MODERN MATHEMATICAL METHODS 2 (2024), No. 3, pp. 117-131 https://modernmathmeth.com/ ISSN 3023 - 5294

Research Article

Approximation of bounded functions by positive linear operators

JORGE BUSTAMANTE*

ABSTRACT. A general family of positive linear operators associated with a power expansion is studied. An upper estimate of the rate of convergence is obtained for bounded continuous functions in $[0, \infty)$ that has limit when $x \to \infty$. Applications are included.

Keywords: Positive linear operators, power series, rate of convergence.

2020 Mathematics Subject Classification: 41A36, 41A81.

1. INTRODUCTION

In order to simplify notations, we set $I = [0, \infty)$. Let $C_b(I)$ is the space of all bounded continuous functions $f : [0, \infty) \to \mathbb{R}$. Moreover, we set $C_{b,\infty}(I)$ for the functions $f \in C_b[0, \infty)$ such that the limit

$$\lim_{x \to \infty} f(x)$$

exists. Moreover, for $f \in C_{b,\infty}(I)$ we consider the norm

$$||f|| = \sup_{x \in I} |f(x)|.$$

As usual, we denote $e_k(x) = x^k$, for $k \in \mathbb{N}_0$. For fixed sequences $\{a_{n,k}\}_{n,k=0}^{\infty}$ of positive real numbers and $x \ge 0$, set

(1.1)
$$g_n(x) = \sum_{k=0}^{\infty} \frac{a_{n,k}}{k!} x^k$$

where we assume that the series converges for all $x \ge 0$. For $f \in C_b(I)$ and a fixed increasing sequence $\{\beta(n)\}$ such that $\beta(n) \ge 1$ and $\lim_{n\to\infty} \beta(n) = \infty$, we consider the positive linear operators

(1.2)
$$L_n(f,x) = \frac{1}{g_n(x)} \sum_{k=0}^{\infty} \frac{a_{n,k}}{k!} f(y_{n,k}) x^k, \quad \text{where} \quad y_{n,k} = \frac{k}{\beta(n)}$$

Throughout the work, we assume that L_n is defined by (1.2). We say that the sequence of operators $\{L_n\}$ is an approximation process in $C_{b,\infty}(I)$ if $L_n : C_{b,\infty}(I) \to C_{b,\infty}(I)$ and

$$\lim_{n \to \infty} \|L_n(f) - f\| = 0$$

for every $f \in C_{b,\infty}(I)$.

Received: 12.01.2024; Accepted: 30.09.2024; Published Online: 04.12.2024

^{*}Corresponding author: Jorge Bustamante; jbusta@fcfm.buap.mx

In this work, we study the operators L_n is the space $C_{b,\infty}(I)$. There are essential differences between the spaces $C_{b,\infty}(I)$ and $C_b(I)$. There are sequences $\{L_n\}$ such that $L_n : C_{b,\infty}(I) \to C_{b,\infty}(I)$ is an approximation process, while there exists $f \in C_b(I)$ such that $L_n(f)$ does not converges to f in norm. Let us state some questions related with the operators L_n in (1.2).

Problem 1.1. Is it true that $L_n(C_{b,\infty}(I)) \subset C_{b,\infty}(I)$ for each $n \in \mathbb{N}$?

Problem 1.2. Find conditions on $\{g_n\}$ so that $\{L_n\}$ is an approximation process in $C_{b,\infty}(I)$.

We use the notations

(1.3)
$$I_{n,i}(x) = \frac{g_n^{(i)}(x)}{\beta^i(n)g_n(x)} \quad \text{and} \quad J_{n,i}(x) = x^i I_{n,i}(x),$$

and consider the following two conditions related with the functions g_n :

(i) for i = 1 and i = 2, there exists a constant K_i such that for every x > 0, $n \in \mathbb{N}$, one has

(1.4)
$$\left|I_{n,i}(x) - 1\right| \leq \frac{K_i}{1 + \beta(n)x},$$

(ii) there exists a constant *C* such that for each $x \ge 0$ and $n \in \mathbb{N}$,

(1.5)
$$|I_{n,2}(x) - 2I_{n,1}(x) + 1| \le \frac{C}{\beta^2(n)}.$$

In this work, we obtain upper estimates for the rate of convergence of the operators L_n in the case when condition (1.4) or condition (1.5) holds. In Section 2, we included a few known results. Section 3 is devoted to verify that the operators L_n are an endomorphisms in the space $C_{b,\infty}(I)$. In Section 4, we prove some Korovkin-type theorems. In Section 5, we show that the conditions presented above are sufficient to proof that the family $\{L_n\}$ is an approximation process in $C_{b,\infty}(I)$. Section 6 contains the main results, we obtain upper estimates for the rate of convergence associated of the family $\{L_n\}$. In the last section, we present several examples.

For $x \ge 0, n \in \mathbb{N}$, and a function $f: I \to \mathbb{R}$ Szász [17] defined

(1.6)
$$S_n(f,x) = e^{-nx} \sum_{k=0}^{\infty} \frac{n^k}{k!} f\left(\frac{k}{n}\right) x^k,$$

whenever the series converges. These operators were also studied by Mirakyan [13], that is the reason why they are usually called Szász-Mirakyan operators. There is a large collection of works devoted to study the operators S_n and some modifications. Here, we only recall the following recent works: [1, 5, 6, 7, 12, 14].

2. The First Moments of the Operators

Theorem 2.1. If $j \in \mathbb{N}_0$, $x \ge 0$ and

(2.7)
$$P_{j+1}(x) = x\left(x - \frac{1}{\beta(n)}\right) \cdots \left(x - \frac{j}{\beta(n)}\right)$$

then

(2.8)
$$L_n(P_{j+1}, x) = x^{j+1} \frac{g_n^{(j+1)}(x)}{\beta^{j+1}(n)g_n(x)}$$

In particular, for each $j \in \mathbb{N}_0$, $\mathbb{P}_j \subset \mathcal{D}(L)$.

Proof. Notice that

$$\beta^{j+1}(n)P_{j+1}\left(\frac{k}{\beta(n)}\right) = k(k-1)\cdots(k-j).$$

Therefore, for each fixed x > 0,

$$\beta^{j+1}(n)g_n(x)L_n(P_{j+1},x) = \sum_{k=j+1}^{\infty} \frac{a_{n,k}x^k}{(k-j-1)!}$$
$$= x^{j+1}\sum_{k=0}^{\infty} \frac{a_{n,k+j+1}}{k!}x^k = x^{j+1}g_n^{(j+1)}(x).$$

Since L_n is a linear operator in $\mathcal{D}(L)$, for each $j \in \mathbb{N}_0$, $\mathbb{P}_j \subset \mathcal{D}(L)$.

