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1. INTRODUCTION & MOTIVATION

In [2], the author proves existence-uniquness of ∞-harmonic functions in the viscosity sense
for a large class of Grushin-type spaces. Specifically, for each point p in the class of Grushin-
type spaces, the tangent space at p = (x1, x2, . . . , xn) is defined by vector fields of the form

Qi(p)
∂

∂xi
= Qi(x1, . . . , xi−1)

∂

∂xi
,

where Q1 ≡ 1 and for each 2 ≤ i ≤ n the functions Qi are polynomials determined only by
the first i − 1 coordinates of p. In [8], the authors obtain existence and uniqueness results for
∞-harmonic functions in the viscosity sense in spaces whose tangent space at each point p is
defined by ∂

∂xi
for 1 ≤ i ≤ m < n and

σ(p)
∂

∂xj
= σ(x1, . . . , xm)

∂

∂xj

for m+ 1 ≤ j ≤ n, where σ is a C2 function satisfying certain assumptions on its zeroes. In the
current article, our objective is to expand upon and generalize both results to a broader class of
Grushin-type spaces. In particular, we seek to show that the Dirichlet problem

(DP)
{

∆∞ w = 0 in Ω
w = g on ∂Ω

will possess unique viscosity solutions when posed in bounded domains Ω in Grushin-type
spaces whose tangent spaces are determined by

ρk(x1, . . . , xk−1)
∂

∂xk
,

where ρk is an arbitrary function subject to mild technical assumptions.
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The layout of the paper will be as follows. In Section 2, we will explore details of the
Grushin-type spaces G, pausing to mention previous examples of such spaces and their re-
lation to the current situation, and then introduce notions of distance and calculus. In Section
3, we define notions of viscosity theory for elliptic equations and give results relating Euclidean
elliptic jets to their Grushin counterparts (see Section 3 for definitions). We conclude with Sec-
tion 4, in which we will prove that solutions to (DP) exist and are unique. The uniqueness
of solutions requires us to produce useful estimates via a maximum principle; we then utilize
these estimates to prove a comparison principle for sub- and supersolutions of (DP).

2. GRUSHIN-TYPE SPACES

To construct the Lie Algebras which are of interest to this paper, let n ≥ 2 be given and,
fixing any p = (x1, . . . , xn) ∈ Rn, consider the frame X := {X1, X2, . . . , Xn} consisting of the
vector fields

(2.1) X1(p) :=
∂

∂x1

(that is, we decree ρ1 ≡ 1) and

(2.2) Xj(p) := ρj(p)
∂

∂xj
= ρj(x1, x2, . . . , xj−1)

∂

∂xj
(2 ≤ j ≤ n).

We will assume that for every 2 ≤ j:
(A) Each function ρj is Euclidean C2 (denoted C2

eucl for what follows).
(B) The set of zeroes for each ρj is given by Zj × Rn−j+1, where Zj is a discrete subset of

Rj−1.
The papers [2, 5] considered the stationary ∞-Laplace equation in these spaces under the addi-
tional assumption that each ρj is a polynomial; in [8], the ∞-Laplacian was studied in the case
that ρ1, . . . , ρm ≡ 1 for some m < n and that ρj = σ for all m ≤ j, where σ ∈ C2

eucl(Rm). The
fundamental solution to the p-Laplace equation was explored in [9] when the functions ρj = ρk
for all 2 ≤ j, k are chosen to be monomials in x1; a similar study was made in [3], with

ρj(p) = c

( m∑
i=1

(xi − ai)
2

) k
2

,

where 1 ≤ m ≤ j and for c, k, ai ∈ R with c ̸= 0. (Note we will require k ≥ 4.)
The Lie Algebra g := spanX may be endowed with a singular inner-product ⟨·, ·⟩ that makes

X orthonormal. We then consider the space G which is the image of g under the exponential
map, and we denote points of G also by the n-tuples p = (x1, . . . , xn). One consequence of
this definition is that these spaces are not groups: Indeed, dim g at p is n when every ρj ̸= 0;
otherwise, dim g < n.

The natural metric to impose upon G is the Carnot-Carathéodory (or CC) metric

(2.3) dCC (p, q) := inf
γ∈Γ

∫ 1

0

∥γ′(t)∥dt,

where Γ is the collection of all curves γ satisfying (i) γ(0) = p, γ(1) = q and (ii) γ′ ∈ g. Because
some vector fields Xj and their derivatives may vanish at a point, Chow’s Theorem (see, for
example, [10]) may not apply. However, since X1 is always nonzero, points of G can always
be connected by concatenating curves and so Γ ̸= ∅ and dCC (·, ·) is an honest metric. We may
therefore define balls in G by

B(p0, r) := {p ∈ G : dCC (p0, p) < r} .
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Given a smooth function w : O → R where O ⊆ G is open, the gradient of w in G is defined
by

∇G w := (X1w, . . . ,Xnw)

and the second derivative matrix
(
D2u

)⋆ is the symmetric n×nmatrix whose entries are given
by

[
(
D2w

)⋆
]kℓ :=

1

2
(XℓXkw +XkXℓw) .

