MODERN MATHEMATICAL METHODS **2** (2024), No. 3, pp. 117-131 https://modernmathmeth.com/ ISSN 3023 - 5294

Research Article

Approximation of bounded functions by positive linear operators

JORGE BUSTAMANTE[*](https://orcid.org/0000-0003-2856-6738)[®]

ABSTRACT. A general family of positive linear operators associated with a power expansion is studied. An upper estimate of the rate of convergence is obtained for bounded continuous functions in $[0, \infty)$ that has limit when $x \to \infty$. Applications are included.

Keywords: Positive linear operators, power series, rate of convergence.

2020 Mathematics Subject Classification: 41A36, 41A81.

1. INTRODUCTION

In order to simplify notations, we set $I = [0, \infty)$. Let $C_b(I)$ is the space of all bounded continuous functions $f : [0, \infty) \to \mathbb{R}$. Moreover, we set $C_{b,\infty}(I)$ for the functions $f \in C_b[0, \infty)$ such that the limit

$$
\lim_{x \to \infty} f(x)
$$

exists. Moreover, for $f \in C_{b,\infty}(I)$ we consider the norm

$$
||f|| = \sup_{x \in I} |f(x)|.
$$

As usual, we denote $e_k(x) = x^k$, for $k \in \mathbb{N}_0$. For fixed sequences $\{a_{n,k}\}_{n,k=0}^\infty$ of positive real numbers and $x > 0$, set

(1.1)
$$
g_n(x) = \sum_{k=0}^{\infty} \frac{a_{n,k}}{k!} x^k,
$$

where we assume that the series converges for all $x \geq 0$. For $f \in C_b(I)$ and a fixed increasing sequence $\{\beta(n)\}\$ such that $\beta(n) \geq 1$ and $\lim_{n\to\infty} \beta(n) = \infty$, we consider the positive linear operators

(1.2)
$$
L_n(f, x) = \frac{1}{g_n(x)} \sum_{k=0}^{\infty} \frac{a_{n,k}}{k!} f(y_{n,k}) x^k, \quad \text{where} \quad y_{n,k} = \frac{k}{\beta(n)}.
$$

Throughout the work, we assume that L_n is defined by [\(1.2\)](#page-0-0). We say that the sequence of operators $\{L_n\}$ is an approximation process in $C_{b,\infty}(I)$ if $L_n : C_{b,\infty}(I) \to C_{b,\infty}(I)$ and

$$
\lim_{n \to \infty} \|L_n(f) - f\| = 0
$$

for every $f \in C_{b,\infty}(I)$.

Received: 12.01.2024; Accepted: 30.09.2024; Published Online: 04.12.2024

^{*}Corresponding author: Jorge Bustamante; jbusta@fcfm.buap.mx

In this work, we study the operators L_n is the space $C_{b,\infty}(I)$. There are essential differences between the spaces $C_{b,\infty}(I)$ and $C_b(I)$. There are sequences $\{L_n\}$ such that $L_n : C_{b,\infty}(I) \to$ $C_{b,\infty}(I)$ is an approximation process, while there exists $f \in C_b(I)$ such that $L_n(f)$ does not converges to f in norm. Let us state some questions related with the operators L_n in [\(1.2\)](#page-0-0).

Problem 1.1. *Is it true that* $L_n(C_{b,\infty}(I)) \subset C_{b,\infty}(I)$ *for each* $n \in \mathbb{N}$?

Problem 1.2. *Find conditions on* $\{g_n\}$ *so that* $\{L_n\}$ *is an approximation process in* $C_{b,\infty}(I)$ *.*

We use the notations

(1.3)
$$
I_{n,i}(x) = \frac{g_n^{(i)}(x)}{\beta^i(n)g_n(x)} \quad \text{and} \quad J_{n,i}(x) = x^i I_{n,i}(x),
$$

 $\langle \cdot \rangle$

and consider the following two conditions related with the functions g_n :

(i) for $i = 1$ and $i = 2$, there exists a constant K_i such that for every $x > 0$, $n \in \mathbb{N}$, one has

$$
\left| I_{n,i}(x) - 1 \right| \leq \frac{K_i}{1 + \beta(n)x},
$$

(ii) there exists a constant *C* such that for each $x \ge 0$ and $n \in \mathbb{N}$,

(1.5)
$$
| I_{n,2}(x) - 2I_{n,1}(x) + 1 | \leq \frac{C}{\beta^2(n)}.
$$

In this work, we obtain upper estimates for the rate of convergence of the operators L_n in the case when condition (1.4) or condition (1.5) holds. In Section [2,](#page-1-2) we included a few known results. Section [3](#page-3-0) is devoted to verify that the operators L_n are an endomorphisms in the space $C_{b,\infty}(I)$. In Section [4,](#page-4-0) we prove some Korovkin-type theorems. In Section [5,](#page-7-0) we show that the conditions presented above are sufficient to proof that the family ${L_n}$ is an approximation process in $C_{b,\infty}(I)$. Section [6](#page-9-0) contains the main results, we obtain upper estimates for the rate of convergence associated of the family $\{L_n\}$. In the last section, we present several examples.

For $x \geq 0$, $n \in \mathbb{N}$, and a function $f: I \to \mathbb{R}$ Szász [\[17\]](#page-14-0) defined

(1.6)
$$
S_n(f, x) = e^{-nx} \sum_{k=0}^{\infty} \frac{n^k}{k!} f\left(\frac{k}{n}\right) x^k,
$$

whenever the series converges. These operators were also studied by Mirakyan [\[13\]](#page-14-1), that is the reason why they are usually called Szász-Mirakyan operators. There is a large collection of works devoted to study the operators S_n and some modifications. Here, we only recall the following recent works: [\[1,](#page-14-2) [5,](#page-14-3) [6,](#page-14-4) [7,](#page-14-5) [12,](#page-14-6) [14\]](#page-14-7).

2. THE FIRST MOMENTS OF THE OPERATORS

Theorem 2.1. *If* $j \in \mathbb{N}_0$, $x \geq 0$ and

(2.7)
$$
P_{j+1}(x) = x\left(x - \frac{1}{\beta(n)}\right) \cdots \left(x - \frac{j}{\beta(n)}\right),
$$

then

(2.8)
$$
L_n(P_{j+1}, x) = x^{j+1} \frac{g_n^{(j+1)}(x)}{\beta^{j+1}(n)g_n(x)}.
$$

In particular, for each $j \in \mathbb{N}_0$, $\mathbb{P}_j \subset \mathcal{D}(L)$ *.*

Proof. Notice that

$$
\beta^{j+1}(n)P_{j+1}\left(\frac{k}{\beta(n)}\right) = k(k-1)\cdots(k-j).
$$

Therefore, for each fixed $x > 0$,

$$
\beta^{j+1}(n)g_n(x)L_n(P_{j+1},x) = \sum_{k=j+1}^{\infty} \frac{a_{n,k}x^k}{(k-j-1)!}
$$

= $x^{j+1} \sum_{k=0}^{\infty} \frac{a_{n,k+j+1}}{k!}x^k = x^{j+1}g_n^{(j+1)}(x).$

Since L_n is a linear operator in $\mathcal{D}(L)$, for each $j \in \mathbb{N}_0$, $\mathbb{P}_j \subset \mathcal{D}(L)$.