Proposition 2.1. If L_n is given by (1.2), for each $n \in \mathbb{N}$ and every $x \in I$ one has

$$L_n(e_1, x) = J_{n,1}(x)$$
 and $L_n(e_2, x) = J_{n,2}(x) + \frac{J_{n,1}(x)}{\beta(n)},$

where we use the notations (1.3).

Proof. The first assertion follows from Theorem 2.1 with j = 0. On the other hand, since

$$P_2(x) = x \left(x - \frac{1}{\beta(n)} \right)$$

one has

$$L_n(e_2, x) = L_n(P_2, x) + \frac{1}{\beta(n)} L_n(e_1, x) = x^2 \frac{g_n'(x)}{\beta^2(n)g_n(x)} + x \frac{g_n'(x)}{\beta^2(n)g_n(x)}.$$

Corollary 2.1. If $I_{n,i}(x) = 1$ for i = 1 and i = 2 and every $x \in I$, then

$$L_n((e_1 - xe_0)^2, x) = \frac{x}{\beta(n)}.$$

Proposition 2.2. If condition (1.4) holds, there exists a constant K such that, for each $n \in \mathbb{N}$ and $x \in I$, then

$$|L_n(e_1, x) - x| \le \frac{K}{\beta(n)} \quad and \quad L_n((e_1 - xe_0)^2, x) \le K \frac{x}{\beta(n)}.$$

Proof. From (1.4) and Proposition 2.1, we know that

$$|L_n(e_1, x) - x| = x \left| \frac{g'_n(x)}{\beta(n)g_n(x)} - 1 \right| \le \frac{K_1 x}{1 + \beta(n)x} \le \frac{K_1}{\beta(n)}.$$

Moreover

$$\begin{split} L_n((e_1 - xe_0)^2, x) &= L_n(e_2, x) - 2xL_n(e_1, x) + x^2 \\ &= x^2 \frac{g_n'(x)}{\beta^2(n)g_n(x)} - 2x^2 \frac{g_n'(x)}{\beta(n)g_n(x)} + x^2 + x \frac{g_n'(x)}{\beta^2(n)g_n(x)} \\ &= x^2 \Big\{ \Big(\frac{g_n''(x)}{\beta^2(n)g_n(x)} - 1 \Big) + 2\Big(1 - \frac{g_n'(x)}{\beta(n)g_n(x)} \Big) \Big\} + x \frac{g_n'(x)}{\beta^2(n)g_n(x)} \\ &\leq C_1 \Big(\frac{1}{\beta(n)} \frac{\beta(n)x^2}{(1 + \beta(n)x)} + \frac{x}{\beta(n)} \Big) \leq C_2 \frac{x}{\beta(n)}. \end{split}$$

Proposition 2.3. Suppose there exists a constant C_1 such that, for each $x \in I$ and every $n \in \mathbb{N}$,

$$(2.9) I_{n,1}(x) \le C_1$$

If condition (1.5) holds, there exists a constant C_2 such that, for each $x \in I$ and every $n \in \mathbb{N}$, one has

$$L_n((e_1 - xe_0)^2, x) \le C_2\left(\frac{x^2}{\beta^2(n)} + \frac{x}{\beta(n)}\right)$$

3. The Operator L_n As an Endomorphism

It is easy to see that $\{L_n\}$ is uniformly bounded sequence of linear operators from the space $C_{b,\infty}(I)$ to $C_b(I)$, but we need to verify that

$$L_n: C_{b,\infty}(I) \to C_{b,\infty}(I)$$

Theorem 3.2. If $n \in \mathbb{N}$ and $f \in C_{b,\infty}(I)$, then $L_n(f) \in C_{b,\infty}(I)$. In particular

$$\lim_{x \to \infty} L_n(f, x) = \lim_{x \to \infty} f(x).$$

Proof. Set $y_{n,k} = k/\beta(n)$. If $f \in C_{b,\infty}(I)$, there exists a real A such that $f(x) \to A$, as $x \to \infty$. We set B = |A| + ||f||. Fix $\varepsilon > 0$. There exists $N_1 > 0$ such that, for $x > N_1$,

$$|f(x) - A| < \frac{\varepsilon}{2}.$$

Since $y_{n,k} \to \infty$ as $k \to \infty$, there exists $m \in \mathbb{N}$, $m > N_1$, such that $y_{n,k} > N_1$, for all k > m. Taking into account L'Hôpital's rule

$$\lim_{x \to \infty} \frac{1}{g_n(x)} \sum_{k=0}^m \frac{a_{n,k}}{k!} x^k = 0.$$

Hence, there exists $N_2 > N_1$ such that, for $x > N_2$,

$$\frac{1}{g_n(x)}\sum_{k=0}^m \frac{a_{n,k}}{k!}x^k \le \frac{\varepsilon}{2B}.$$

Therefore, if $x > N_2$, then

$$\begin{aligned} |L_n(f,x) - A| &= \left| \frac{1}{g_n(x)} \sum_{k=0}^{\infty} \frac{a_{n,k}}{k!} (f(y_k) - A) x^k \right| \\ &\leq \sum_{k=0}^m \left| \frac{a_{n,k}}{k!} (f(y_k) - A) \frac{x^k}{g_n(x)} \right| + \left| \sum_{k=m+1}^{\infty} \frac{a_{n,k}}{k!} (f(y_k) - A) \frac{x^k}{g_n(x)} \right| \\ &\leq B \frac{1}{g_n(x)} \sum_{k=0}^m \frac{a_{n,k}}{k!} x^k + \frac{\varepsilon}{2} \frac{1}{g_n(x)} \sum_{k=m+1}^{\infty} \frac{a_{n,k}}{k!} x^k \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon. \end{aligned}$$

This is sufficient to prove that

$$\lim_{x \to \infty} L_n(f, x) = A.$$

In particular, $L_n(f) \in C_{b,\infty}(I)$.