We also have notions of regularity:

Definition 2.1. A function u : O → R is said to be C1
G(O) if Xku is continuous for each 1 ≤ k ≤ n.

The function u is C2
G(O) if XℓXku is continuous for each 1 ≤ k, ℓ ≤ n.

The function spaces Lr, Lrloc,W
1,r,W 1,r

0 , and W 1,r
loc for 1 ≤ r ≤ ∞ over G mimic their Eu-

clidean counterparts.

3. VISCOSITY THEORY FOR ELLIPTIC EQUATIONS

Throughout this article, we will have need of multiple operators; we will define them in the
current section for the sake of convenience. First we have the p-Laplacian which, for smooth
functions w, is given by

∆pw :=− div
(
∥∇G w∥p−2 ∇G w

)
=−

(
∥∇G w∥p−2 tr(D2w)⋆ + (p− 2)∥∇G w∥p−4

〈
(D2w)⋆ ∇G w,∇G w

〉)
for 1 < p <∞. The formal limit of the p-Laplacian as p → ∞ is the ∞-Laplacian

∆∞w := −
〈
(D2w)⋆ ∇G w,∇G w

〉
.

We also define Jensen’s Auxiliary functions (see [13]) for G: Given some ε ∈ R, these are the
operators

Fε
(
p,∇G w,

(
D2w

)⋆ )
:= min

{
∥∇G w(p)∥2 − ε2,∆∞ w(p)

}
and

Gε
(
p,∇G w,

(
D2w

)⋆ )
:= max

{
ε2 − ∥∇G w(p)∥2,∆∞ w(p)

}
.

These last two operators may also be thought of as functions mapping G× g× Sn into R, and
so we represent any of the above generically by the function H : G× g× Sn → R.

The elliptic equations which we wish to solve are of the form

(3.4) Hw(p) = H
(
p,∇G w,

(
D2w

)⋆ )
= 0,

where it should be noted that H in each of the four cases above exhibits a property which [12]
calls proper: Specifically, for each pair of matrices X ≤ Y in Sn and all p ∈ G, η ∈ g, we will
have

H
(
p, η, Y

)
≤ H

(
p, η,X

)
.

Fixing any p0 ∈ O ⊆ G for an open set O, and a function u : O → R, we may now intro-
duce two collections of functions necessary to viscosity theory: The “touching above functions”
T A(u, p0) consisting of all ϕ ∈ C2

G(O) satisfying

0 = ϕ(p0)− u(p0) ≤ ϕ(p)− u(p) near p0;

and the “touching below functions” T B(u, p0) consisting of all ψ ∈ C2
G(O) such that

0 = u(p0)− ψ(p0) ≤ u(p)− ψ(p) near p0.

As in [8], we then may define viscosity (sub-/super-)solutions.
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Definition 3.2. Let Ω ⋐ G be given. A function u ∈ USC(Ω) is a viscosity subsolution of Equation
(3.4) if for each p0 ∈ Ω and every ϕ ∈ T A(u, p0) the inequality

Hϕ(p0) ≤ 0

is satisfied. Functions v ∈ LSC(Ω) are said to be viscosity supersolutions of (3.4) if for each p0 ∈ Ω and
every ψ ∈ T B(v, p0), we have

Hψ(p0) ≥ 0.

Functions w ∈ C(Ω) are called viscosity solutions of (3.4) if they are both a viscosity sub- and superso-
lution.

Remark 3.1. In the case that H = ∆∞, we shall use the term ∞-(sub-/super-)harmonic to refer to the
viscosity (sub-/super-)solutions of (3.4).

Remark 3.2. In the case that H = ∆p, care needs to be taken in the p < 2 case due to the singularity
which occurs when ∥∇G w∥ = 0; however, since our aim is to use viscosity solutions of the p-Laplacian
to produce an ∞-harmonic function, we only concern ourselves with the case p ≥ 2.

The notion of viscosity (sub-/super-)solutions may be equivalently restated. For a given
function u : O → R, we may define the upper jet

J2,+ u(p0) :=
{(

∇G ϕ(p0),
(
D2ϕ

)⋆
(p0)

)
: ϕ ∈ T A

(
u(p0)

)}
and lower jet

J2,− u(p0) :=
{(

∇G ψ(p0),
(
D2ψ

)⋆
(p0)

)
: ψ ∈ T B

(
u(p0)

)}
= − J2,+(−u)(p0).

By J
2,+

u(p0) we will denote the collection of all (η,X) ∈ Rn×Sn such that there exists (pk) ⊂ G
and (ηk, Xk) ∈ J2,+ u(pk) which satisfy (pk, u(pk), ηk, Xk) → (p0, u(p0), η,X) as k → ∞; a
similar definition is made for J

2,−
u(p0).

Definition 3.3. Let Ω ⋐ G be given. A function u ∈ USC(Ω) is a viscosity subsolution of Equation
(3.4) if for every p0 ∈ Ω,

H
(
p0, η,X

)
≤ 0

for all (η,X) ∈ J
2,+

u(p0). A function v ∈ LSC(Ω) is a viscosity supersolution of (3.4) if −v is a
viscosity subsolution of (3.4), and a viscosity solution of (3.4) is a function w ∈ C(Ω) which is both a
viscosity sub- and supersolution of (3.4).