Proposition 2.1. *If* L_n *is given by* [\(1.2\)](#page-0-0)*, for each* $n \in \mathbb{N}$ *and every* $x \in I$ *one* has

$$
L_n(e_1, x) = J_{n,1}(x)
$$
 and $L_n(e_2, x) = J_{n,2}(x) + \frac{J_{n,1}(x)}{\beta(n)}$,

where we use the notations [\(1.3\)](#page-1-3)*.*

Proof. The first assertion follows from Theorem [2.1](#page-1-4) with $j = 0$. On the other hand, since

$$
P_2(x) = x\left(x - \frac{1}{\beta(n)}\right)
$$

one has

$$
L_n(e_2, x) = L_n(P_2, x) + \frac{1}{\beta(n)} L_n(e_1, x) = x^2 \frac{g_n''(x)}{\beta^2(n)g_n(x)} + x \frac{g_n'(x)}{\beta^2(n)g_n(x)}.
$$

Corollary 2.1. *If* $I_{n,i}(x) = 1$ *for* $i = 1$ *and* $i = 2$ *and every* $x \in I$ *, then*

$$
L_n((e_1 - xe_0)^2, x) = \frac{x}{\beta(n)}.
$$

Proposition 2.2. *If condition* [\(1.4\)](#page-1-0) *holds, there exists a constant* K *such that, for each* $n \in \mathbb{N}$ *and* $x \in I$ *, then*

$$
| L_n(e_1, x) - x | \leq \frac{K}{\beta(n)} \quad \text{and} \quad L_n((e_1 - xe_0)^2, x) \leq K \frac{x}{\beta(n)}.
$$

Proof. From [\(1.4\)](#page-1-0) and Proposition [2.1,](#page-2-0) we know that

$$
|L_n(e_1, x) - x| = x \left| \frac{g'_n(x)}{\beta(n)g_n(x)} - 1 \right| \le \frac{K_1 x}{1 + \beta(n)x} \le \frac{K_1}{\beta(n)}.
$$

Moreover

$$
L_n((e_1 - xe_0)^2, x) = L_n(e_2, x) - 2xL_n(e_1, x) + x^2
$$

= $x^2 \frac{g_n''(x)}{\beta^2(n)g_n(x)} - 2x^2 \frac{g_n'(x)}{\beta(n)g_n(x)} + x^2 + x \frac{g_n'(x)}{\beta^2(n)g_n(x)}$
= $x^2 \left\{ \left(\frac{g_n''(x)}{\beta^2(n)g_n(x)} - 1 \right) + 2 \left(1 - \frac{g_n'(x)}{\beta(n)g_n(x)} \right) \right\} + x \frac{g_n'(x)}{\beta^2(n)g_n(x)}$
 $\le C_1 \left(\frac{1}{\beta(n)} \frac{\beta(n)x^2}{(1 + \beta(n)x)} + \frac{x}{\beta(n)} \right) \le C_2 \frac{x}{\beta(n)}.$

□

□

Proposition 2.3. *Suppose there exists a constant* C_1 *such that, for each* $x \in I$ *and every* $n \in \mathbb{N}$ *,*

$$
(2.9) \t\t I_{n,1}(x) \le C_1.
$$

If condition [\(1.5\)](#page-1-1) *holds, there exists a constant* C_2 *such that, for each* $x \in I$ *and every* $n \in \mathbb{N}$ *, one has*

$$
L_n((e_1 - xe_0)^2, x) \le C_2 \left(\frac{x^2}{\beta^2(n)} + \frac{x}{\beta(n)}\right)
$$

.

3. THE OPERATOR L_n AS AN ENDOMORPHISM

It is easy to see that $\{L_n\}$ is uniformly bounded sequence of linear operators from the space $C_{b,\infty}(I)$ to $C_b(I)$, but we need to verify that

$$
L_n: C_{b,\infty}(I) \to C_{b,\infty}(I).
$$

Theorem 3.2. *If* $n \in \mathbb{N}$ *and* $f \in C_{b,\infty}(I)$ *, then* $L_n(f) \in C_{b,\infty}(I)$ *. In particular*

$$
\lim_{x \to \infty} L_n(f, x) = \lim_{x \to \infty} f(x).
$$

Proof. Set $y_{n,k} = k/\beta(n)$. If $f \in C_{b,\infty}(I)$, there exists a real A such that $f(x) \to A$, as $x \to \infty$. We set $B = |A| + ||f||$. Fix $\varepsilon > 0$. There exists $N_1 > 0$ such that, for $x > N_1$,

$$
|f(x) - A| < \frac{\varepsilon}{2}.
$$

Since $y_{n,k} \to \infty$ as $k \to \infty$, there exists $m \in \mathbb{N}$, $m > N_1$, such that $y_{n,k} > N_1$, for all $k > m$. Taking into account L'Hôpital's rule

$$
\lim_{x \to \infty} \frac{1}{g_n(x)} \sum_{k=0}^m \frac{a_{n,k}}{k!} x^k = 0.
$$

Hence, there exists $N_2 > N_1$ such that, for $x > N_2$,

$$
\frac{1}{g_n(x)}\sum_{k=0}^m \frac{a_{n,k}}{k!}x^k \le \frac{\varepsilon}{2B}.
$$

Therefore, if $x > N_2$, then

$$
|L_n(f, x) - A| = \left| \frac{1}{g_n(x)} \sum_{k=0}^{\infty} \frac{a_{n,k}}{k!} (f(y_k) - A) x^k \right|
$$

$$
\leq \sum_{k=0}^m \left| \frac{a_{n,k}}{k!} (f(y_k) - A) \frac{x^k}{g_n(x)} \right| + \left| \sum_{k=m+1}^{\infty} \frac{a_{n,k}}{k!} (f(y_k) - A) \frac{x^k}{g_n(x)} \right|
$$

$$
\leq B \frac{1}{g_n(x)} \sum_{k=0}^m \frac{a_{n,k}}{k!} x^k + \frac{\varepsilon}{2} \frac{1}{g_n(x)} \sum_{k=m+1}^{\infty} \frac{a_{n,k}}{k!} x^k \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
$$

This is sufficient to prove that

$$
\lim_{x \to \infty} L_n(f, x) = A.
$$

In particular, $L_n(f) \in C_{b,\infty}(I)$. □

4. A KOROVKIN TYPE THEOREM

Let us denote

(4.10)
$$
\psi(y) = \frac{y}{1-y}, \qquad y \in [0,1).
$$

It is clear that $\psi : [0, 1) \to [0, \infty)$ is a homeomorphism with inverse function

$$
\psi^{-1}(x) = \frac{x}{1+x}, \qquad x \in [0, \infty).
$$

For $g \in C[0, 1]$, we consider the uniform norm $||g||_{\infty} = \sup_{y \in [0, 1]} |g(y)|$.