4. A KOROVKIN TYPE THEOREM

Let us denote

(4.10)
$$\psi(y) = \frac{y}{1-y}, \qquad y \in [0,1).$$

It is clear that $\psi : [0,1) \to [0,\infty)$ is a homeomorphism with inverse function

$$\psi^{-1}(x) = \frac{x}{1+x}, \qquad x \in [0,\infty).$$

For $g \in C[0,1]$, we consider the uniform norm $||g||_{\infty} = \sup_{y \in [0,1]} |g(y)|$.

Theorem 4.3 ([3]). If the operator $\Phi : C_{b,\infty}(I) \to C[0,1]$ is defined by

(4.11)
$$\Phi(f,y) = \begin{cases} f(\psi(y)) & \text{if } y \in [0,1) \\\\ \lim_{x \to \infty} f(x) & \text{if } y = 1 \end{cases}$$

 $f \in C_{b,\infty}(I)$, then Φ is a positive linear isomorphism, with positive linear inverse $\Phi^{-1} : C[0,1] \to C_{b,\infty}(I)$ given by

$$\Phi^{-1}(g,x) = g\left(\frac{x}{1+x}\right), \quad g \in C[0,1], \quad x \in [0,\infty).$$

Moreover, for each $f \in C_{b,\infty}(I)$, $||f||_{\infty} = ||\Phi(f)||_{\infty}$.

Now, we will study convergence in the spaces $C_{b,\infty}[0,\infty)$. The following result is known.

Theorem 4.4 ([3] and [4]). A sequence $\{M_n\}$ of positive linear operators, $M_n : C_{b,\infty}[0,\infty) \to C_{b,\infty}[0,\infty)$, is an approximation process if and only if $||f_i - M_n(f_i)|| \to 0$, for i = 0, 1, 2, where

(4.12)
$$f_0(x) = 1, \quad f_1(x) = \frac{x}{(1+x)} \text{ and } f_2(x) = \frac{x^2}{(1+x)^2}.$$

We will follows the ideas given in [3] and [4], but we need other text functions. Let us remember known facts.

Recall that three functions h_0 , h_1 , $h_2 \in C[0, 1]$ are a Chebyshev system of order three in [0, 1], if any linear combination $\lambda_0 h_0 + \lambda_1 h_1 + \lambda_2 h_2$, with $|\lambda_0| + |\lambda_1| + |\lambda_2| > 0$, has at most two different zeros (see [2, p. 100]).

Lemma 4.1. The functions $f_0(x) = 1$, $f_1(x) = \sqrt{x}$ and $f_2(x) = x$ are a Chebyshev system of order three in [0, 1].

Proof. Assume that the function $\theta(x) = a + b\sqrt{x} + cx$ (where at least one coefficient is different from zero) has at least three different zeros in [0, 1], say x_0, x_1 and x_2 . Then, the polynomial $P(x) = a + bx + cx^2$ satisfies $P(\sqrt{x_0}) = P(\sqrt{x_1}) = P(\sqrt{x_2}) = 0$, but this is not possible. \Box

Theorem 4.5 ([9], p. 49). Let $h_0, h_1, h_2 \in C[0, 1]$ be a Chebyshev system of order three in [0, 1]. If $\{M_n\}$ is a sequence of linear positive operators, $M_n : C[0, 1] \to C[0, 1]$ and

$$\lim_{n \to \infty} \|h_i - M_n(h_i)\|_{\infty} = 0, \qquad i \in \{0, 1, 2\}$$

then

$$\lim_{n \to \infty} \|g - M_n(g)\|_{\infty} = 0$$

for every $g \in C[0,1]$.

Theorem 4.6. If the sequence $\{L_n\}$, $L_n : C_{b,\infty}(I) \to C_{b,\infty}(I)$, is given by (1.2), then the following assertions are equivalent:

- (i) $\{L_n\}$ is an approximation process.
- (*ii*) For $i = 0, 1, 2, ||f_i L_n(f_i)|| \to 0$, where

(4.13)
$$f_0(x) = 1, \quad f_1(x) = \frac{\sqrt{x}}{\sqrt{1+x}} \quad and \quad f_2(x) = \frac{x}{1+x}$$

(iii) For i = 0, 1, 2, $||h_i - L_n(h_i)|| \to 0$, where

(4.14)
$$h_0(x) = 1, \quad h_1(x) = \frac{\sqrt{x}}{1 + \sqrt{x}} \quad and \quad h_2(x) = h_1^2(x).$$

Proof. The assertions (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are simple because each the functions f_i and h_i are continuous bounded functions with finite limits as $x \rightarrow \infty$.

(ii) \Rightarrow (i). For each $g \in C[0, 1]$, we define a function $G(g) \in C_{b,\infty}(I)$, by setting

$$G(g, x) = g(x/(1+x)).$$

Notice $\lim_{x\to\infty} G(g,\infty) = g(1)$. If L_n is given by (1.2) and $g \in C[0,1]$, define $M_n(g,1) = g(1)$ and, for $y \in [0,1)$,

$$M_n(g,y) = L_n\left(G(g), \frac{y}{1-y}\right).$$

From Theorem 3.2, we know that

$$\lim_{y \to 1} M_n(g, y) = \lim_{x \to \infty} L_n(G(g), x) = \lim_{x \to \infty} G(g)(x) = g(1) = M_n(g, 1).$$

Therefore $M_n : C[0,1] \to C[0,1]$ and it is a positive linear operator. For $y \in [0,1]$, set $g_0(y) = 1$, $g_1(y) = \sqrt{y}$ and $g_2(y) = y$. Since $\{g_0, g_1, g_2\}$ is a Chebyshev system in [0,1] (see Lemma 4.1), in order to use Theorem 4.5, we will verify that

$$\lim_{n \to \infty} \|M_n(g_i) - g_i\|_{\infty} = 0, \qquad i \in \{0, 1, 2\}.$$

To prove this, we consider (ii). If $g_0 = e_0$, then $G(g_0) = f_0$, but $||L_n(e_0) - e_0|| = 0$. If $y \in [0, 1)$ and x = y/(1-y), then

$$G(g_1, y_{n,k}) = \frac{\sqrt{y_{n,k}}}{\sqrt{1 + y_{n,k}}} = f_1(y_{n,k})$$

and

$$f_1(x) = \frac{\sqrt{x}}{\sqrt{1+x}} = \frac{\sqrt{y/(1-y)}}{\sqrt{1+y/(1-y)}} = \sqrt{y} = g_1(y).$$

With analogous arguments, we verify that

$$G(g_2, y_{n,k}) = f_2(y_{n,k})$$
 and $f_2(x) = g_2(y)$.