The advantage of this second definition is that we can easily state the following result which,
for a given function u : O → R and p0 ∈ O, relates the Euclidean upper jet J2,+

euclu(p0) to
J2,+ u(p0). The proof in [2] relies upon producing Grushin second-order Taylor Polynomials for
C2

G functions and then utilizing the twisting terms and factors in these polynomials to deduce
the twisting necessary for jet entries (cf. [6, Corollary 3.2]). The proof is not significantly altered
by replacing the vector fields considered in [2] with our frame X.

Lemma 3.1 (Elliptic G Twisting Lemma). Let O ⊆ G be open, let u : O → R, and let p0 ∈ O.
Suppose that (η,X) ∈ J2,+

euclu(p0): Then

(3.5)
(
A(p0) · η,A(p0) ·X ·AT(p0) +M(η, p0)

)
∈ J2,+ u(p0),
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where

(3.6) (A(p0))kℓ =


1, k = 1 = ℓ

ρk(p), 2 ≤ k = ℓ ≤ n

0, otherwise

and

(3.7) (M(η, p0))kℓ =



1
2 · ∂ρk

∂xℓ
(p)ρℓ(p)ηk, ℓ < k

1
2 · ∂ρℓ

∂xk
(p)ρk(p)ηℓ, k < ℓ

0, otherwise.

Given the properties of the collections J2,+ u(p0) and J2,− u(p0), a similar relationship holds
for J2,−

euclu(p0) and J2,− u(p0).

4. EXISTENCE & UNIQUENESS OF ∞-HARMONIC FUNCTIONS

Consider the Dirichlet problems

(4.8)
{Fεw =0 in Ω

w =g on ∂Ω
,

(4.9)
{Gεw =0 in Ω

w =g on ∂Ω
,

and

(DP)
{
∆∞ w =0 in Ω

w =g on ∂Ω
,

where Ω ⋐ G is a domain and we always assume that g ∈ C(∂Ω). We will use the Problems
(4.8) and (4.9) to show that Problem (DP) possess a unique solution. Our first task is to extend
our notion of viscosity solutions to Dirichlet problems.

Definition 4.4. Let H : G×Rn×Sn → R represent one of the operators, ∆p,∆∞,Fε, or Gε (ε ∈ R);
suppose that Ω, g are as above and that we are given the Dirichlet problem{Hw =0 in Ω

w =g on ∂Ω
.

A viscosity subsolution u to such a problem is a viscosity subsolution to the equation Hu = 0 which
also satisfies u ≤ g on ∂Ω. We define a viscosity supersolution v to the Dirichlet problem similarly. The
function w is a viscosity solution to the Dirichlet problem if it is both a viscosity sub- and supersolution
of the problem.

From here, we proceed as follows: We prove that each of the Problems (4.8), (4.9), and (DP)
possesses a viscosity solution; with existence proven, we show that Problems (4.8) and (4.9)
support comparison principles which verify that solutions to these two problems are unique;
and finally, we exploit relationships between the Problems (4.8), (4.9), and (DP) to show that
the solution to (DP) is unique.
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Existence of solutions to the three Dirichlet problems above is standard and, following the
approach of [7, Theorem 4.1], we condense the results supporting this finding into one theorem.
As in [7], the proof follows the layout of [1, Section 4].

Theorem 4.1 (Existence of ∞-Harmonic Functions). The following are true:

(A) Let ε ∈ R and p ≥ 2. If up ∈ C(Ω) ∩W 1,p
loc (Ω) is a weak (sub-/super)solution to the p-Laplace

problem

(4.10)
{

∆pw = 0 in Ω
w = g on ∂Ω

,

then up is a viscosity (sub-/super)solution to (4.10).
(B) Let up be as before. Then, possibly passing to a subsequence of (up)p≥2, there exists some

u∞ ∈ C(Ω) ∩W 1,∞
loc (Ω) so that

up → u∞ uniformly in Ω

as p → ∞.
(C) The function u∞ from the previous item is a viscosity solution of one of (4.8), (4.9), or (DP),

the choice of problem depending only upon ε:
(i) If ε > 0, then u∞ is a viscosity solution to Problem (4.8).

(ii) If ε < 0, then u∞ is a viscosity solution to Problem (4.9).
(iii) If ε = 0, then u∞ is a viscosity solution to Problem (DP).

It only remains to prove comparison principles and to employ the relationships between
viscosity solutions of (4.8), (4.9), and (DP). To simplify our presentation, we divide our work
between the Subsections 4.1 and 4.2.

Remark 4.3. Theorem 4.1 was recently proved for general sub-Riemannian spaces in more generality
in [11].

4.1. Estimates for ∞-Subharmonic & ∞-Superharmonic Functions. To start, we require a
penalty function which is suited to match the geometry of our family of Grushin-type spaces:

φτ1,...,τn(p, q) = φτ⃗ (p, q) :=
1

2

n∑
k=1

τk(xk − yk)
2.

