@) (y(4) — 1p(a)) "~
Lo =10 (1)

XA2 Z ouz]lhii(aﬂ(/sm e%(¢(“)‘¢(s))(¢(u) _ w(s))a2_l¢/(u)du)><[a’m](S)’(/)/(S),

=1

Ai(t,s) = X(a.t) () (5),

Bl (t, 8) =

e WO=¥(@) (4 (¢) — tp(a)) M~

Arlt5) == Lom—1T(y )
oy WO ) o) ),
Byt s) =& Zw z/;g()%)i/)(a))”l !
x4y i e O G(G) = () g ()

e T (WO=¥(@) (y(4) — 1p(a)) "~
Aol = Lo ()

x(B1 +Ch) g Tt T W) — ) X (V' 9)
e WO=@) (4 (1) — ap(a)) M~
Lom=1T(m1)

n

(B + 1) 3 B[O () = () ) (5195,

1=

Bg (t, 8) =

e T WWO=(@) (4 (£) — t(a))
Lom=1T(m)

B4(t, 5) = —

1

b
(B -+ C1) s [ 9/ N () = (5) " () (o),
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o—1

T WU (1) — gp(s))22 1

o (as)

e T (WO=(@) (4 (¢) — 1p(a)) 721
Gt = Lo ()

Dl (t, S) =

X[a,)(8)¢'(8),

n

x Ay Z Um?}al) ( / SOOIV () — (5)™ 1 ()X, ()85,

=1

eT(w(t) w(a))w(t) _ ¢(a))w2—1

Dg(t, 8) = —

Lo~ 1T (y )
Uazr (a2) / W (s)e" VTN ((u) = (s))°2 ) (w)du)y (s),
e (t S) _eaﬂl(w(t) w(a» 1/,( ) ¢<a))yg 1

Lo7271T(2)

i 123 o—1 2 ) —b(s o — ,
xAlj;Umg(al)e T WED VO ((2) — 1(5)) " Xaz,) ()8 (5),
_e“;l WO=v(@) (4h(¢) — p(a)) 721
Pl = Lo =1T(3)

o (as)

i 0; o—1

X(By+C) Y | ———e"a WY (4(¢) — v(5))™*  Xjag, 1 ()0 (9),
j=1
P(a

T WO (1) — g(a)) 27!
Lov2=1T(v2)

X(Ba+ ) 3 s ([T OO ) = (6 ) (51015,

e WO=(@) (4(t) — tp(a)) 72~
Calt5) = - Lo72=1T ()

/ Y'(s eT(d’(”) P(s ))(w( ) — ¢(S))a2_1wl(U)du)1//(s),

Cg (t, 5) =

n

By + Cs

o«

Ri(t,s) = Ai(t, s)+Aa(t, s)+As(t, s), Ra(t, s) = Bi(t, s)+Ba(t, s)+Bs(t, s)+Ba(t, s), R3(t,s) =
Ci(t,s)+Ca(t,s) +Cs(t,s) +Calt,s) and Ra(t,s) = Di(t,s) + Da(t, s) + Ds(t, s), then the solutions
(x1(.), z2(.)) in Lemma 2.1 may be put as

z1(t) = fal;Rl(t,s)pl(s)ds+ [P Ry(t, s)pa(s)ds, tel .
zo(t) = [ Ra(t,s)p1(s)ds + [ Ru(t,s)pa(s)ds, tel

Moreover, if we assume that there exists My > 0 such that 0 < ¢'(t) < My V t € I, it follows that
Vt,s € I, wehave

L a;—1 _.
|A1(t, 5)] SWW(Z’) —(a)) My =: az,

|A2| M3 (b — a)(1(b) — (@)1 4712
|Aa(t, s)] < |L|oo1+71=1T (77T (1)

=:asg,
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(|B1] + |C1|) Mo (3 (b) — ¢(a))7171 m

st 5)| < ) 2 Wl(e) = v(@) ™ =i s
[As M) — () =+ &

s e DL

1B2(t )] <|AL2|£2(+M( )11“ r)(;l2 2\9 il(¥ P(a))* " =: by,
Bi| + |C1]) Mg (¢(b a))tm—2 &