Therefore, for i = 1 and i = 2, if $y \in [0, 1)$ and x = y/(1 - y), then

$$M_n(g_i, y) - g_i(y) = L_n\left(G(g_i), \frac{y}{1-y}\right) - g_i(y) = L_n(f_i, x) - f_i(x).$$

Moreover

$$M_n(g_i, 1) - g_i(1) = 0.$$

If (ii) holds, we have proved that $||M_n(g_i) - g_i||_{\infty} = ||L_n(f_i) - f_i|| \to 0$ as $n \to \infty$.

From Theorem 4.5, we know that $\{M_n\}$ is a approximation process in C[0,1] and it is sufficient to verify that $\{L_n\}$ is a approximation process in $C_{b,\infty}(I)$. If fact, if $f \in C_{b,\infty}(I)$ we set $F(f,1) = \lim_{y\to 1} f(y/(1-y))$ and, for $y \in [0,1)$,

$$F(f, y) = f(y/1 - y),$$

then $F(f) \in C[0,1]$ and $||M_n(F(f)) - F(f)||_{\infty} \to 0$, as $n \to \infty$. But, for $y \in [0,1)$,

$$M_n(F(f), y) = L_n\left(G(F(f)), \frac{y}{1-y}\right)$$

and

$$G(F(f))(y_{n,k}) = F(f)\left(\frac{y_{n,k}}{1+y_{n,k}}\right) = f\left(\frac{\frac{y_{n,k}}{1-y_{n,k}}}{1+\frac{y_{n,k}}{1-y_{n,k}}}\right) = f(y_{n,k}),$$

a. .

and, if x = y/(1 - y), F(f, y) = f(x). Hence

$$||M_n(F(f)) - F(f)||_{\infty} = ||L_n(f) - f||$$

This proves the result.

(iii) \Rightarrow (i). The proof is similar to the case (ii) \Rightarrow (i), but we use another change of variables. For each $g \in C[0,1]$, we define a function $H(g) \in C_{b,\infty}(I)$, by setting

$$H(g, x) = g(\sqrt{x}/(1+\sqrt{x})).$$

Notice $\lim_{x\to\infty} G(g,\infty) = g(1)$. If L_n is given by (1.2) and $g \in C[0,1]$, define $M_n^*(g,1) = g(1)$ and, for $y \in [0,1)$,

$$M_n^*(g,y) = L_n\Big(H(g), \frac{y}{1-y}\Big).$$

From Theorem 3.2, we know that

$$\lim_{y \to 1} M_n^*(g, y) = \lim_{x \to \infty} L_n\Big(H(g), x\Big) = \lim_{x \to \infty} H(g)(x) = g(1) = M_n^*(g, 1).$$

Therefore $M_n^*: C[0,1] \to C[0,1]$ and it is a positive linear operator. For $y \in [0,1]$, set $g_0(y) = 1$, $g_1(y) = y$ and $g_2(y) = y^2$. Since $\{g_0, g_1, g_2\}$ is a Chebyshev system in [0,1], in order to use Theorem 4.5, we will verify that

$$\lim_{n \to \infty} \|M_n(g_i) - g_i\|_{\infty} = 0, \qquad i \in \{0, 1, 2\}$$

To prove this, we consider (iii). If $g_0 = e_0$, then $G(g_0) = f_0$, but $||L_n(e_0) - e_0|| = 0$. If $y \in [0, 1)$ and $x = (y/(1-y))^2$, then

$$H(g_1, y_{n,k}) = \frac{\sqrt{y_{n,k}}}{1 + \sqrt{y_{n,k}}} = f_1(y_{n,k})$$

and

$$f_1(x) = \frac{\sqrt{x}}{1 + \sqrt{x}} = \frac{y/(1-y)}{1 + y/(1-y)} = y = g_1(y).$$

With analogous arguments, we verify that

$$H(g_2, y_{n,k}) = f_2(y_{n,k})$$
 and $f_2(x) = g_2(y)$.

Therefore, for i = 1 and i = 2, if $y \in [0, 1)$ and $x = (y/(1 - y))^2$, then

$$M_n^*(g_i, y) - g_i(y) = L_n\Big(H(g_i), \frac{y}{1-y}\Big) - g_i(y) = L_n(f_i, x) - f_i(x).$$

Moreover

$$M_n^*(g_i, 1) - g_i(1) = 0$$

If (iii) holds, we have proved that $||M_n^*(g_i) - g_i||_{\infty} = ||L_n(f_i) - f_i|| \to 0$ as $n \to \infty$.

From Theorem 4.5, we know that $\{M_n^*\}$ is a approximation process in C[0, 1] and it is sufficient to verify that $\{L_n\}$ is a approximation process in $C_{b,\infty}(I)$. In fact, if $f \in C_{b,\infty}(I)$, we set $F(f, 1) = \lim_{y\to 1} f(y^2/(1-y)^2)$ and for $y \in [0, 1)$,

$$F(f,y) = f\left(\frac{y^2}{(1-y)^2}\right),$$

then $F(f) \in C[0,1]$ and $\|M_n^*(F(f)) - F(f)\|_{\infty} \to 0$, as $n \to \infty$. But, for $y \in [0,1)$,

$$M_n^*(F(f), y) = L_n\Big(H(F(f)), \frac{y}{1-y}\Big)$$

and

$$H(F(f))(y_{n,k}) = F(f)\left(\frac{\sqrt{y_{n,k}}}{1+\sqrt{y_{n,k}}}\right) = f\left(\frac{\left(\frac{\sqrt{y_{n,k}}}{1+\sqrt{y_{n,k}}}\right)^2}{(1-\frac{\sqrt{y_{n,k}}}{1+\sqrt{y_{n,k}}})^2}\right) = f(y_{n,k}),$$

. 9

and if $x = y^2/(1-y)^2$, F(f,y) = f(x). Hence

$$||M_n(F(f)) - F(f)||_{\infty} = ||L_n(f) - f||$$

This proves the result.

5. APPROXIMATION PROCESS

In this section, we present sufficient conditions in order that $\{L_n\}$ be an approximation process in $C_{b,\infty}(I)$. It is sufficient to verify (ii) or (iii) in Theorem 4.6.