Utilizing the Iterated Maximum Principle of [2] and its corollaries, it was shown in [8] that, if
u ∈ USC(Ω) and v ∈ LSC(Ω) possess the property

sup
p∈Ω

(u− v) = u(p0)− v(p0) > 0

at some p0 = (x01, . . . , x
0
n) ∈ Ω, then denoting τ⃗ := (τ1, . . . , τn) where τk > 0 there exist

(pτ⃗ , qτ⃗ ) ⊂ Ω× Ω so that

(4.11)


lim

τn→∞
· · · lim

τ1→∞

(
u(pτ⃗ )− v(qτ⃗ )− φτ⃗ (p, q)

)
=u(p0)− v(p0)

lim
τn→∞

· · · lim
τ1→∞

φτ⃗ (p, q) = lim
τ1,...,τn→∞

φτ⃗ (p, q) =0

and, writing pτ⃗ = (xτ⃗1 , . . . , x
τ⃗
n) and qτ⃗ = (yτ⃗1 , . . . , y

τ⃗
n),

(4.12)


pτ1,...,τk := lim

τk→∞
· · · lim

τ1→∞
pτ⃗ =(x01, . . . , x

0
k, x

τ⃗
k+1, . . . , x

τ⃗
n)

qτ1,...,τk := lim
τk→∞

· · · lim
τ1→∞

qτ⃗ =(x01, . . . , x
0
k, y

τ⃗
k+1, . . . , y

τ⃗
n)
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for each 1 ≤ k ≤ n. Additionally, these limits will hold true even if the order of the iterated
limits is changed (although the sequence (pτ⃗ , qτ⃗ ) may change). The Iterated Maximum Princi-
ple and the results above are not dependent upon the frame X; hence we may utilize Equations
(4.11) and (4.12) freely in the lemma below.

Lemma 4.2 (cf. [8, Lemma 4.4]). Let u, v, φτ⃗ and (pτ⃗ , qτ⃗ ) be as above. Assume that at least one of the
functions u, v is locally G-Lipschitz. Then:

(A) There exist (η+τ⃗ ,Xτ⃗ ) ∈ J
2,+

u(pτ⃗ ) and (η−τ⃗ ,Yτ⃗ ) ∈ J
2,−

v(qτ⃗ ).
(B) Define (p⋄q)k to be the point whose k-th coordinate coincides with q and whose other coordinates

coincide with p, in other words,

(p ⋄ q)k = (x1, . . . , xk−1, yk, xk+1, . . . , xn).

Then for each index 1 ≤ k ≤ n,

(4.13) τk
∣∣xτ⃗k − yτ⃗k

∣∣ ≲ dCC(pτ⃗ , (pτ⃗ ⋄ qτ⃗ )k) as τk → ∞.

In particular, τk
∣∣xτ⃗k − yτ⃗k

∣∣ = O(1) as τk → ∞.
(C) The vector estimate

(4.14)
∣∣∥η+τ⃗ ∥2 − ∥η−τ⃗ ∥

2
∣∣ = o(1) as τk → ∞ for all k ≤ n

holds.
(D) The matrix estimate

(4.15)
〈
Xτ⃗ · η+τ⃗ , η

+
τ⃗

〉
−
〈
Yτ⃗ · η−τ⃗ , η

−
τ⃗

〉
= o(1) as τk → ∞ for all k ≤ n

holds.

Proof. The proof of the first two items proceeds precisely as in [8]. We will instead focus on the
crucial differences in our proof of Items (C) and (D) arising from the frame X.

Item (C).
Owing to [12, Theorem 3.2] and Lemma 3.1 (The Elliptic G Twisting Lemma), we have that{

η+τ⃗ =A(pτ⃗ ) ·Deucl(p)φτ⃗ (pτ⃗ , qτ⃗ )

η−τ⃗ =A(qτ⃗ ) · −Deucl(q)φτ⃗ (pτ⃗ , qτ⃗ )
.

Direct calculation shows

∂

∂xk
φτ⃗ (pτ⃗ , qτ⃗ ) = τk(x

τ⃗
k − yτ⃗k) = − ∂

∂yk
φτ⃗ (pτ⃗ , qτ⃗ ),

so we conclude that

[η+τ⃗ ]k =

{
τk(x

τ⃗
k − yτ⃗k), k = 1

τk(x
τ⃗
k − yτ⃗k)ρk(pτ⃗ ), 2 ≤ k

and

[η−τ⃗ ]k =

{
τk(x

τ⃗
k − yτ⃗k), k = 1

τk(x
τ⃗
k − yτ⃗k)ρk(qτ⃗ ), 2 ≤ k

.

This leads us to:

(4.16)
∣∣∥η+τ⃗ ∥2 − ∥η−τ⃗ ∥

2
∣∣ = n∑

k=2

τ2k (x
τ⃗
k − yτ⃗k)

2
∣∣ρ2k(pτ⃗ )− ρ2k(qτ⃗ )

∣∣ .
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Fixing any 2 ≤ k ≤ n, observe that by Equation (4.12) we must have

lim
τk−1→∞

· · · lim
τ1→∞

τ2k (x
τ⃗
k − yτ⃗k)

2
∣∣ρ2k(pτ⃗ )− ρ2k(qτ⃗ )

∣∣ = ∣∣ρ2k(x01, . . . , x0k−1)− ρ2k(x
0
1, . . . , x

0
k−1)

∣∣
×τ2k (xτ⃗k − yτ⃗k)

2

=0.