B, )] <IBHEDAEO0) = 1(0) S loes ) =it

a))x2tri— 2

|Ba(t, s)] S(‘Bﬂ +||LC|;|2%31( 1(11:)(%;1/:(( ))) (b—a) =: by,

D9 s (V) = 00@)™ My =2,

Dyt )] <M — )W) )t

| Llo2#72710 (72) T (a2)
(IBa| + [Ca|) Mo (9(b) — (@)™ =~ ) R )
|L|a-a2+72 1F(’Y2)F((X2) ZWJl(Q/}(CJ) ¢( )) - dd,

Jj=1
M) — (@)™ &
el = \L|am+vr1r<w>r<a1> 2 lete

A M, el & o
et < T ey 10t vl =i

Ds(t, )] <

a))eztr2— 2 n
Cs(t, )] <(BZ|+|EZ|3%32( 1(?)(72) ((033) S kil (g — @) = cs,

=1

(‘B2| + |C2|)Mo( (b) (a))al-‘r’yz—Q
|L|oe1+72=1T (75)T (1)

IfweputMl = a1 +ag+as, M2 = b1+b2+b3+b4, M3 :Cl+CQ+Cg+C4IZTldM4 = d1+d2+d3,
one has |R;(t,s)| < M;,Vt,se€lTandi=1,2,3,4.

Ca(t, 5)] < (b—a)=:cy.

Finally, we recall a variant of Kuratowski and Ryll-Nardzewski selection theorem concern-
ing measurable set-valued maps proved in [1].

Lemma 2.2. Consider X a separable Banach space, B is the closed unit ball in X, H : I — P(X)isa
set-valued map with nonempty closed values and g : I — X, L : I — R are measurable functions. If

Hit)Nn(gt)+ L#t)B) #0 a.e. (1),
then the set-valued map t — H (t) N (g(t) + L(t) B) has a measurable selection.

3. THE RESULTS

In what follows, we need the following hypotheses.
Hypothesis. (i) F; : I x R*> - P(R) and F» : I x R? — P(R) have nonempty closed values
and the set-valued maps Fi (-, y1, y2), F2(-, y1, y2) are measurable for any 1,32 € R.
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(ii) There exist I;(-),12(-) € L'(I,(0,00)) such that, for almost all ¢t € I, Fy(t,-,-) is I1(t)-
Lipschitz and F5(t, -, -) is l2(t)- LlpSChItZ ie.,

)

(
dH(Fl(t7ylvzl) (t y2722)) <l1( )(|y1_y2|+‘21_22|) v:yhyQ»ZleQG:R'
du(Fa(t,y1,21), Fo(t,y2, 22)) < L(t)(|ly1 — vl + |21 — 22]) Vy1,92,21,22 € R’

Next, we use the notation [(t) = M1 (t) + Mala(t) + Msli(t) + Muls(t), t € 1.

Theorem 3.1. Assume that L # 0, Hypothesis is satisfied, |I(-)|1 < 1 and the mappings (y1(-), y2(-)) €
C(I,R)? are such that there exist L1(-), La(-) € L*(I, R) that verify

A(DSHP7 Yy (), Py (t, (1), y2 (1)) <Ly (t) aet €1
A(DS2P2 %y (1), Fy(t, y1 (), ya (1)) <Lo(t) ae.t €1
y1(a) =y2(a) =

b n i m
L/wmwm=2méwwyﬁm+2%mw

n

b € m
| @) =3 [0 @ms)ds + 3 v ().

Then, there exists (z1(+), z2(-)) € C(I,R)? a solution of problem (1.1)-(1.2) satisfying for all t € I
(My + M3)|La (1)1 + (Ms + My)[La(-)a
L=[l()h
Proof. The assumptions in the statement of the theorem may be rewritten as
Fa(t, (1), 52(0) N {DE 7y () + L[ 1} # 0 ace. (1)
Fa(t, y1(t), y2(t) N {DF 7Py (t) + La(H)[-1,1]} #0 ace. (I)
We apply Lemma 2.2, in order to deduce the existence of mesurable selections
pi(t) € Fi(t,yi(t),52(t)), p3(t) € Fa(t,y1(t),12(t)) ae. (I) such that

Ipi(t) — D?Ihﬂl’g’wm ) < L1(t) a.e. (I)
Ip5(t) — D?fﬁ%a’wm(m < Ly(t) ace. (I)