Theorem 4.3 ([\[3\]](#page-14-8)). *If the operator* $\Phi: C_{b,\infty}(I) \to C[0,1]$ *is defined by*

(4.11)
$$
\Phi(f, y) = \begin{cases} f(\psi(y)) & \text{if } y \in [0, 1) \\ \lim_{x \to \infty} f(x) & \text{if } y = 1 \end{cases}
$$

 $f\in C_{b,\infty}(I)$, then Φ is a positive linear isomorphism, with positive linear inverse $\Phi^{-1}\,:\,C[0,1]\to$ $C_{b,\infty}(I)$ given by

,

$$
\Phi^{-1}(g, x) = g\left(\frac{x}{1+x}\right), \quad g \in C[0, 1], \quad x \in [0, \infty).
$$

Moreover, for each $f \in C_{b,\infty}(I)$, $||f||_{\infty} = ||\Phi(f)||_{\infty}$.

Now, we will study convergence in the spaces $C_{b,\infty}[0,\infty)$. The following result is known.

Theorem 4.4 ([\[3\]](#page-14-8) and [\[4\]](#page-14-9)). *A sequence* $\{M_n\}$ *of positive linear operators,* M_n : $C_{b,\infty}[0,\infty)$ \rightarrow $C_{b,\infty}[0,\infty)$ *, is an approximation process if and only if* $||f_i - M_n(f_i)|| \to 0$ *, for* $i = 0, 1, 2$ *, where*

(4.12)
$$
f_0(x) = 1
$$
, $f_1(x) = \frac{x}{(1+x)}$ and $f_2(x) = \frac{x^2}{(1+x)^2}$.

We will follows the ideas given in $[3]$ and $[4]$, but we need other text functions. Let us remember known facts.

Recall that three functions $h_0, h_1, h_2 \in C[0, 1]$ are a Chebyshev system of order three in [0, 1], if any linear combination $\lambda_0 h_0 + \lambda_1 h_1 + \lambda_2 h_2$, with $|\lambda_0| + |\lambda_1| + |\lambda_2| > 0$, has at most two different zeros (see [\[2,](#page-14-10) p. 100]).

Lemma 4.1. *The functions* $f_0(x) = 1$, $f_1(x) = \sqrt{x}$ *and* $f_2(x) = x$ *are a Chebyshev system of order three in* [0, 1]*.*

Proof. Assume that the function $\theta(x) = a + b\sqrt{x} + cx$ (where at least one coefficient is different from zero) has at least three different zeros in [0, 1], say x_0 , x_1 and x_2 . Then, the polynomial $P(x) = a + bx + cx^2$ satisfies $P(\sqrt{x_0}) = P(\sqrt{x_1}) = P(\sqrt{x_2}) = 0$, but this is not possible. \Box

Theorem 4.5 ([\[9\]](#page-14-11), p. 49). Let $h_0, h_1, h_2 \in C[0, 1]$ be a Chebyshev system of order three in [0, 1]. If ${M_n}$ *is a sequence of linear positive operators,* $M_n: C[0,1] \rightarrow C[0,1]$ *and*

$$
\lim_{n \to \infty} \|h_i - M_n(h_i)\|_{\infty} = 0, \qquad i \in \{0, 1, 2\},\
$$

then

$$
\lim_{n \to \infty} \|g - M_n(g)\|_{\infty} = 0
$$

for every $g \in C[0,1]$ *.*

Theorem 4.6. *If the sequence* $\{L_n\}$, L_n : $C_{b,\infty}(I) \to C_{b,\infty}(I)$, is given by [\(1.2\)](#page-0-0), then the following *assertions are equivalent:*

- *(i)* ${L_n}$ *is an approximation process.*
- *(ii) For* $i = 0, 1, 2$ *,* $||f_i - L_n(f_i)||$ → 0*, where*

(4.13)
$$
f_0(x) = 1
$$
, $f_1(x) = \frac{\sqrt{x}}{\sqrt{1+x}}$ and $f_2(x) = \frac{x}{1+x}$.

(iii) For $i = 0, 1, 2$ *,* $||h_i - L_n(h_i)||$ → 0*, where*

(4.14)
$$
h_0(x) = 1, \quad h_1(x) = \frac{\sqrt{x}}{1 + \sqrt{x}} \quad and \quad h_2(x) = h_1^2(x).
$$

Proof. The assertions (i) \Rightarrow (ii) and (i) \Rightarrow (iii) are simple because each the functions f_i and h_i are continuous bounded functions with finite limits as $x \to \infty$.

(ii) \Rightarrow (i). For each $g \in C[0, 1]$, we define a function $G(g) \in C_{b, \infty}(I)$, by setting

$$
G(g, x) = g(x/(1+x)).
$$

Notice $\lim_{x\to\infty} G(g,\infty) = g(1)$. If L_n is given by [\(1.2\)](#page-0-0) and $g \in C[0,1]$, define $M_n(g,1) = g(1)$ and, for $y \in [0, 1)$,

$$
M_n(g, y) = L_n\Big(G(g), \frac{y}{1-y}\Big).
$$

From Theorem [3.2,](#page-3-1) we know that

$$
\lim_{y \to 1} M_n(g, y) = \lim_{x \to \infty} L_n\Big(G(g), x\Big) = \lim_{x \to \infty} G(g)(x) = g(1) = M_n(g, 1).
$$

Therefore $M_n : C[0,1] \to C[0,1]$ and it is a positive linear operator. For $y \in [0,1]$, set $g_0(y) = 1$, $g_1(y) = \sqrt{y}$ and $g_2(y) = y$. Since $\{g_0, g_1, g_2\}$ is a Chebyshev system in [0, 1] (see Lemma [4.1\)](#page-4-1), in order to use Theorem [4.5,](#page-4-2) we will verify that

$$
\lim_{n \to \infty} ||M_n(g_i) - g_i||_{\infty} = 0, \qquad i \in \{0, 1, 2\}.
$$

To prove this, we consider (ii). If $g_0 = e_0$, then $G(g_0) = f_0$, but $||L_n(e_0) - e_0|| = 0$. If $y \in [0, 1)$ and $x = y/(1 - y)$, then

$$
G(g_1, y_{n,k}) = \frac{\sqrt{y_{n,k}}}{\sqrt{1 + y_{n,k}}} = f_1(y_{n,k})
$$

and

$$
f_1(x) = \frac{\sqrt{x}}{\sqrt{1+x}} = \frac{\sqrt{y/(1-y)}}{\sqrt{1+y/(1-y)}} = \sqrt{y} = g_1(y).
$$

With analogous arguments, we verify that

$$
G(g_2, y_{n,k}) = f_2(y_{n,k})
$$
 and $f_2(x) = g_2(y)$.