Applying the above to Inequality (4.16) and utilizing the terminology of Equation (4.12),

lim
τ1→∞

∣∣∥η+τ⃗ ∥2 − ∥η−τ⃗ ∥
2
∣∣ = n∑

k=3

τ2k (x
τ⃗
k − yτ⃗k)

2
∣∣ρ2k(pτ1)− ρ2k(qτ1)

∣∣
lim

τ2→∞
lim

τ1→∞

∣∣∥η+τ⃗ ∥2 − ∥η−τ⃗ ∥
2
∣∣ = n∑

k=4

τ2k (x
τ⃗
k − yτ⃗k)

2
∣∣ρ2k(pτ1,τ2)− ρ2k(qτ1,τ2)

∣∣
...

lim
τn−2→∞

· · · lim
τ1→∞

∣∣∥η+τ⃗ ∥2 − ∥η−τ⃗ ∥
2
∣∣ =τ2n(xτ⃗n − yτ⃗n)

2
∣∣ρ2n(pτ1,...,τn−2)− ρ2n(qτ1,...,τn−2)

∣∣
lim

τn−1→∞
· · · lim

τ1→∞

∣∣∥η+τ⃗ ∥2 − ∥η−τ⃗ ∥
2
∣∣ =τ2n(xτ⃗n − yτ⃗n)

2
∣∣ρ2n(x01, . . . , x0n−1)− ρ2n(x

0
1, . . . , x

0
n−1)

∣∣
=0.

From this, the limit
lim

τn→∞
· · · lim

τ1→∞

∣∣∥η+τ⃗ ∥2 − ∥η−τ⃗ ∥
2
∣∣ = 0

is clear.
Item (D).
We begin by decomposing the left-hand side of the Estimate (4.15) into two terms:〈

Xτ⃗ · η+τ⃗ , η
+
τ⃗

〉
−
〈
Yτ⃗ · η−τ⃗ , η

−
τ⃗

〉
= I1 + I2

where, invoking [12, Theorem 3.2] and the Elliptic G Twisting Lemma once again, we have
defined

I1 :=
〈(

A(pτ⃗ ) ·Xτ⃗ ·AT(pτ⃗ )
)
· η+τ⃗ , η

+
τ⃗

〉
−
〈(

A(qτ⃗ ) · Yτ⃗ ·AT(qτ⃗ )
)
· η−τ⃗ , η

−
τ⃗

〉
(recall that Xτ⃗ , Yτ⃗ are a result of [12, Theorem 3.2]), and

I2 :=
〈
M(Deucl(p)φτ⃗ (pτ⃗ , qτ⃗ ), pτ⃗ ) · η+τ⃗ , η

+
τ⃗

〉
−
〈
M(Deucl(q)φτ⃗ (pτ⃗ , qτ⃗ ), qτ⃗ ) · η−τ⃗ , η

−
τ⃗

〉
.

Writing ϵ̃ := A(pτ⃗ ) · ϵ and κ̂ := A(qτ⃗ ) · κ to represent twisting according to Lemma 3.1,

(4.17)
I1 =

〈
Xτ⃗ · η̃+τ⃗ , η̃

+
τ⃗

〉
−
〈
Yτ⃗ · η̂−τ⃗ , η̂

−
τ⃗

〉
≤⟨C · ζ, ζ⟩ .

Here, ζ := η̃+τ⃗ ⊕ η̂−τ⃗ ∈ R2n and C is a 2n× 2n matrix resulting from [12, Theorem 3.2] which can
be represented in block form as (

B −B
−B B

)
,

where we define

[B]kℓ :=

{
τk + 2δτ2k , k = ℓ
0, k ̸= ℓ
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and δ > 0 is an arbitrary parameter resulting from the theorem of [12]. The definition of C and
B and Inequality (4.17) together yield

(4.18)

I1 ≤
〈
B · (η̃+τ⃗ − η̂−τ⃗ ), (η̃

+
τ⃗ − η̂−τ⃗ )

〉
=

n∑
k=2

(τk + 2δτ2k ) ·
(
ρ2k(pτ⃗ )− ρ2k(qτ⃗ )

)2 · τ2k (xτ⃗k − yτ⃗k)
2.

Since the terms on the right-hand side of (4.18) contain no factors τℓ for ℓ ≤ k − 1,

(4.19) lim
τk−1→∞

· · · lim
τ1→∞

(τk + 2δτ2k ) ·
(
ρ2k(pτ⃗ )− ρ2k(qτ⃗ )

)2 · τ2k (xτ⃗k − yτ⃗k)
2 = 0.

Equation (4.19), work similar to what was employed in Item (C), and Inequality (4.18) therefore
show that

(4.20) lim
τn→∞

· · · lim
τ1→∞

I1 = 0.