(3.7) 21(8) = 91 ()] + |22(t) — 42(2)] <

and define
21 (t) :faZRl(u $)p(s)ds + [P Ra(t, s)pb(s)ds, tel
xi(t) = fa Rs(t, s)pi(s) ds—|—f Ra(t,s)p(s)ds, tel '
One has
|21 () =1 (t)] < Ma|Li()h + Ma|La(-)y Vtel
|23(t) = y2(t)] < Ma|Ly ()1 + Mu|Lo(-)y Vel
and so

|21 () = y1 ()] + a3 (t) = y2(t)] < (My + M3)|Li ()1 + (M2 + My)| L2 () =: M.
Next, we construct, by induction, the sequences z!(-),z2(-) € C(I,R) and p.(-), p2() €

L'(I,R), n > 1such that

= fb Ri(t,s)pt(s)ds + fb Ra(t,s)ph(s)ds, tel

5
(38) = [ Rs(t,s)pt(s)ds + [] Ra(t,s)p5(s)ds, tel

(3.9) pi(t) € Fa(t, ™ (1), 257 (1), p5(t) € Fat, 2y~ (1), 237 (1) awe. (1),
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P () = o ()] < L(@)(|J27 () — 27 (O] + |25 () — 237 (D)) ae. (1)
5 () = P ()] < L) (Ja7 (1) — 27 ()] + |25 () — 237 (B)]) a.e. (1)

Let us note that from (3.8)-(3.10), it follows

(3.10)

(3.11) 2L () — 2 ()] + |22 () — 22(8)] < k(IC))" ae. (I), VneN.

Indeed, since the case n = 0 is proved, we assume (3.11) valid for n — 1. For almost all ¢ € I,
one may write

i (1) — 22(1)] < / Ra(t,9)] - [+ (s) — p(s)lds + / Ra(t, )] - [p8(s) — pi(s)|ds
<M / P2 (s) — ph(s)[ds + Mo / P (s) — P2 (s)]ds
sm/ ()22 () — 221 (s)| + [ (s) — 22 (s)])ds
ab
My [ 1a(6) (ol )~ a7 )]+ L (s) — 23 (5) s

b

b
M(|l(.)|1)”‘1(M1/ ll(s)ds—i—Mg/ lo(s)ds).

Similarly, we get for almostall ¢ € I,

b b
(S5 H0) 230 < MQUOW)" (s [ 1i(s)ds+ M [ ta(s)ds).
Thus, (3.11) is true for n. From (3.11), the sequences {z7(-)},{z5(-)} are Cauchy in the space
C(I,R). Letz1(-) € C(I,R) and z2(:) € C(I,R) be their limits in C(I,R). Also from (3.10),
we deduce that, for almost all ¢ € I, the sequences {p7(t)}, {p5(t)} are Cauchy in R. Let p1(-),
p2(-) be their pointwise limit. From Hypothesis and inequality (3.11), we find

27 () = 91 (D)] + |23 (1) — y2(D)] <|w%( ) = ()] + [az(t) — ()]

+Z (lx7F1 () — 25 (0] + |25 (1) — 5()))
<M+ Y MIOL)
M
(3.12) gm.
and

Ip1(t) Dty (t)\+Ip3(t)—D?f’52"”wy2(t)\

+pa(t) — D Py \+le”1 L]+ 1p5 (1) — ph(1)])
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<[pi(t) = DFP Ty ()] + |pa(t) — DIy (1)
n—1
+ > (L) + () (21 (8) — 25 (0] + |25 () — 25 (1))

=1

(3.13) <Li(t) + La(t) 4+ (11 (t) + 12(t)) M

1= 1)l
for almost all ¢ € I. Therefore, the sequences p7(-), p5(-) are integrably bounded and p:(-) €
L'(I,R), ps() € L} (I,R).
Now, we realize the construction in (3.8)-(3.10). We assume that for K > 1, already exist
o8(),25() € C(I,R) and p%(-),p5(-) € L*(I,R), k = 1,2,..., K with (3.8) and (3.10) for k =
2,...,Kand (3.9) for k = 1,2, ..., K — 1. Using the lipschitzianity of F(¢,-,-) and Fy(¢, -, )