Proposition 5.4. Assume that condition (1.4) holds. If $f_1(x)$ and $f_2(x)$ are given as in (4.13), then

$$L_n(|f_1(e_1) - f_1(x)|, x) \le \frac{K}{\sqrt{\beta(n)}}$$
 and $L_n(|f_2(e_1) - f_2(x)|, x) \le \frac{K}{\sqrt{\beta(n)}}$,

where *K* is the constant in Proposition 2.2.

Proof. From Proposition 2.2, we obtain

$$L_n(|f_1(e_1) - f_1(x)|, x) = L_n\left(\frac{|\sqrt{e_1(1+x)} - \sqrt{x(1+e_1)}|}{\sqrt{1+x}\sqrt{1+e_1}}, x\right)$$

$$\leq \frac{1}{\sqrt{1+x}}L_n\left(\frac{|x-e_1|}{(\sqrt{e_1(1+x)} + \sqrt{x(1+e_1)})}, x\right)$$

$$\leq \frac{1}{\sqrt{x}\sqrt{1+x}}\sqrt{L_n((e_1-x)^2, x)}$$

$$\leq \frac{1}{\sqrt{x}\sqrt{1+x}}\frac{Kx}{\beta(n)} \leq \frac{K}{\sqrt{\beta(n)}}.$$

On the other hand

$$L_n(|f_2(e_1) - f_2(x)|, x) = L_n\left(\frac{|e_1 - x|}{(1 + x)(1 + e_1)}, x\right)$$
$$\leq \frac{1}{(1 + x)}\sqrt{L_n((e_1 - x)^2, x)} \leq \frac{K}{\sqrt{\beta(n)}}$$

1	2	Δ
-	-	7

Proposition 5.5. Assume that conditions (1.5) and (2.9) hold. If $h_0(x)$, $h_1(x)$ and $h_2(x)$ are given as in (4.14), there exists a constant C such that, for each $n \in \mathbb{N}$ and $x \in I$ one has

$$|L_n(h_i(e_1), x) - h_i(x)| \le \frac{C}{\sqrt{\beta(n)}}$$

Proof. It is clear that $L_n(f_0(e_1) - f_0(x), x) = 0$. From Proposition 2.3, we obtain

$$\begin{split} L_n(|h_1(e_1) - h_1(x)|, x) &= L_n\Big(\frac{|\sqrt{e_1(1+x)} - \sqrt{x(1+e_1)}|}{(1+\sqrt{x})(1+\sqrt{e_1})}, x\Big) \\ &\leq \frac{1}{1+\sqrt{x}} L_n\Big(\frac{|x-e_1|}{\sqrt{e_1(1+x)} + \sqrt{x(1+e_1)}}, x\Big) \\ &\leq \frac{\sqrt{L_n((e_1-x)^2, x)}}{\sqrt{x}(1+\sqrt{x})} \\ &\leq \frac{2C}{\sqrt{x}(1+\sqrt{x})}\Big(\frac{x}{\beta(n)} + \frac{\sqrt{x}}{\sqrt{\beta(n)}}\Big) \leq C_1 \frac{1}{\sqrt{\beta(n)}} \end{split}$$

On the other hand, taking into account that, for $x, y \in I$, one has

$$\sqrt{xy} \le (1+\sqrt{x})(1+\sqrt{y}),$$

for x > 0, we obtain

$$\begin{split} L_n(|f_2(e_1) - f_2(x)|, x) &= L_n\Big(\Big|\Big(\frac{\sqrt{x}}{1+\sqrt{x}}\Big)^2 - \Big(\frac{\sqrt{e_1}}{1+\sqrt{e_1}}\Big)^2\Big|, x\Big) \\ &= L_n\Big(\frac{|x(1+2\sqrt{e_1}+e_1) - e_1(1+2\sqrt{x}+x)|}{(1+\sqrt{x})^2(1+\sqrt{e_1})^2}, x\Big) \\ &= L_n\Big(\frac{|x-e_1+2\sqrt{xe_1}(\sqrt{x}-\sqrt{e_1})||}{(1+\sqrt{x})^2(1+\sqrt{e_1})^2}, x\Big) \\ &\leq \frac{1}{(1+\sqrt{x})^2}L_n(|x-e_1|, x) + 2L_n\Big(\frac{|\sqrt{x}-\sqrt{e_1})|}{(1+\sqrt{x})(1+\sqrt{e_1})}, x\Big) \\ &\leq \frac{1}{\sqrt{x}(1+\sqrt{x})}L_n(|x-e_1|, x) + \frac{2}{(1+\sqrt{x})}L_n\Big(\frac{|x-e_1|}{\sqrt{x}+\sqrt{e_1}}, x\Big) \\ &\leq \frac{3}{\sqrt{x}(1+\sqrt{x})}\sqrt{L_n((x-e_1)^2, x)} \\ &\leq \frac{C_1}{\sqrt{x}(1+\sqrt{x})}\Big(\frac{x}{\beta(n)} + \frac{\sqrt{x}}{\sqrt{\beta(n)}}\Big) \leq \frac{C_2}{\sqrt{\beta(n)}}. \end{split}$$

- **Theorem 5.7.** (*i*) If condition (1.4) holds, then the sequence of operators $\{L_n\}$ is an approximation process in $C_{b,\infty}(I)$.
- (ii) If conditions (1.5) and (2.9) hold, then the sequence of operators $\{L_n\}$ is an approximation process in $C_{b,\infty}(I)$.

Proof. (i) From Theorem 3.2, we know that $L_n : C_{b,\infty}(I) \to C_{b,\infty}(I)$. Taking into account Theorem 4.6, we will verify that conditions (4.12) hold.

Since $L_n(e_0) = e_0$, it is sufficient to prove the assertion for each e_i , $i \in \{1, 2\}$. But it was done in Proposition 5.4.

(ii) The proof follows analogously, but we use Proposition 5.5.

 \Box

6. MAIN RESULTS

We need some properties of functions in $C_{b,\infty}(I)$.

Proposition 6.6. (i) If $f \in C_{b,\infty}(I)$, $\phi_1 : [0,\infty) \to [0,1)$ is given by $\phi(x) = x/(1+x)$ and ϕ^{-1} is the inverse function, then $f \circ \phi^{-1}$ is uniformly continuous in [0,1).

(ii) If $f \in C_{b,\infty}(I)$, $\phi_1 : [0,\infty) \to [0,1)$ is given by $\phi(x) = \sqrt{x}/(1+\sqrt{x})$ and ϕ^{-1} is the inverse function, then $f \circ \phi^{-1}$ is uniformly continuous in [0,1).