It remains to show that I2 tends to 0 as τk → ∞ for all 1 ≤ k ≤ n. Recalling the definition of
the matrix M(·, ·) from Equation (3.7), we may calculate directly the first entry in both of the
inner-products defining I2. Writing Mp and M q to refer to the matrices resulting from M(·, ·)
evaluated at

(
Deucl(p)φτ⃗ (pτ⃗ , qτ⃗ ), pτ⃗

)
,
(
Deucl(q)φτ⃗ (pτ⃗ , qτ⃗ ), qτ⃗

)
respectively:

(4.21) [Mp · η+τ⃗ ]h =



1

2

n∑
ℓ=2

(
∂ρℓ
∂x1

ρℓ

)
(pτ⃗ ) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 h = 1

1

2

h−1∑
ℓ=1

(
∂ρh
∂xℓ

ρ2ℓ

)
(pτ⃗ ) · τℓ(xτ⃗ℓ − yτ⃗ℓ ) · τh(xτ⃗h − yτ⃗h)

+
1

2

n∑
ℓ=h+1

(
∂ρℓ
∂xh

ρℓρh

)
(pτ⃗ ) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 h ≥ 2

and

(4.22) [M q · η−τ⃗ ]h =



1

2

∑
ℓ=2

(
∂ρℓ
∂x1

ρℓ

)
(qτ⃗ ) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 h = 1

1

2

h−1∑
ℓ=1

(
∂ρh
∂xℓ

ρ2ℓ

)
(qτ⃗ ) · τℓ(xτ⃗ℓ − yτ⃗ℓ ) · τh(xτ⃗h − yτ⃗h)

+
1

2

n∑
ℓ=h+1

(
∂ρℓ
∂xh

ρℓρh

)
(qτ⃗ ) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 h ≥ 2.
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Owing to Equations (4.21) and (4.22) and the observation that M(·, ·) is symmetric, we may
calculate I2 as follows:

I2 =
〈
Mp · η+τ⃗ , η

+
τ⃗

〉
−
〈
M q · η−τ⃗ , η

−
τ⃗

〉
=
1

2

n∑
ℓ=2

(
∂ρℓ
∂x1

ρℓ

)
(pτ⃗ ) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 · τ1(xτ⃗1 − yτ⃗1 )

+
1

2

n∑
h=2

h−1∑
ℓ=1

(
∂ρh
∂xℓ

ρhρ
2
ℓ

)
(pτ⃗ ) · τℓ(xτ⃗ℓ − yτ⃗ℓ ) · τ2h(xτ⃗h − yτ⃗h)

2

+
1

2

n−1∑
h=2

n∑
ℓ=h+1

(
∂ρℓ
∂xh

ρℓρ
2
h

)
(pτ⃗ ) · τh(xτ⃗h − yτ⃗h) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2

−1

2

n∑
ℓ=2

(
∂ρℓ
∂x1

ρℓ

)
(qτ⃗ ) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 · τ1(xτ⃗1 − yτ⃗1 )

−1

2

n∑
h=2

h−1∑
ℓ=1

(
∂ρh
∂xℓ

ρhρ
2
ℓ

)
(qτ⃗ ) · τℓ(xτ⃗ℓ − yτ⃗ℓ ) · τ2h(xτ⃗h − yτ⃗h)

2

−1

2

n−1∑
h=2

n∑
ℓ=h+1

(
∂ρℓ
∂xh

ρℓρ
2
h

)
(qτ⃗ ) · τh(xτ⃗h − yτ⃗h) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2.

The sums above may be combined as follows.

(4.23)

2I2 =

n∑
ℓ=2

τ2ℓ (x
τ⃗
ℓ − yτ⃗ℓ )

2 · τ1(xτ⃗1 − yτ⃗1 ) ·
((

∂ρℓ
∂x1

ρℓ

)
(pτ⃗ )−

(
∂ρℓ
∂x1

ρℓ

)
(qτ⃗ )

)

+

n∑
h=2

h−1∑
ℓ=1

τℓ(x
τ⃗
ℓ − yτ⃗ℓ ) · τ2h(xτ⃗h − yτ⃗h)

2 ·
((

∂ρh
∂xℓ

ρhρ
2
ℓ

)
(pτ⃗ )−

(
∂ρh
∂xℓ

ρhρ
2
ℓ

)
(qτ⃗ )

)

+

n−1∑
h=2

n∑
ℓ=h+1

τh(x
τ⃗
h − yτ⃗h) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 ·
((

∂ρℓ
∂xh

ρℓρ
2
h

)
(pτ⃗ )−

(
∂ρℓ
∂xh

ρℓρ
2
h

)
(qτ⃗ )

)
.

Denote the terminal factor in each of the three sums of (4.23) evaluated at (p, q) ∈ Ω× Ω by

Tℓ(p, q) :=

(
∂ρℓ
∂x1

ρℓ

)
(p)−

(
∂ρℓ
∂x1

ρℓ

)
(q)

S1
hℓ(p, q) :=

(
∂ρℓ
∂xℓ

ρhρ
2
ℓ

)
(p)−

(
∂ρℓ
∂xℓ

ρhρ
2
ℓ

)
(q)

S2
hℓ(p, q) :=

(
∂ρℓ
∂xh

ρℓρ
2
h

)
(p)−

(
∂ρℓ
∂xh

ρℓρ
2
h

)
(q)

respectively, in order of their appearance in (4.23). Recalling τk(xτ⃗k − yτ⃗k) = O(1) as τk → ∞ for
every k ≤ n, we invoke Equation (4.12) to conclude:

• For 1 ≤ k ≤ ℓ− 1,

(4.24) lim
τk→∞

· · · lim
τ1→∞

τ2ℓ (x
τ⃗
ℓ −yτ⃗ℓ )2 · τ1(xτ⃗1 −yτ⃗1 ) ·Tℓ(pτ⃗ , qτ⃗ ) ∼ τ2ℓ (x

τ⃗
ℓ −yτ⃗ℓ )2 ·Tℓ(pτ1,...,τk , qτ1,...,τk).
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• For ℓ ≤ k ≤ h− 1,

(4.25) lim
τk→∞

· · · lim
τ1→∞

τ2h(x
τ⃗
h−yτ⃗h)2 ·τℓ(xτ⃗ℓ −yτ⃗ℓ )·S1

hℓ(pτ⃗ , qτ⃗ ) ∼ τ2h(x
τ⃗
h−yτ⃗h)2 ·S1

hℓ(pτ1,...,τk , qτ1,...,τk).

• For h ≤ k ≤ ℓ− 1,

(4.26) lim
τk→∞

· · · lim
τ1→∞

τ2ℓ (x
τ⃗
ℓ−yτ⃗ℓ )2 ·τh(xτ⃗h−yτ⃗h)·S2

hℓ(pτ⃗ , qτ⃗ ) ∼ τ2ℓ (x
τ⃗
ℓ−yτ⃗ℓ )2 ·S2

hℓ(pτ1,...,τk , qτ1,...,τk).

Since ρk depends only upon x1, . . . , xk−1,


Tℓ(pτ1,...,τk , qτ1,...,τk) = 0 when k = ℓ− 1

S1
hℓ(pτ1,...,τk , qτ1,...,τk) = 0 when k = h− 1

S2
hℓ(pτ1,...,τk , qτ1,...,τk) = 0 when k = ℓ− 1

.

Iterated limits of I2 are now calculated from Equations (4.24), (4.25), and (4.26):

lim
τ1→∞

2I2 ∼
n∑

ℓ=3

τ2ℓ (x
τ⃗
ℓ − yτ⃗ℓ )

2 · Tℓ(pτ1 , qτ1)

+

n∑
h=3

τ2h(x
τ⃗
h − yτ⃗h)

2 · S1
h1(pτ1 , qτ1)

+

n∑
h=3

h−1∑
ℓ=2

τℓ(x
τ⃗
ℓ − yτ⃗ℓ ) · τ2h(xτ⃗h − yτ⃗h)

2 · S1
hℓ(pτ1 , qτ1)

+

n−1∑
h=2

n∑
ℓ=h+1

τh(x
τ⃗
h − yτ⃗h) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 · S2
hℓ(pτ1 , qτ1),

lim
τ2→∞

lim
τ1→∞

2I2 ∼
n∑

ℓ=4

τ2ℓ (x
τ⃗
ℓ − yτ⃗ℓ )

2 · Tℓ(pτ1,τ2 , qτ1,τ2)

+

n∑
h=4

τ2h(x
τ⃗
h − yτ⃗h)

2 · S1
h1(pτ1,τ2 , qτ1,τ2)

+

n∑
h=4

τ2h(x
τ⃗
h − yτ⃗h)

2 · S1
h2(pτ1,τ2 , qτ1,τ2)

+

n∑
h=4

h−1∑
ℓ=3

τℓ(x
τ⃗
ℓ − yτ⃗ℓ ) · τ2h(xτ⃗h − yτ⃗h)

2 · S1
hℓ(pτ1,τ2 , qτ1,τ2)

+

n∑
ℓ=4

τ2ℓ (x
τ⃗
ℓ − yτ⃗ℓ )

2 · S2
2ℓ(pτ1,τ2 , qτ1,τ2)

+

n−1∑
h=3

n∑
ℓ=h+1

τh(x
τ⃗
h − yτ⃗h) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 · S2
hℓ(pτ1,τ2 , qτ1,τ2),
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lim
τ3→∞

lim
τ2→∞

lim
τ1→∞

2I2 ∼
n∑

ℓ=5

τ2ℓ (x
τ⃗
ℓ − yτ⃗ℓ )

2 · Tℓ(pτ1,τ2,τ3 , qτ1,τ2,τ3)

+

n∑
h=5

τ2h(x
τ⃗
h − yτ⃗h)

2 · S1
h1(pτ1,τ2,τ3 , qτ1,τ2,τ3)

+

n∑
h=5

τ2h(x
τ⃗
h − yτ⃗h)

2 · S1
h2(pτ1,τ2,τ3 , qτ1,τ2,τ3)

+
n∑

h=5

τ2h(x
τ⃗
h − yτ⃗h)

2 · S1
h3(pτ1,τ2,τ3 , qτ1,τ2,τ3)

+

n∑
h=5

h−1∑
ℓ=4

τℓ(x
τ⃗
ℓ − yτ⃗ℓ ) · τ2h(xτ⃗h − yτ⃗h)

2 · S1
hℓ(pτ1,τ2,τ3 , qτ1,τ2,τ3)