Therefore, for $i = 1$ and $i = 2$, if $y \in [0, 1)$ and $x = y/(1 - y)$, then

$$
M_n(g_i, y) - g_i(y) = L_n\left(G(g_i), \frac{y}{1-y}\right) - g_i(y) = L_n(f_i, x) - f_i(x).
$$

Moreover

$$
M_n(g_i, 1) - g_i(1) = 0.
$$

If (ii) holds, we have proved that $||M_n(g_i) - g_i||_{\infty} = ||L_n(f_i) - f_i|| \to 0$ as $n \to \infty$.

From Theorem [4.5,](#page-4-2) we know that $\{M_n\}$ is a approximation process in $C[0, 1]$ and it is sufficient to verify that $\{L_n\}$ is a approximation process in $C_{b,\infty}(I)$. If fact, if $f \in C_{b,\infty}(I)$ we set $F(f, 1) = \lim_{y \to 1} f(y/(1 - y))$ and, for $y \in [0, 1)$,

$$
F(f, y) = f(y/1 - y),
$$

then $F(f) \in C[0, 1]$ and $||M_n(F(f)) - F(f)||_{\infty} \to 0$, as $n \to \infty$. But, for $y \in [0, 1]$,

$$
M_n(F(f), y) = L_n\Big(G(F(f)), \frac{y}{1-y}\Big),\,
$$

and

$$
G(F(f))(y_{n,k}) = F(f)\left(\frac{y_{n,k}}{1+y_{n,k}}\right) = f\left(\frac{\frac{y_{n,k}}{1-y_{n,k}}}{1+\frac{y_{n,k}}{1-y_{n,k}}}\right) = f(y_{n,k}),
$$

 \overline{u} ,

and, if $x = y/(1 - y)$, $F(f, y) = f(x)$. Hence

$$
||M_n(F(f)) - F(f)||_{\infty} = ||L_n(f) - f||.
$$

This proves the result.

(iii) \Rightarrow (i). The proof is similar to the case (ii) \Rightarrow (i), but we use another change of variables. For each $g \in C[0,1]$, we define a function $H(g) \in C_{b,\infty}(I)$, by setting

$$
H(g, x) = g(\sqrt{x}/(1+\sqrt{x})).
$$

Notice $\lim_{x\to\infty} G(g,\infty) = g(1)$. If L_n is given by [\(1.2\)](#page-0-0) and $g \in C[0,1]$, define $M_n^*(g,1) = g(1)$ and, for $y \in [0, 1)$,

$$
M_n^*(g, y) = L_n\left(H(g), \frac{y}{1-y}\right).
$$

From Theorem [3.2,](#page-3-1) we know that

$$
\lim_{y \to 1} M_n^*(g, y) = \lim_{x \to \infty} L_n\Big(H(g), x\Big) = \lim_{x \to \infty} H(g)(x) = g(1) = M_n^*(g, 1).
$$

Therefore $M_n^*: C[0,1] \to C[0,1]$ and it is a positive linear operator. For $y \in [0,1]$, set $g_0(y) = 1$, $g_1(y) = y$ and $g_2(y) = y^2$. Since $\{g_0, g_1, g_2\}$ is a Chebyshev system in $[0, 1]$, in order to use Theorem [4.5,](#page-4-2) we will verify that

$$
\lim_{n \to \infty} \|M_n(g_i) - g_i\|_{\infty} = 0, \qquad i \in \{0, 1, 2\}.
$$

To prove this, we consider (iii). If $g_0 = e_0$, then $G(g_0) = f_0$, but $||L_n(e_0) - e_0|| = 0$. If $y \in [0, 1)$ and $x = (y/(1-y))^2$, then

$$
H(g_1, y_{n,k}) = \frac{\sqrt{y_{n,k}}}{1 + \sqrt{y_{n,k}}} = f_1(y_{n,k})
$$

and

$$
f_1(x) = \frac{\sqrt{x}}{1 + \sqrt{x}} = \frac{y/(1 - y)}{1 + y/(1 - y)} = y = g_1(y).
$$

With analogous arguments, we verify that

$$
H(g_2, y_{n,k}) = f_2(y_{n,k})
$$
 and $f_2(x) = g_2(y)$.

Therefore, for $i = 1$ and $i = 2$, if $y \in [0, 1)$ and $x = (y/(1 - y))^2$, then

$$
M_n^*(g_i, y) - g_i(y) = L_n\left(H(g_i), \frac{y}{1-y}\right) - g_i(y) = L_n(f_i, x) - f_i(x).
$$

Moreover

$$
M_n^*(g_i, 1) - g_i(1) = 0.
$$

If (iii) holds, we have proved that $||M_n^*(g_i) - g_i||_{\infty} = ||L_n(f_i) - f_i|| \to 0$ as $n \to \infty$.

From Theorem [4.5,](#page-4-2) we know that $\{M_n^*\}$ is a approximation process in $C[0,1]$ and it is sufficient to verify that $\{L_n\}$ is a approximation process in $C_{b,\infty}(I)$. In fact, if $f \in C_{b,\infty}(I)$, we set $F(f, 1) = \lim_{y \to 1} f(y^2/(1-y)^2)$ and for $y \in [0, 1)$,

$$
F(f, y) = f\left(\frac{y^2}{(1-y)^2}\right),
$$

then $F(f) \in C[0,1]$ and $||M_n^*(F(f)) - F(f)||_{\infty} \to 0$, as $n \to \infty$. But, for $y \in [0,1)$,

$$
M_n^*(F(f), y) = L_n\left(H(F(f)), \frac{y}{1-y}\right)
$$

,

and

$$
H(F(f))(y_{n,k}) = F(f)\left(\frac{\sqrt{y_{n,k}}}{1+\sqrt{y_{n,k}}}\right) = f\left(\frac{\left(\frac{\sqrt{y_{n,k}}}{1+\sqrt{y_{n,k}}}\right)^2}{(1-\frac{\sqrt{y_{n,k}}}{1+\sqrt{y_{n,k}}})^2}\right) = f(y_{n,k}),
$$

and if $x = y^2/(1-y)^2$, $F(f, y) = f(x)$. Hence

$$
||M_n(F(f)) - F(f)||_{\infty} = ||L_n(f) - f||.
$$

This proves the result. □

5. APPROXIMATION PROCESS

In this section, we present sufficient conditions in order that $\{L_n\}$ be an approximation process in $C_{b,\infty}(I)$. It is sufficient to verify (ii) or (iii) in Theorem [4.6.](#page-4-3)

