MODERN MATHEMATICAL METHODS **2** (2024), No. 1, pp. 41-54 https://modernmathmeth.com/ ISSN 3023 - 5294

Research Article

Viscosity solutions to the ∞**-Laplace equation in Grushin-type spaces**

THOMAS BI[E](https://orcid.org/0000-0003-2029-0562)SKE[®] AND ZACHARY FORREST^{[*](https://orcid.org/0000-0002-6636-0047)®}

ABSTRACT. In this paper, we prove the existence and uniqueness of viscosity solutions to the infinite Laplace equation in Grushin-type spaces whose tangent spaces consist of arbitrary triangular vector fields.

Keywords: p-Laplace equation, ∞-Laplace equation, viscosity solution, Grushin-type spaces, sub-Riemannian geometry.

2020 Mathematics Subject Classification: 53C17, 35D40, 35J94, 35H20, 22E25, 17B70.

1. INTRODUCTION & MOTIVATION

In [\[2\]](#page-12-0), the author proves existence-uniquness of ∞ -harmonic functions in the viscosity sense for a large class of Grushin-type spaces. Specifically, for each point p in the class of Grushintype spaces, the tangent space at $p = (x_1, x_2, \ldots, x_n)$ is defined by vector fields of the form

$$
Q_i(p)\frac{\partial}{\partial x_i} = Q_i(x_1,\ldots,x_{i-1})\frac{\partial}{\partial x_i},
$$

where $Q_1 \equiv 1$ and for each $2 \leq i \leq n$ the functions Q_i are polynomials determined only by the first $i - 1$ coordinates of p. In [\[8\]](#page-12-1), the authors obtain existence and uniqueness results for ∞ -harmonic functions in the viscosity sense in spaces whose tangent space at each point p is defined by $\frac{\partial}{\partial x_i}$ for $1 \leq i \leq m < n$ and

$$
\sigma(p)\frac{\partial}{\partial x_j} = \sigma(x_1,\ldots,x_m)\frac{\partial}{\partial x_j}
$$

for $m + 1 \le j \le n$, where σ is a C^2 function satisfying certain assumptions on its zeroes. In the current article, our objective is to expand upon and generalize both results to a broader class of Grushin-type spaces. In particular, we seek to show that the Dirichlet problem

(DP)
$$
\begin{cases} \Delta_{\infty} w = 0 & \text{in } \Omega \\ w = g & \text{on } \partial \Omega \end{cases}
$$

will possess unique viscosity solutions when posed in bounded domains Ω in Grushin-type spaces whose tangent spaces are determined by

$$
\rho_k(x_1,\ldots,x_{k-1})\frac{\partial}{\partial x_k},
$$

where ρ_k is an arbitrary function subject to mild technical assumptions.

Received: 21.11.2023; Accepted: 17.01.2024; Published Online: 21.01.2024

^{*}Corresponding author: Zachary Forrest; zachary9@usf.edu

The layout of the paper will be as follows. In Section [2,](#page-1-0) we will explore details of the Grushin-type spaces G, pausing to mention previous examples of such spaces and their relation to the current situation, and then introduce notions of distance and calculus. In Section [3,](#page-2-0) we define notions of viscosity theory for elliptic equations and give results relating Euclidean elliptic jets to their Grushin counterparts (see Section [3](#page-2-0) for definitions). We conclude with Section 4 , in which we will prove that solutions to (DP) exist and are unique. The uniqueness of solutions requires us to produce useful estimates via a maximum principle; we then utilize these estimates to prove a comparison principle for sub- and supersolutions of [\(DP\)](#page-0-0).

2. GRUSHIN-TYPE SPACES

To construct the Lie Algebras which are of interest to this paper, let $n \geq 2$ be given and, fixing any $p=(x_1,\ldots,x_n)\in\mathbb{R}^n$, consider the frame $\mathfrak{X}:=\{X_1,X_2,\ldots,X_n\}$ consisting of the vector fields

$$
X_1(p) := \frac{\partial}{\partial x_1}
$$

(that is, we decree $\rho_1 \equiv 1$) and

(2.2)
$$
X_j(p) := \rho_j(p) \frac{\partial}{\partial x_j} = \rho_j(x_1, x_2, \dots, x_{j-1}) \frac{\partial}{\partial x_j} \ (2 \leq j \leq n).
$$

We will assume that for every $2 \leq j$:

- (A) Each function ρ_j is Euclidean C^2 (denoted C^2_{eucl} for what follows).
- (B) The set of zeroes for each ρ_j is given by $Z_j \times \mathbb{R}^{n-j+1}$, where Z_j is a discrete subset of \mathbb{R}^{j-1} .