Proof. Let $A = \lim_{x\to\infty} f(x)$. Notice that $\phi^{-1}(y) = y/(1-y)$, $y \in [0,1)$. If we define g(1) = A and $g(y) = (f \circ \phi^{-1})(y)$ for $y \in [0,1)$, the $g \in C[0,1]$ and it is a uniformly continuous function. The other assertion can be proved analogously.

If
$$\phi(x) = x/(1+x)$$
 or $\phi(x) = \sqrt{x}/(1+\sqrt{x})$, for $f \in C_{b,\infty}(I)$, following Holhos [8], define

(6.15)
$$\omega^{\phi}(f,t) = \sup_{x,y \in [0,\infty), |\phi(x) - \phi(t)| \le t} |f(x) - f(t)|.$$

Proposition 6.7. If $f \in C_{b,\infty}(I)$ and $\phi(x) = x/(1+x)$ or $\phi(x) = \sqrt{x}/(1+\sqrt{x})$, then $\lim_{x \to 0} \psi(f(\delta_x)) = 0$

$$\lim_{n \to \infty} \omega^{\varphi}(f, \delta_n) = 0$$

for any sequence $\{\delta_n\}$ of positive numbers satisfying $\lim_{n\to\infty} a_n = 0$.

Proof. If was proved in [8] that the assertion is true if $f \circ \phi^{-1}$ is uniformly continuous, but this property was verified in Proposition 6.6.

The next result is due to Holhoş, but we present in a convenient form for our purpose.

Proposition 6.8 ([8]). Assume that $\phi(x) = x/(1+x)$ or $\phi(x) = \sqrt{x}/(1+\sqrt{x})$. Let $A_n : C_{b,\infty}(I) \to C_{b,\infty}(I)$ be a sequence of positive linear operators preserving constant functions. If the sequence $\{a_n\}$,

(6.16)
$$a_n = \sup_{x \ge 0} A_n(|\phi(e_1) - \phi(x)|, x)$$

is bounded, $\lim_{n\to\infty} a_n = 0$, and $f \circ \phi^{-1}$ is uniformly continuous, then

$$\lim_{n \to \infty} \|A_n(f) - f\| = 0 \quad \text{and} \quad \|A_n(f) - f\| \le 2\omega^{\phi}(f, a_n).$$

Theorem 6.8. Assume that condition (1.4) holds. If $\phi(x) = x/(1+x)$, there exists a constant C such that, for each $n \in \mathbb{N}$ and every $f \in C_{b,\infty}(I)$, one has

$$||L_n(f) - f|| \le C\omega^{\phi} \Big(f, \frac{1}{\sqrt{\beta(n)}}\Big),$$

where $\omega^{\phi}(f,t)$ is given by (6.15). In particular, $||L_n(f) - f|| \to 0$, as $n \to \infty$.

Proof. If $\{a_n\}$ is defined as in (6.16) and we prove that $a_n \to 0$, as $n \to \infty$, we can derive the result from Proposition 6.8, because we verified in Proposition 6.6 that $f \circ \phi^{-1}$ is uniformly continuous. Since $\phi(x) = f_2(x)$, where f_2 is the function in Theorem 4.6, it follows from Proposition 5.4 that, if condition (1.4) holds, then

$$a_n \le \frac{K}{\sqrt{\beta(n)}}.$$

Therefore

$$||L_n(f) - f|| \le 2\omega^{\phi}(f, a_n).$$

It was proved in [8] that, if δ , $\lambda > 0$, then

$$\omega^{\phi}(f,\lambda\delta) \le (1+\lambda)\omega^{\phi}(f,\delta)$$

Hence, we can replace a_n by its estimate and extract the constant K as in the statement of the Theorem.

Theorem 6.9 can be proved as Theorem 6.8. In fact, the function $\phi(x) = \sqrt{x}/(1 + \sqrt{x})$ agree with h_1 in equation (4.14) and instead of Proposition 5.4, we can use Proposition 5.5, if conditions (1.5) and (2.9) hold.

Theorem 6.9. Assume that conditions (1.5) and (2.9) hold. If $\phi(x) = \sqrt{x}/(1 + \sqrt{x})$, there exists a constant C such that, for each $n \in \mathbb{N}$ and every $f \in C_{b,\infty}(I)$, one has

$$||L_n(f) - f|| \le C\omega^{\phi} \Big(f, \frac{1}{\sqrt{\beta(n)}}\Big),$$

where $\omega^{\phi}(f,t)$ is given by (6.15).

The next result shows how to construct some families of operators for which our approach can be applied.

Theorem 6.10. Let $\{b_k\}$ be a decreasing sequence of positive real numbers, and assume there exists a constant Λ such that, for $i \in \{1, 2\}$ and every $k \in \mathbb{N}$, one has

$$(6.17) b_{k-1} - b_{k-1+i} \le \frac{\Lambda}{k} b_k.$$

Define

$$C_n(f,x) = \frac{1}{g_n(x)} \sum_{k=0}^{\infty} \frac{b_k n^k}{k!} f\left(\frac{k}{n}\right) x^k, \quad with \quad g_n(x) = \sum_{k=0}^{\infty} \frac{b_k n^k}{k!} x^k.$$

If $\phi(x) = x/(1+x)$, then there exists a constant C such that, for each $f \in C_{b,\infty}(I)$ and every $n \in \mathbb{N}$, one has

$$||C_n(f) - f|| \le C\omega^{\phi} \left(f, \frac{1}{\sqrt{n}}\right),$$

where $\omega^{\phi}(f,t)$ is given by (6.15).