Proposition 5.4. *Assume that condition* [\(1.4\)](#page-1-0) *holds.* If $f_1(x)$ *and* $f_2(x)$ *are given as in* [\(4.13\)](#page-5-0)*, then*

$$
L_n(|f_1(e_1) - f_1(x)|, x) \le \frac{K}{\sqrt{\beta(n)}} \quad and \quad L_n(|f_2(e_1) - f_2(x)|, x) \le \frac{K}{\sqrt{\beta(n)}},
$$

where K *is the constant in Proposition [2.2.](#page-2-1)*

Proof. From Proposition [2.2,](#page-2-1) we obtain

$$
L_n(|f_1(e_1) - f_1(x)|, x) = L_n\left(\frac{|\sqrt{e_1(1+x)} - \sqrt{x(1+e_1)}|}{\sqrt{1+x}\sqrt{1+e_1}}, x\right)
$$

$$
\leq \frac{1}{\sqrt{1+x}} L_n\left(\frac{|x-e_1|}{(\sqrt{e_1(1+x)} + \sqrt{x(1+e_1)})}, x\right)
$$

$$
\leq \frac{1}{\sqrt{x}\sqrt{1+x}} \sqrt{L_n((e_1-x)^2, x)}
$$

$$
\leq \frac{1}{\sqrt{x}\sqrt{1+x}} \frac{K x}{\beta(n)} \leq \frac{K}{\sqrt{\beta(n)}}.
$$

On the other hand

$$
L_n(|f_2(e_1) - f_2(x)|, x) = L_n\left(\frac{|e_1 - x|}{(1 + x)(1 + e_1)}, x\right)
$$

$$
\leq \frac{1}{(1 + x)}\sqrt{L_n((e_1 - x)^2, x)} \leq \frac{K}{\sqrt{\beta(n)}}
$$

□

.

Proposition 5.5. *Assume that conditions* [\(1.5\)](#page-1-1) *and* [\(2.9\)](#page-3-2) *hold. If* $h_0(x)$ *,* $h_1(x)$ *and* $h_2(x)$ *are given as in* [\(4.14\)](#page-5-1), there exists a constant C such that, for each $n \in \mathbb{N}$ and $x \in I$ one has

$$
|L_n(h_i(e_1),x) - h_i(x)| \leq \frac{C}{\sqrt{\beta(n)}}.
$$

Proof. It is clear that $L_n(f_0(e_1) - f_0(x), x) = 0$. From Proposition [2.3,](#page-3-3) we obtain

$$
L_n(|h_1(e_1) - h_1(x)|, x) = L_n\left(\frac{|\sqrt{e_1(1+x)} - \sqrt{x(1+e_1)}|}{(1+\sqrt{x})(1+\sqrt{e_1})}, x\right)
$$

\n
$$
\leq \frac{1}{1+\sqrt{x}} L_n\left(\frac{|x-e_1|}{\sqrt{e_1(1+x)} + \sqrt{x(1+e_1)}}, x\right)
$$

\n
$$
\leq \frac{\sqrt{L_n((e_1-x)^2, x)}}{\sqrt{x}(1+\sqrt{x})}
$$

\n
$$
\leq \frac{2C}{\sqrt{x}(1+\sqrt{x})}\left(\frac{x}{\beta(n)} + \frac{\sqrt{x}}{\sqrt{\beta(n)}}\right) \leq C_1 \frac{1}{\sqrt{\beta(n)}}.
$$

On the other hand, taking into account that, for $x, y \in I$, one has

$$
\sqrt{xy} \le (1 + \sqrt{x})(1 + \sqrt{y}),
$$

for $x > 0$, we obtain

$$
L_n(|f_2(e_1) - f_2(x)|, x) = L_n\left(\left|\left(\frac{\sqrt{x}}{1+\sqrt{x}}\right)^2 - \left(\frac{\sqrt{e_1}}{1+\sqrt{e_1}}\right)^2\right|, x\right)
$$

\n
$$
= L_n\left(\frac{|x(1+2\sqrt{e_1} + e_1) - e_1(1+2\sqrt{x} + x)|}{(1+\sqrt{x})^2(1+\sqrt{e_1})^2}, x\right)
$$

\n
$$
= L_n\left(\frac{|x - e_1 + 2\sqrt{x}e_1(\sqrt{x} - \sqrt{e_1}))|}{(1+\sqrt{x})^2(1+\sqrt{e_1})^2}, x\right)
$$

\n
$$
\leq \frac{1}{(1+\sqrt{x})^2}L_n(|x - e_1|, x) + 2L_n\left(\frac{|\sqrt{x} - \sqrt{e_1}|}{(1+\sqrt{x})(1+\sqrt{e_1})}, x\right)
$$

\n
$$
\leq \frac{1}{\sqrt{x}(1+\sqrt{x})}L_n(|x - e_1|, x) + \frac{2}{(1+\sqrt{x})}L_n\left(\frac{|x - e_1|}{\sqrt{x} + \sqrt{e_1}}, x\right)
$$

\n
$$
\leq \frac{3}{\sqrt{x}(1+\sqrt{x})}\sqrt{L_n((x - e_1)^2, x)}
$$

\n
$$
\leq \frac{C_1}{\sqrt{x}(1+\sqrt{x})}\left(\frac{x}{\beta(n)} + \frac{\sqrt{x}}{\sqrt{\beta(n)}}\right) \leq \frac{C_2}{\sqrt{\beta(n)}}.
$$

- **Theorem 5.7.** *(i) If condition* [\(1.4\)](#page-1-0) *holds, then the sequence of operators* $\{L_n\}$ *is an approximation process in* $C_{b,\infty}(I)$ *.*
- *(ii) If conditions* [\(1.5\)](#page-1-1) *and* [\(2.9\)](#page-3-2) *hold, then the sequence of operators* ${L_n}$ *is an approximation process in* $C_{b,\infty}(I)$ *.*

Proof. (i) From Theorem [3.2,](#page-3-1) we know that L_n : $C_{b,\infty}(I) \to C_{b,\infty}(I)$. Taking into account Theorem [4.6,](#page-4-3) we will verify that conditions [\(4.12\)](#page-4-4) hold.

Since $L_n(e_0)=e_0$, it is sufficient to prove the assertion for each e_i , $i\in\{1,2\}.$ But it was done in Proposition [5.4.](#page-7-1)

(ii) The proof follows analogously, but we use Proposition 5.5 . \Box

□

6. MAIN RESULTS

We need some properties of functions in $C_{b,\infty}(I)$.

Proposition 6.6. *(i) If* $f \in C_{b,\infty}(I)$, $\phi_1 : [0,\infty) \to [0,1)$ *is given by* $\phi(x) = x/(1+x)$ *and* ϕ^{-1} *is* the inverse function, then $f \circ \phi^{-1}$ is uniformly continuous in $[0,1).$

(*ii*) *If* $f \in C_{b,\infty}(I)$, $\phi_1 : [0,\infty) \to [0,1)$ *is given by* $\phi(x) = \sqrt{x}/(1 + \sqrt{x})$ *and* ϕ^{-1} *is the inverse* function, then $f \circ \phi^{-1}$ is uniformly continuous in $[0,1).$

Proof. Let $A = \lim_{x \to \infty} f(x)$. Notice that $\phi^{-1}(y) = y/(1-y)$, $y \in [0,1)$. If we define $g(1) = A$ and $g(y) = (f \circ \phi^{-1})(y)$ for $y \in [0,1)$, the $g \in C[0,1]$ and it is a uniformly continuous function. The other assertion can be proved analogously. \Box