Fi(t, et (1), 23 () 0 {pr (1) + (O 2 (1) — a7 (@) + L)z (1) — 25 T (OD[-1,1]} # 0,
Fy(t, ot (1), 235 () N {pz (8) + (2(O)]21 (t) — o T () + ()]s (1) — 23 T (ON[-1,1]} # 0

for almost all ¢ € I. Again, with Lemma 2.2, we find the existence of measurable selections
piT(C) of Fi(, xk(+), 2%(-)) and p& T (+) of Fa(-, zk(-), 2% (+)) such that

pr () = P (O] < L) (Jaf (1) —901 ( )|+ 25 (1) =23 N (@B)) ae (I)

ps TH(t) = pE ()] < La()(Jaf (1) — 2 ()] + 25 (8) — 25 ' @)])  ae. (1)
We define z1* ™ (-), 25 () as in (3.8) with n = K + 1. Passing with n — oo in (3.8) and (3.12),
we finish the proof. O

In above theorem, if we take as “quasi” solutions y;(-) = y2(-) = 0, one may obtain a state-
ment similar to a result that can be derived by using the set-valued contration principle.

Corollary 3.1. Assume that L # 0, Hypothesis is satisfied, d(0, F1(¢,0,0)) < li(t) ae. t € 1,
d(0, F5(t,0,0)) < Io(t) ae. t € Tand |I(-)|1 < 1. Then, there exists (x1(-),z2(-)) € C(I,R)? a
solution of problem (1.1)-(1.2) satisfying for all t € I
(My + M) |l (s + (M + My)[l2()x

I QI
Proof. We apply Theorem 3.1 with y1(-) = y2(-) =0, L1(-) = l1(-) and La(-) = l2(). O

|21 (8)] + |2 (8)] <

Remark 3.3. Ifin (1.1), Fy and F» are single-valued maps, Corollary 3.1 provides a generalization to
the set-valued framework of [16, Theorem 1] whose proof is done using Banach’s contraction principle.

Example 3.1. As an example, we consider the problem

4,32 w Ccos(x x L
610 Dyt a () € [T 00 0, 57 ae (3, F)
' $3,29 z1(t sin(za(t))
Dy Vaa(t) € (-1l ojufo, § AsnE Ol g e 1,20
with ¢(z) = ‘zﬁ and nonlocal integral boundary conditions as in [16]
o 1 (t zo(t) 2 a(t o (t
(3.15) 21(3) =0, f? (tis))z dt = 15 f27 (ti(s dt + {5 3¢ (tj-(l%))Q dt + 17 f2 (tj—3))2 di+
Ao(4) + Bap(L0) + S gy(L8 ’
i7%2(7 21x2(7)+23x2(7)

1

=4

z1(t) dt""%ff wl(t)2dt+

20 xo(t g x1(t
(3.16) { w2(3) =0, [T Bhdt= [7 (ti(g))zdwf%f EEE 25 J1z r3)
1
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Therefore, in this case Fy (t, (z1,25)) = [—1 122l 0] U0, i 1|f|2x| ) Fa(t, (21, 22))

5 14| coszy|’ 2
71|zl 1 _|sinzs| _ 4 _ _3 5 -2 ,_-13_20 , _
= 51+|w1|’0] [0’51+|5m:p2|] 0‘1_2'0‘2_5'&_4'/8 =go=5a=3b=%n=3,
1 _ _ _ 3 _ 15 _ 2 _ 8 4
m 3 kl — 7(15/ k2 — 13/ k:3 _1017r m _167/ T2 _77/ n3 = 87/ 51 — gr 52 — 6?/ 53 _122/ 01 — ?g/
92:7 93—7 C1:7/C2:7/C3:7/Q01:ﬂ,§02 27/ ¥P3 = 39, €1 = 7,62 = 7,63 = 7,
5 11 17 10 11 2 13 19 28
61_$/62:7/6:7/ :ﬁ/l/2:3j/V3:ﬁ/zl_1122:7/'23:7/71:?/72:175'
Forallt € [%, 2] and all z1,x2,y1,y2 € R, we have
1
sup{|z|; z € Fi(t, (xl,xg))}gg, i=1,2,

du (F1(t, (21, 72)), F2(t, (y1,92)) < |$1 -yl + ¢ |332 —yo| i=1,2.

By standard computations (e.g., [16]), A1 ~ 0.0323, B; =~ 0.0006, Cy =~ 0.1733, Ay ~ 0.0303,
By ~ 0.0001, Cy ~ 0.2898, \L| ~ 0.04937, M1 =~ 0.4615, M5 =~ 0.0607, M3 =~ 0.6458, M4 ~ 0.5776

and (My + M3)3 32 + (Ma + My) 212 ~ 0.952 < 1. Hence, we apply Corollary 3.1 in order to deduce

the existence of a solution for problem (3.14)-(3.16).
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