Proof. Notice

$$g'_n(x) = \sum_{k=1}^{\infty} \frac{n^k b_k}{(k-1)!} x^{k-1} = n \sum_{k=0}^{\infty} \frac{n^k b_{k+1}}{k!} x^k = n \sum_{k=0}^{\infty} \frac{n^k b_{k+1} - b_k}{k!} x^k + n g_n(x),$$

and

$$g_n^{(2)}(x) = n^2 \sum_{k=0}^{\infty} \frac{b_{k+2}}{k!} (nx)^k = n^i \sum_{k=0}^{\infty} \frac{b_{k+2} - b_k}{k!} (nx)^k + n^2 g_n(x).$$

Hence, for $i \in \{1, 2\}$,

$$\left|\frac{g_n^{(i)}(x)}{n^i g_n(x)} - 1\right| = \frac{1}{g_n(x)} \sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!} (nx)^k,$$

because $\{b_k\}$ decreases. Taking into account (6.17), we obtain

$$(1+nx)\sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!} (nx)^k = \sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!} (nx)^k + \sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!} (nx)^{k+1}$$
$$= \sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!} (nx)^k + \sum_{k=1}^{\infty} \frac{b_{k-1} - b_{k+i-1}}{(k-1)!} (nx)^k$$
$$\leq \sum_{k=0}^{\infty} \frac{b_k}{k!} (nx)^k + \Lambda \sum_{k=1}^{\infty} \frac{b_k}{k!} (nx)^k \leq (1+\Lambda)g_n(x).$$

Therefore

$$\left|\frac{g_n^{(i)}(x)}{n^i g_n(x)} - 1\right| \le \frac{1+\Lambda}{1+nx}.$$

Thus, conditions (1.4) holds for i = 1 and i = 2 and the announced result follows from Theorem 6.8.

7. EXAMPLES

First Example. In this example, we apply the results of the previous section to Szász-Schurer operators.

For a fixed $p \ge 0$, Schurer introduced the operators

(7.18)
$$L_{n,p}^{*}(f,x) = e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^{k}}{k!} f\left(\frac{k}{n}\right) x^{k}.$$

This operator have been studied by several authors (see [10, 11, 15, 16]). The case p = 0 gives place to Szász-Mirakyan operators.

In this work, we study the more general version

(7.19)
$$L_{n,p}(f,x) = e^{-(\beta(n)+p)x} \sum_{k=0}^{\infty} \frac{(\beta(n)+p)^k}{k!} f\left(\frac{k}{\beta(n)}\right) x^k,$$

where $\beta(n) \ge 1$ and $\beta(n) \to \infty$, as $n \to \infty$. The operator $L_{n,p}$ has the form (1.2) with

$$a_{n,k} = (\beta(n) + p)^k$$
 and $g_n(x) = e^{(\beta(n) + p)x}$.

Notice that

(7.20)
$$a_{n,k+1} = a_{n,k}(\beta(n) + p) \text{ and } I_{n,i}(x) = \frac{g_n^{(i)}(x)}{\beta^i(n)g_n(x)} = \frac{(\beta(n) + p)^i}{\beta^i(n)}.$$

In particular, the functions $I_{n,1}(x)$ is uniformly bounded (condition (2.9)).

If p = 0 (Szász-Mirakyan operators) then $I_{n,i}(x) = 1$, and we can apply Proposition 2.1. Taking into Proposition 2.1, we know that

$$L_{n,p}(e_1, x) - x = x \left(\frac{g'_n(x)}{\beta(n)g_n(x)} - 1 \right) = x \left(\frac{\beta(n) + p}{\beta(n)} - 1 \right).$$

If p > 0, since the expression in brackets depends not on x and it is different from zero, the behaviour of the operators $L_{n,p}$ is different from the Szász-Mirakyan operators. On the other hand

$$L_{n,p}((e_1 - xe_0)^2, x) = J_{n,2}(x) + \frac{J_{n,1}(x)}{\beta(n)} - 2xJ_{n,1}(x) + x^2$$

$$= x^{2} (I_{n,2}(x) - 2I_{n,1} + 1) + \frac{J_{n,1}(x)}{\beta(n)}$$
$$= x^{2} (\frac{p}{\beta(n)})^{2} + x \frac{\beta(n) + p}{\beta^{2}(n)}.$$

Hence condition (1.5) is satisfied and Theorem 6.9 can be applied. We think that Theorem 7.11 is the first result where uniform estimates for the Schurer operators in the space $C_{b,\infty}(I)$ are given.

Theorem 7.11. Assume p > 0 and $\phi(x) = \sqrt{x}/(1 + \sqrt{x})$. If $L_{n,p}$ is given by (7.19), there exists a constant C such that for each $n \in \mathbb{N}$ and every $f \in C_{b,\infty}(I)$, one has

$$||L_{n,p}(f) - f|| \le C\omega^{\phi} \Big(f, \frac{1}{\sqrt{\beta(n)}}\Big),$$

where $\omega^{\phi}(f, t)$ is given by (6.15).

Second Example. For $0 < \gamma < 1$ and p > 0, set

$$g_n(x) = g_{n,\gamma,p}(x) = \sum_{k=0}^{\infty} \frac{(n+p)^{\gamma k}}{k!} x^k = e^{(n+p)^{\gamma} x},$$

and define

(7.21)
$$B_{n,\gamma}(f,x) = \frac{1}{g_{n,\gamma}(x)} \sum_{k=0}^{\infty} \frac{(n+p)^{\gamma k}}{k!} f\left(\frac{k}{n^{\gamma}}\right) x^k.$$

In this case $a_{n,k} = (n+p)^{\gamma k}$ and $\beta(n) = n^{\gamma}$. Moreover

$$g'_{n}(x) = (n+p)^{\gamma}g_{n}(x)$$
 and $g''_{n}(x) = (n+p)^{2\gamma}g_{n}(x).$

Hence

(7.22)
$$I_{n,1}(x) = \frac{g'_n(x)}{\beta(n)g_n(x)} = \frac{(n+p)^{\gamma}}{n^{\gamma}} \quad \text{and} \quad I_{n,2}(x) = \frac{(n+p)^{2\gamma}}{n^{2\gamma}}$$

Let us verify that condition (1.5) holds.

Lemma 7.2. If $0 < \gamma < 1$ and p > 0, for each $n \in \mathbb{N}$, one has

$$|I_{n,2}(x) - 2I_{n,1}(x) + 1| \le \gamma^2 \frac{p^2}{n^{2\gamma}},$$

9

where $I_{n,1}(x)$ and $I_{n,2}(x)$ are given as in (7.22).

Proof. By the mean value theorem, if $0 < \gamma < 1$ and y > 1, there exists $\theta \in (1, y)$ such that

$$0 < y^{\gamma} - 1 = \gamma \frac{(y-1)}{\theta^{1-\gamma}} < \gamma(y-1),$$

Taking into the previous inequality, we obtain

$$|I_{n,2}(x) - 2I_{n,1}(x) + 1| = \left| \frac{(n+p)^{2\gamma}}{n^{2\gamma}} - 2\frac{(n+p)^{\gamma}}{n^{\gamma}} + 1 \right|$$
$$= \left(\frac{(n+p)^{\gamma}}{n^{\gamma}} - 1 \right)^2 \le \gamma^2 \left(\frac{(n+p)}{n} - 1 \right)^2$$
$$= \gamma^2 \frac{p^2}{n^2} \le \gamma^2 \frac{p^2}{n^{2\gamma}}.$$

Since $I_{n,1}(x) \leq (1+p)^{\gamma}$, we can apply Theorem 6.9 (with $\beta(n) = n^{\gamma}$).