If
$$
\phi(x) = x/(1+x)
$$
 or $\phi(x) = \sqrt{x}/(1+\sqrt{x})$, for $f \in C_{b,\infty}(I)$, following Holhoş [8], define

(6.15)
$$
\omega^{\phi}(f,t) = \sup_{x,y \in [0,\infty), |\phi(x) - \phi(t)| \le t} |f(x) - f(t)|.
$$

Proposition 6.7. *If* $f \in C_{b,\infty}(I)$ *and* $\phi(x) = x/(1+x)$ *or* $\phi(x) = \sqrt{x}/(1+\sqrt{x})$ *, then*

$$
\lim_{n \to \infty} \omega^{\phi}(f, \delta_n) = 0
$$

for any sequence $\{\delta_n\}$ *of positive numbers satisfying* $\lim_{n\to\infty} a_n = 0$ *.*

Proof. If was proved in [\[8\]](#page-14-12) that the assertion is true if $f \circ \phi^{-1}$ is uniformly continuous, but this property was verified in Proposition [6.6.](#page-9-1)

The next result is due to Holhos, but we present in a convenient form for our purpose.

Proposition 6.8 ([\[8\]](#page-14-12)). *Assume that* $\phi(x) = x/(1+x)$ *or* $\phi(x) = \sqrt{x}/(1+\sqrt{x})$ *. Let* $A_n : C_{b,\infty}(I) \to$ $C_{b,\infty}(I)$ be a sequence of positive linear operators preserving constant functions. If the sequence $\{a_n\}$,

(6.16)
$$
a_n = \sup_{x \ge 0} A_n(|\phi(e_1) - \phi(x)|, x)
$$

is bounded, $\lim_{n\to\infty} a_n = 0$, and $f\circ\phi^{-1}$ is uniformly continuous, then

$$
\lim_{n \to \infty} \|A_n(f) - f\| = 0 \quad \text{and} \quad \|A_n(f) - f\| \le 2\omega^{\phi}(f, a_n).
$$

Theorem 6.8. *Assume that condition* [\(1.4\)](#page-1-0) *holds.* If $\phi(x) = x/(1+x)$ *, there exists a constant* C *such that, for each* $n \in \mathbb{N}$ *and every* $f \in C_{b,\infty}(I)$ *, one has*

$$
||L_n(f) - f|| \leq C\omega^{\phi}\Big(f, \frac{1}{\sqrt{\beta(n)}}\Big),\,
$$

 $\omega^{\phi}(f,t)$ is given by [\(6.15\)](#page-9-2). In particular, $||L_n(f) - f|| \to 0$, as $n \to \infty$.

Proof. If $\{a_n\}$ is defined as in [\(6.16\)](#page-9-3) and we prove that $a_n \to 0$, as $n \to \infty$, we can derive the result from Proposition [6.8,](#page-9-4) because we verified in Proposition [6.6](#page-9-1) that $f \circ \phi^{-1}$ is uniformly continuous. Since $\phi(x) = f_2(x)$, where f_2 is the function in Theorem [4.6,](#page-4-3) it follows from Proposition 5.4 that, if condition (1.4) holds, then

$$
a_n \le \frac{K}{\sqrt{\beta(n)}}.
$$

Therefore

$$
||L_n(f) - f|| \le 2\omega^{\phi}(f, a_n).
$$

It was proved in [\[8\]](#page-14-12) that, if δ , $\lambda > 0$, then

$$
\omega^{\phi}(f,\lambda\delta) \le (1+\lambda)\omega^{\phi}(f,\delta).
$$

Hence, we can replace a_n by its estimate and extract the constant K as in the statement of the Theorem. Theorem. □

Theorem [6.9](#page-10-0) can be proved as Theorem [6.8.](#page-9-5) In fact, the function $\phi(x) = \sqrt{x}/(1 + \sqrt{x})$ agree with h_1 in equation [\(4.14\)](#page-5-1) and instead of Proposition [5.4,](#page-7-1) we can use Proposition [5.5,](#page-8-0) if conditions [\(1.5\)](#page-1-1) and [\(2.9\)](#page-3-2) hold.

Theorem 6.9. *Assume that conditions* [\(1.5\)](#page-1-1) *and* [\(2.9\)](#page-3-2) *hold.* If $\phi(x) = \sqrt{x}/(1 + \sqrt{x})$, there exists a *constant C such that, for each* $n \in \mathbb{N}$ *and every* $f \in C_{b,\infty}(I)$ *, one has*

$$
||L_n(f) - f|| \leq C\omega^{\phi}\Big(f, \frac{1}{\sqrt{\beta(n)}}\Big),\,
$$

where $\omega^{\phi}(f,t)$ is given by [\(6.15\)](#page-9-2).

The next result shows how to construct some families of operators for which our approach can be applied.

Theorem 6.10. Let ${b_k}$ *be a decreasing sequence of positive real numbers, and assume there exists a constant* Λ *such that, for* $i \in \{1, 2\}$ *and every* $k \in \mathbb{N}$ *, one has*

(6.17)
$$
b_{k-1} - b_{k-1+i} \leq \frac{\Lambda}{k} b_k.
$$

Define

$$
C_n(f,x) = \frac{1}{g_n(x)} \sum_{k=0}^{\infty} \frac{b_k n^k}{k!} f\left(\frac{k}{n}\right) x^k, \quad \text{with} \quad g_n(x) = \sum_{k=0}^{\infty} \frac{b_k n^k}{k!} x^k.
$$

If $\phi(x) = x/(1+x)$ *, then there exists a constant C such that, for each* $f \in C_{b,\infty}(I)$ *and every* $n \in \mathbb{N}$ *, one has*

$$
||C_n(f) - f|| \leq C\omega^{\phi}\left(f, \frac{1}{\sqrt{n}}\right),
$$

where $\omega^{\phi}(f,t)$ is given by [\(6.15\)](#page-9-2).

Proof. Notice

$$
g'_n(x) = \sum_{k=1}^{\infty} \frac{n^k b_k}{(k-1)!} x^{k-1} = n \sum_{k=0}^{\infty} \frac{n^k b_{k+1}}{k!} x^k = n \sum_{k=0}^{\infty} \frac{n^k b_{k+1} - b_k}{k!} x^k + n g_n(x),
$$

and

$$
g_n^{(2)}(x) = n^2 \sum_{k=0}^{\infty} \frac{b_{k+2}}{k!} (nx)^k = n^i \sum_{k=0}^{\infty} \frac{b_{k+2} - b_k}{k!} (nx)^k + n^2 g_n(x).
$$

Hence, for $i \in \{1, 2\}$,

$$
\left| \frac{g_n^{(i)}(x)}{n^i g_n(x)} - 1 \right| = \frac{1}{g_n(x)} \sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!} (nx)^k,
$$

because ${b_k}$ decreases. Taking into account [\(6.17\)](#page-10-1), we obtain

$$
(1+nx)\sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!}(nx)^k = \sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!}(nx)^k + \sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!}(nx)^{k+1}
$$

$$
= \sum_{k=0}^{\infty} \frac{b_k - b_{k+i}}{k!}(nx)^k + \sum_{k=1}^{\infty} \frac{b_{k-1} - b_{k+i-1}}{(k-1)!}(nx)^k
$$

$$
\leq \sum_{k=0}^{\infty} \frac{b_k}{k!}(nx)^k + \Lambda \sum_{k=1}^{\infty} \frac{b_k}{k!}(nx)^k \leq (1+\Lambda)g_n(x).
$$

Therefore

$$
\left|\frac{g_n^{(i)}(x)}{n^i g_n(x)} - 1\right| \le \frac{1+\Lambda}{1+nx}.
$$

Thus, conditions [\(1.4\)](#page-1-0) holds for $i = 1$ and $i = 2$ and the announced result follows from Theorem \Box

7. EXAMPLES

First Example. In this example, we apply the results of the previous section to Szász-Schurer operators.