The papers [\[2,](#page-12-0) [5\]](#page-12-2) considered the stationary ∞ -Laplace equation in these spaces under the additional assumption that each ρ_i is a polynomial; in [\[8\]](#page-12-1), the ∞-Laplacian was studied in the case that $\rho_1, \ldots, \rho_m \equiv 1$ for some $m < n$ and that $\rho_j = \sigma$ for all $m \leq j$, where $\sigma \in C^2_{\text{eucl}}(\mathbb{R}^m)$. The fundamental solution to the p-Laplace equation was explored in [\[9\]](#page-12-3) when the functions $\rho_i = \rho_k$ for all $2 \leq j$, k are chosen to be monomials in x_1 ; a similar study was made in [\[3\]](#page-12-4), with

$$
\rho_j(p) = c \bigg(\sum_{i=1}^m (x_i - a_i)^2 \bigg)^{\frac{k}{2}},
$$

where $1 \le m \le j$ and for $c, k, a_i \in \mathbb{R}$ with $c \ne 0$. (Note we will require $k \ge 4$.)

The Lie Algebra $\mathfrak{g} := \text{span} \mathfrak{X}$ may be endowed with a singular inner-product $\langle \cdot, \cdot \rangle$ that makes $\mathfrak X$ orthonormal. We then consider the space $\mathbb G$ which is the image of g under the exponential map, and we denote points of G also by the *n*-tuples $p = (x_1, \ldots, x_n)$. One consequence of this definition is that these spaces are not groups: Indeed, dim g at p is n when every $\rho_j \neq 0$; otherwise, dim $\mathfrak{g} < n$.

The natural metric to impose upon G is the *Carnot-Carathéodory* (or CC) metric

(2.3)
$$
d_{CC}(p,q) := \inf_{\gamma \in \Gamma} \int_0^1 \|\gamma'(t)\| dt,
$$

where Γ is the collection of all curves γ satisfying **(i)** $\gamma(0) = p, \gamma(1) = q$ and **(ii)** $\gamma' \in \mathfrak{g}$. Because some vector fields X_j and their derivatives may vanish at a point, Chow's Theorem (see, for example, [\[10\]](#page-12-5)) may not apply. However, since X_1 is always nonzero, points of $\mathbb G$ can always be connected by concatenating curves and so $\Gamma \neq \emptyset$ and $d_{CC}(\cdot, \cdot)$ is an honest metric. We may therefore define balls in G by

$$
B(p_0, r) := \{ p \in \mathbb{G} : d_{CC} (p_0, p) < r \}.
$$

Given a smooth function $w: \mathcal{O} \to \mathbb{R}$ where $\mathcal{O} \subseteq \mathbb{G}$ is open, the gradient of w in \mathbb{G} is defined by

$$
\nabla_{\mathbb{G}} w := (X_1 w, \dots, X_n w)
$$

and the second derivative matrix $\left(D^2u\right)^\star$ is the symmetric $n\times n$ matrix whose entries are given by

$$
[(D2w)*]_{k\ell} := \frac{1}{2} (X_{\ell}X_kw + X_kX_{\ell}w).
$$

We also have notions of regularity:

Definition 2.1. A function $u: \mathcal{O} \to \mathbb{R}$ is said to be $C^1_{\mathbb{G}}(\mathcal{O})$ if $X_k u$ is continuous for each $1 \leq k \leq n$. The function u is $C^2_{\mathbb{G}}(\mathcal{O})$ if $X_\ell X_k u$ is continuous for each $1 \leq k,\ell \leq n$.

The function spaces $L^r, L^r_{loc}, W^{1,r}, W^{1,r}_0$, and $W^{1,r}_{loc}$ for $1 \leq r \leq \infty$ over $\mathbb G$ mimic their Euclidean counterparts.

3. VISCOSITY THEORY FOR ELLIPTIC EQUATIONS

Throughout this article, we will have need of multiple operators; we will define them in the current section for the sake of convenience. First we have the p-Laplacian which, for smooth functions w , is given by

$$
\Delta_{\mathbb{P}} w := -\operatorname{div} \left(\|\nabla_{\mathbb{G}} w\|^{p-2} \nabla_{\mathbb{G}} w \right)
$$

= -\left(\|\nabla_{\mathbb{G}} w\|^{p-2} \operatorname{tr} (D^2 w)^* + (\mathbb{P} - 2) \|\nabla_{\mathbb{G}} w\|^{p-4} \langle (D^2 w)^* \nabla_{\mathbb{G}} w, \nabla_{\mathbb{G}} w \rangle \right)

for $1 < p < \infty$. The formal limit of the p-Laplacian as $p \to \infty$ is the ∞ -Laplacian

$$
\Delta_{\infty} w := - \left\langle (D^2 w)^\star \, \nabla_{\mathbb{G}} \, w, \nabla_{\mathbb{G}} \, w \right\rangle.
$$