Theorem 7.12. Assume $0 < \gamma < 1$, p > 0, and $\{B_{n,\gamma}\}$ is given by (7.21). If $\phi(x) = \sqrt{x}/(1 + \sqrt{x})$, there exists a constant C such that, for each $n \in \mathbb{N}$ and every $f \in C_{b,\infty}(I)$, one has

$$||B_{n,\gamma}(f) - f|| \le 2\omega^{\phi} \Big(f, \frac{C}{n^{\gamma/2}}\Big),$$

where $\omega^{\phi}(f,t)$ is given by (6.15).

Third Example. For a fixed $j \in \mathbb{N}$, each $n \in \mathbb{N}$, and every $x \ge 0$ set

$$c_{n,j}(x) = \sum_{k=0}^{\infty} \frac{n^k}{(k+j)!} x^k.$$

For $f \in C_{b,\infty}(I)$, define

(7.23)
$$C_{n,j}(f,x) = \frac{1}{c_{n,j}(x)} \sum_{k=0}^{\infty} \frac{n^k}{(k+j)!} f\left(\frac{k}{n}\right) x^k.$$

We will apply Theorem 6.10 by considering the decreasing sequence

(7.24)
$$\nu_{k,j} = \frac{1}{(k+1)\cdots(k+j)}, \quad k \in \mathbb{N}_0.$$

In Lemma 7.3, we verify that condition (6.17) holds.

Lemma 7.3. For each fixed $i \in \{1, 2\}$ and every $k \in \mathbb{N}_0$, one has

$$\nu_{k,j} - \nu_{k+i,j} \le \frac{ij}{(k+1)} \nu_{k+1,j},$$

where $\nu_{k,j}$ is given by (7.24).

Proof. If i = 1 and $k \in \mathbb{N}_0$,

(7.25)
$$\nu_{k,j} - \nu_{k+1,j} = \frac{1}{(k+1)\cdots(k+j)} - \frac{1}{(k+2)\cdots(k+j+1)} = \frac{j}{(k+1)}\nu_{k+1,j}.$$

If i = 2,

$$\nu_{k,j} - \nu_{k+2,j} = \nu_{k,j} - \nu_{k+1,j} + \nu_{k+1,j} - \nu_{k+2,j}$$

$$\leq \frac{j}{(k+1)}\nu_{k+1,j} + \frac{j}{(k+2)}\nu_{k+2,j} \leq \frac{2j}{(k+1)}\nu_{k+1,j},$$

because the sequence decreases.

Theorem 7.13. Fix $j \in \mathbb{N}$ and let $C_{n,j}$ be defined by (7.23). If $\phi(x) = x/(1+x)$, then there exists a constant C such that, for each $f \in C_{b,\infty}(I)$ and every $n \in \mathbb{N}$, one has

$$||C_{n,j}(f) - f|| \le C\omega^{\phi} \left(f, \frac{1}{\sqrt{n}}\right),$$

where $\omega^{\phi}(f,t)$ is given by (6.15).

REFERENCES

- [1] T. Acar, A. Aral and I. Raşa: Positive linear operators preserving τ and τ^2 , Constr. Math. Anal., 2 (3) (2019), 98–102.
- [2] F. Altomare, M. Campiti: Korovkin-type approximation theory and its applications, de Gruyter Series Studies in Mathematics, Walter de Gruyter, New York (1994).
- [3] J. Bustamante, L. Morales de la Cruz: Korovkin type theorems for weighted approximation, Int. J. Math. Anal., 1 (26) (2007), 1273–1283.
- [4] J. Bustamante, L. Morales de la Cruz: Positive linear operators and continuous functions on unbounded intervals, Jaen J. Approx., 1 (2) (2009), 145–173.
- [5] M Dhamija, R. Pratap and N. Deo: Approximation by Kantorovich form of modified Szász-Mirakyan operators, Appl. Math. Comput., 317 (15) (2018), 109–120.
- [6] N. K. Govil, V. Gupta and D. Soybaş: Certain new classes of Durrmeyer type operators, Appl. Math. Comput., 225 (2013), 195–203.
- [7] V. Gupta, G. Tachev and A. Acu: Modified Kantorovich operators with better approximation properties, Numer. Algorithms, 81 (1) (2019), 125–149.
- [8] A. Holhoş: Uniform approximation by positive linear operators on noncompact intervals, Automat. Comput. Appl. Math., 18 (1) (2009), 121–132.
- [9] P. P. Korovkin: Linear operators and approximation theory, Delhi (1960).
- [10] D. Miclăus, O. T. Pop: The Voronovskaja theorem for some linear positive operators defined by infinite sum, Creat. Math. Inform., 20 (1) (2011), 55–61.
- [11] D. Miclăus, O. T. Pop: The generalization of certain results for Szász-Mirakjan-Schurer operators, Creat. Math. Inform., 21 (1) (2012), 79–85.
- [12] V. Miheşan: Gamma approximating operators, Creat. Math. Inform., 17 (2008), 466-472.
- [13] G. M. Mirakyan: Approximation des fonctions continues au moyen de polynómes de la forme $e^{-nx} \sum_{k=0}^{m_n} C_{n,k} x^k$, Comptes Rendus Acad. Scien. URSS (in French), **31** (1941), 201–205.
- [14] R. Păltănea: Modified Szász-Mirakjan operators of integral form, Carpathian J. Math., 24 (3) (2008), 378–385.
- [15] F. Schurer: On linear positive operators in approximation theory, Thesis Delft, (1965).
- [16] P. C. Sikkema: Über die Schurerschen linearen positiven operatoren I, Indag. Math., 78 (3) (1975), 230–242.
- [17] O. Szász: Generalization of S. Bernstein's polynomials to the infinite interval, J. Res. Nat. Bur. Standards, 45 (1950), 239–245.

JORGE BUSTAMANTE UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS FÍSICO-MATEMÁTICAS PUEBLA, MEXICO *Email address*: jbusta@fcfm.buap.mx