For a fixed $p \geq 0$, Schurer introduced the operators

(7.18)
$$
L_{n,p}^*(f,x) = e^{-(n+p)x} \sum_{k=0}^{\infty} \frac{(n+p)^k}{k!} f\left(\frac{k}{n}\right) x^k.
$$

This operator have been studied by several authors (see [\[10,](#page-14-13) [11,](#page-14-14) [15,](#page-14-15) [16\]](#page-14-16)). The case $p = 0$ gives place to Szász-Mirakyan operators.

In this work, we study the more general version

(7.19)
$$
L_{n,p}(f,x) = e^{-(\beta(n)+p)x} \sum_{k=0}^{\infty} \frac{(\beta(n)+p)^k}{k!} f\left(\frac{k}{\beta(n)}\right) x^k,
$$

where $\beta(n) \geq 1$ and $\beta(n) \to \infty$, as $n \to \infty$. The operator $L_{n,p}$ has the form [\(1.2\)](#page-0-0) with

$$
a_{n,k} = (\beta(n) + p)^k \qquad \text{and} \qquad g_n(x) = e^{(\beta(n) + p)x}.
$$

Notice that

(7.20)
$$
a_{n,k+1} = a_{n,k}(\beta(n) + p) \text{ and } I_{n,i}(x) = \frac{g_n^{(i)}(x)}{\beta^i(n)g_n(x)} = \frac{(\beta(n) + p)^i}{\beta^i(n)}.
$$

In particular, the functions $I_{n,1}(x)$ is uniformly bounded (condition [\(2.9\)](#page-3-2)).

If $p = 0$ (Szász-Mirakyan operators) then $I_{n,i}(x) = 1$, and we can apply Proposition [2.1.](#page-2-2) Taking into Proposition [2.1,](#page-1-4) we know that

$$
L_{n,p}(e_1, x) - x = x \Big(\frac{g'_n(x)}{\beta(n)g_n(x)} - 1 \Big) = x \Big(\frac{\beta(n) + p}{\beta(n)} - 1 \Big).
$$

If $p > 0$, since the expression in brackets depends not on x and it is different from zero, the behaviour of the operators $L_{n,p}$ is different from the Szász-Mirakyan operators. On the other hand

$$
L_{n,p}((e_1 - xe_0)^2, x) = J_{n,2}(x) + \frac{J_{n,1}(x)}{\beta(n)} - 2xJ_{n,1}(x) + x^2
$$

$$
= x^{2} (I_{n,2}(x) - 2I_{n,1} + 1) + \frac{J_{n,1}(x)}{\beta(n)}
$$

$$
= x^{2} \left(\frac{p}{\beta(n)}\right)^{2} + x \frac{\beta(n) + p}{\beta^{2}(n)}.
$$

Hence condition [\(1.5\)](#page-1-1) is satisfied and Theorem [6.9](#page-10-0) can be applied. We think that Theorem [7.11](#page-12-0) is the first result where uniform estimates for the Schurer operators in the space $C_{b,\infty}(I)$ are given.

Theorem 7.11. *Assume* $p > 0$ *and* $\phi(x) = \sqrt{x}/(1 + \sqrt{x})$ *. If* $L_{n,p}$ *is given by* [\(7.19\)](#page-11-0)*, there exists a constant C such that for each* $n \in \mathbb{N}$ *and every* $f \in C_{b,\infty}(I)$ *, one has*

$$
||L_{n,p}(f) - f|| \leq C\omega^{\phi}\Big(f, \frac{1}{\sqrt{\beta(n)}}\Big),\,
$$

where $\omega^{\phi}(f,t)$ is given by [\(6.15\)](#page-9-2).

Second Example. For $0 < \gamma < 1$ and $p > 0$, set

$$
g_n(x) = g_{n,\gamma,p}(x) = \sum_{k=0}^{\infty} \frac{(n+p)^{\gamma k}}{k!} x^k = e^{(n+p)^{\gamma}x},
$$

and define

(7.21)
$$
B_{n,\gamma}(f,x) = \frac{1}{g_{n,\gamma}(x)} \sum_{k=0}^{\infty} \frac{(n+p)^{\gamma k}}{k!} f\left(\frac{k}{n^{\gamma}}\right) x^{k}.
$$

In this case $a_{n,k} = (n+p)^{\gamma k}$ and $\beta(n) = n^{\gamma}$. Moreover

$$
g'_n(x) = (n+p)^{\gamma} g_n(x)
$$
 and $g''_n(x) = (n+p)^{2\gamma} g_n(x)$.

Hence

(7.22)
$$
I_{n,1}(x) = \frac{g'_n(x)}{\beta(n)g_n(x)} = \frac{(n+p)^{\gamma}}{n^{\gamma}} \quad \text{and} \quad I_{n,2}(x) = \frac{(n+p)^{2\gamma}}{n^{2\gamma}}
$$

Let us verify that condition [\(1.5\)](#page-1-1) holds.

Lemma 7.2. *If* $0 < \gamma < 1$ *and* $p > 0$ *, for each* $n \in \mathbb{N}$ *, one has*

$$
|I_{n,2}(x) - 2I_{n,1}(x) + 1| \leq \gamma^2 \frac{p^2}{n^{2\gamma}},
$$

 α

where $I_{n,1}(x)$ *and* $I_{n,2}(x)$ *are given as in* [\(7.22\)](#page-12-1)*.*

Proof. By the mean value theorem, if $0 < \gamma < 1$ and $y > 1$, there exists $\theta \in (1, y)$ such that

$$
0 < y^{\gamma} - 1 = \gamma \frac{(y - 1)}{\theta^{1 - \gamma}} < \gamma (y - 1),
$$

Taking into the previous inequality, we obtain

$$
|I_{n,2}(x) - 2I_{n,1}(x) + 1| = \left| \frac{(n+p)^{2\gamma}}{n^{2\gamma}} - 2\frac{(n+p)^{\gamma}}{n^{\gamma}} + 1 \right|
$$

= $\left(\frac{(n+p)^{\gamma}}{n^{\gamma}} - 1\right)^2 \le \gamma^2 \left(\frac{(n+p)}{n} - 1\right)^2$
= $\gamma^2 \frac{p^2}{n^2} \le \gamma^2 \frac{p^2}{n^{2\gamma}}.$

□

Since $I_{n,1}(x) \leq (1+p)^{\gamma}$, we can apply Theorem [6.9](#page-10-0) (with $\beta(n) = n^{\gamma}$).