+

n∑
ℓ=5

τ2ℓ (x
τ⃗
ℓ − yτ⃗ℓ )

2 · S2
2ℓ(pτ1,τ2,τ3 , qτ1,τ2,τ3)

+

n∑
ℓ=5

τ2ℓ (x
τ⃗
ℓ − yτ⃗ℓ )

2 · S2
3ℓ(pτ1,τ2,τ3 , qτ1,τ2,τ3)

+

n−1∑
h=4

n∑
ℓ=h+1

τh(x
τ⃗
h − yτ⃗h) · τ2ℓ (xτ⃗ℓ − yτ⃗ℓ )

2 · S2
hℓ(pτ1,τ2,τ3 , qτ1,τ2,τ3),

...
lim

τn−2→∞
· · · lim

τ1→∞
2I2 ∼ τ2n(x

τ⃗
n − yτ⃗n)

2 · Tn(pτ1,...,τn−2 , qτ1,...,τn−2)

+τ2n(x
τ⃗
n − yτ⃗n)

2
n−1∑
r=1

S1
nr(pτ1,...,τn−2

, qτ1,...,τn−2
)

+τ2n(x
τ⃗
n − yτ⃗n)

2
n−1∑
r=2

·S2
rn(pτ1,...,τn−2

, qτ1,...,τn−2
).

The the iterated limits presented above, particularly the final limit, imply that

lim
τn−1→∞

lim
τn−2→∞

· · · lim
τ1→∞

2I2 = 0,

hence
lim

τn→∞
· · · lim

τ1→∞
I2 = 0.

This and the iterated limit (4.20) together prove Item (D). □

4.2. Comparison Principles. Lemma 4.2 can now be used to prove a comparison principle for
the operators Fε and Gε defined in Section 3.

Theorem 4.2. Assume that u∞ is the viscosity solution to (4.8) proven to exist by Theorem 4.1; assume
also that v is a viscosity subsolution to Problem (4.8). Then v ≤ u∞ on Ω.

Proof. Suppose to the contrary and recall that, since u∞ is both a viscosity sub- and supersolu-
tion to (4.8), we will have v ≤ g ≤ u∞ on ∂Ω by our definitions. It must be that

(4.27) sup
Ω

(v − u∞) = v(p0)− u∞(p0) > 0.

[1, Lemma 5.1] and [1, Theorem 5.3] permit us to assume that there exists µ(·) > 0 so that

Fεu∞(p) = µ(p) > 0.
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Taking the difference of Fεu∞ and Fεv on the sequence (pτ⃗ , qτ⃗ ) ⊂ Ω× Ω,

(4.28)

0 < µ(qτ⃗ ) <Fεu∞(qτ⃗ )−Fεv(pτ⃗ )

=min
{
∥η−τ⃗ ∥

2 − ε2,−
〈
Yτ⃗ · η−τ⃗ , η

−
τ⃗

〉}
−min

{
∥η+τ⃗ ∥

2 − ε2,−
〈
Xτ⃗ · η+τ⃗ , η

+
τ⃗

〉}
≤max

{
∥η−τ⃗ ∥

2 − ∥η+τ⃗ ∥
2,
〈
Xτ⃗ · η+τ⃗ , η

+
τ⃗

〉
−

〈
Yτ⃗ · η−τ⃗ , η

−
τ⃗

〉}
.

Since u∞ ∈ C(Ω)∩W 1,∞
loc (Ω), the assumptions of Lemma 4.2 are satisfied – so we may apply it,

[1, Lemma 5.1], and [1, Theorem 5.3] and notice

(4.29) µ(qτ⃗ ) → µ(p0) > 0

and

(4.30) max
{
∥η−τ⃗ ∥

2 − ∥η+τ⃗ ∥
2,
〈
Xτ⃗ · η+τ⃗ , η

+
τ⃗

〉
−

〈
Yτ⃗ · η−τ⃗ , η

−
τ⃗

〉}
→ 0

as τ1, . . . , τn → ∞. We arrive at a contradiction by applying (4.28), (4.29), and (4.30). □

In the same manner, we can prove a similar result for the operator Gε.

Corollary 4.1. Assume that u∞ is the viscosity solution to (4.9) proven to exist by Theorem 4.1; assume
also that v is a viscosity supersolution to Problem (4.9). Then u∞ ≤ v on Ω.

The following properties of of solutions to (4.8) and (4.9) are evident from the definition of
the operators Fε and Gε:

• If u is a viscosity solution to Problem (4.8), then it is a viscosity supersolution to Problem
(DP) – that is, u is ∞-superharmonic.

• If u is a viscosity solution to Problem (4.9), then it is a viscosity subsolution to Problem
(DP) – that is, u is ∞-subharmonic.

We now state a lemma which relates solutions of (4.8) and (4.9). In light of the comparisons
above, the uniqueness of the ∞-harmonic function u∞ follows as a corollary.

Lemma 4.3 (cf. [1, Lemma 5.6]). Let uε and uε represent the solutions to Problems (4.8) and (4.9)
respectively. Given δ > 0, there exists ε > 0 so that

uε ≤ uε ≤ uε + δ.
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