Theorem 7.12. *Assume* $0 < \gamma < 1$ *, p > 0, and* ${B_{n,\gamma}}$ *is given by* [\(7.21\)](#page-12-2)*. If* $\phi(x) = \sqrt{x}/(1 + \sqrt{x})$ *, there exists a constant* C *such that, for each* $n \in \mathbb{N}$ *and every* $f \in C_{b,\infty}(I)$ *, one has*

$$
||B_{n,\gamma}(f) - f|| \le 2\omega^{\phi}\Big(f, \frac{C}{n^{\gamma/2}}\Big),\,
$$

where $\omega^{\phi}(f,t)$ is given by [\(6.15\)](#page-9-2).

Third Example. For a fixed $j \in \mathbb{N}$, each $n \in \mathbb{N}$, and every $x \ge 0$ set

$$
c_{n,j}(x) = \sum_{k=0}^{\infty} \frac{n^k}{(k+j)!} x^k.
$$

For $f \in C_{b,\infty}(I)$, define

(7.23)
$$
C_{n,j}(f,x) = \frac{1}{c_{n,j}(x)} \sum_{k=0}^{\infty} \frac{n^k}{(k+j)!} f\left(\frac{k}{n}\right) x^k.
$$

We will apply Theorem [6.10](#page-10-2) by considering the decreasing sequence

(7.24)
$$
\nu_{k,j} = \frac{1}{(k+1)\cdots(k+j)}, \qquad k \in \mathbb{N}_0.
$$

In Lemma [7.3,](#page-13-0) we verify that condition [\(6.17\)](#page-10-1) holds.

Lemma 7.3. *For each fixed* $i \in \{1, 2\}$ *and every* $k \in \mathbb{N}_0$ *, one has*

$$
\nu_{k,j} - \nu_{k+i,j} \le \frac{ij}{(k+1)} \nu_{k+1,j},
$$

where $\nu_{k,j}$ *is given by* [\(7.24\)](#page-13-1)*.*

Proof. If $i = 1$ and $k \in \mathbb{N}_0$,

(7.25)
$$
\nu_{k,j} - \nu_{k+1,j} = \frac{1}{(k+1)\cdots(k+j)} - \frac{1}{(k+2)\cdots(k+j+1)}
$$

$$
= \frac{j}{(k+1)\cdots(k+j+1)} = \frac{j}{(k+1)}\nu_{k+1,j}.
$$

If $i = 2$,

$$
\nu_{k,j} - \nu_{k+2,j} = \nu_{k,j} - \nu_{k+1,j} + \nu_{k+1,j} - \nu_{k+2,j}
$$

$$
\leq \frac{j}{(k+1)}\nu_{k+1,j} + \frac{j}{(k+2)}\nu_{k+2,j} \leq \frac{2j}{(k+1)}\nu_{k+1,j},
$$

because the sequence decreases. □

Theorem 7.13. *Fix* $j \in \mathbb{N}$ *and let* $C_{n,j}$ *be defined by* [\(7.23\)](#page-13-2). *If* $\phi(x) = x/(1+x)$ *, then there exists a constant C such that, for each* $f \in C_{b,\infty}(I)$ *and every* $n \in \mathbb{N}$ *, one has*

$$
||C_{n,j}(f) - f|| \leq C\omega^{\phi}\left(f, \frac{1}{\sqrt{n}}\right),\,
$$

where $\omega^{\phi}(f, t)$ *is given by* [\(6.15\)](#page-9-2).

REFERENCES

- [1] T. Acar, A. Aral and I. Ra¸sa: *Positive linear operators preserving* τ *and* τ 2 , Constr. Math. Anal., **2** (3) (2019), 98–102.
- [2] F. Altomare, M. Campiti: *Korovkin-type approximation theory and its applications*, de Gruyter Series Studies in Mathematics, Walter de Gruyter, New York (1994).
- [3] J. Bustamante, L. Morales de la Cruz: *Korovkin type theorems for weighted approximation*, Int. J. Math. Anal., **1** (26) (2007), 1273–1283.
- [4] J. Bustamante, L. Morales de la Cruz: *Positive linear operators and continuous functions on unbounded intervals*, Jaen J. Approx., **1** (2) (2009), 145–173.
- [5] M Dhamija, R. Pratap and N. Deo: *Approximation by Kantorovich form of modified Szász-Mirakyan operators*, Appl. Math. Comput., **317** (15) (2018), 109–120.
- [6] N. K. Govil, V. Gupta and D. Soyba¸s: *Certain new classes of Durrmeyer type operators*, Appl. Math. Comput., **225** (2013), 195–203.
- [7] V. Gupta, G. Tachev and A. Acu: *Modified Kantorovich operators with better approximation properties*, Numer. Algorithms, **81** (1) (2019), 125–149.
- [8] A. Holhos: *Uniform approximation by positive linear operators on noncompact intervals*, Automat. Comput. Appl. Math., **18** (1) (2009), 121–132.
- [9] P. P. Korovkin: *Linear operators and approximation theory*, Delhi (1960).
- [10] D. Miclăus, O. T. Pop: *The Voronovskaja theorem for some linear positive operators defined by infinite sum*, Creat. Math. Inform., **20** (1) (2011), 55–61.
- [11] D. Miclăus, O. T. Pop: *The generalization of certain results for Szász-Mirakjan-Schurer operators*, Creat. Math. Inform., **21** (1) (2012), 79–85.
- [12] V. Miheşan: *Gamma approximating operators*, Creat. Math. Inform., 17 (2008), 466–472.
- [13] G. M. Mirakyan: *Approximation des fonctions continues au moyen de polynómes de la forme* e^{−nx} $\sum_{k=0}^{m_n} C_{n,k} x^k$, Comptes Rendus Acad. Scien. URSS (in French), **31** (1941), 201–205.
- [14] R. P˘alt˘anea: *Modified Szász-Mirakjan operators of integral form*, Carpathian J. Math., **24** (3) (2008), 378–385.
- [15] F. Schurer: *On linear positive operators in approximation theory*, Thesis Delft, (1965).
- [16] P. C. Sikkema: *Über die Schurerschen linearen positiven operatoren I*, Indag. Math., **78** (3) (1975), 230–242.
- [17] O. Szász: *Generalization of S. Bernstein's polynomials to the infinite interval*, J. Res. Nat. Bur. Standards, **45** (1950), 239–245.

JORGE BUSTAMANTE UNIVERSIDAD AUTÓNOMA DE PUEBLA FACULTAD DE CIENCIAS FÍSICO-MATEMÁTICAS PUEBLA, MEXICO *Email address*: jbusta@fcfm.buap.mx