We also define Jensen's Auxiliary functions (see [\[13\]](#page-13-0)) for \mathbb{G} : Given some $\varepsilon \in \mathbb{R}$, these are the operators

$$
\mathcal{F}^{\varepsilon}\big(p,\nabla_{\mathbb{G}}w,\big(D^2w\big)^{\star}\big):=\min\big\{\|\nabla_{\mathbb{G}}w(p)\|^2-\varepsilon^2,\Delta_{\infty}w(p)\big\}
$$

and

$$
\mathcal{G}^{\varepsilon}(p, \nabla_{\mathbb{G}} w, (D^2 w)^*) := \max \left\{ \varepsilon^2 - ||\nabla_{\mathbb{G}} w(p)||^2, \Delta_{\infty} w(p) \right\}.
$$

These last two operators may also be thought of as functions mapping $\mathbb{G} \times \mathfrak{g} \times \mathcal{S}^n$ into \mathbb{R} , and so we represent any of the above generically by the function $\mathcal{H} : \mathbb{G} \times \mathfrak{g} \times \mathcal{S}^n \to \mathbb{R}$.

The elliptic equations which we wish to solve are of the form

(3.4)
$$
\mathcal{H}w(p) = \mathcal{H}(p, \nabla_{\mathbb{G}} w, (D^2w)^{\star}) = 0,
$$

where it should be noted that H in each of the four cases above exhibits a property which [\[12\]](#page-13-1) calls *proper*: Specifically, for each pair of matrices $X \leq Y$ in S^n and all $p \in \mathbb{G}$, $\eta \in \mathfrak{g}$, we will have

$$
\mathcal{H}(p,\eta,Y) \leq \mathcal{H}(p,\eta,X).
$$

Fixing any $p_0 \in \mathcal{O} \subseteq \mathbb{G}$ for an open set \mathcal{O} , and a function $u : \mathcal{O} \to \mathbb{R}$, we may now introduce two collections of functions necessary to viscosity theory: The "touching above functions" $\mathcal{TA}(u,p_0)$ consisting of all $\phi \in C^2_\mathbb{G}(\mathcal{O})$ satisfying

$$
0 = \phi(p_0) - u(p_0) \le \phi(p) - u(p)
$$
 near p_0 ;

and the "touching below functions" $\mathcal{TB}(u,p_0)$ consisting of all $\psi\in C^2_\mathbb{G}(\mathcal{O})$ such that

$$
0 = u(p_0) - \psi(p_0) \le u(p) - \psi(p)
$$
 near p_0 .

As in [\[8\]](#page-12-1), we then may define viscosity (sub-/super-)solutions.

Definition 3.2. *Let* $\Omega \in \mathbb{G}$ *be given. A function* $u \in \text{USC}(\Omega)$ *is a viscosity subsolution of Equation* [\(3.4\)](#page-2-1) *if for each* $p_0 \in \Omega$ *and every* $\phi \in \mathcal{T} \mathcal{A}(u, p_0)$ *the inequality*

$$
\mathcal{H}\phi(p_0)\leq 0
$$

is satisfied. Functions $v \in \text{LSC}(\Omega)$ *are said to be viscosity supersolutions of* [\(3.4\)](#page-2-1) *if for each* $p_0 \in \Omega$ *and every* $\psi \in \mathcal{TB}(v, p_0)$ *, we have*

$$
\mathcal{H}\psi(p_0)\geq 0.
$$

Functions $w \in C(\Omega)$ are called viscosity solutions of [\(3.4\)](#page-2-1) if they are both a viscosity sub- and superso*lution.*

Remark 3.1. In the case that $\mathcal{H} = \Delta_{\infty}$, we shall use the term ∞ -(sub-/super-)harmonic to refer to the *viscosity (sub-/super-)solutions of* [\(3.4\)](#page-2-1)*.*

Remark 3.2. In the case that $\mathcal{H} = \Delta_p$, care needs to be taken in the $p < 2$ case due to the singularity *which occurs when* $\|\nabla_{\mathbb{G}} w\| = 0$ *; however, since our aim is to use viscosity solutions of the* p-Laplacian *to produce an* ∞ *-harmonic function, we only concern ourselves with the case* $p \geq 2$ *.*

The notion of viscosity (sub-/super-)solutions may be equivalently restated. For a given function $u: \mathcal{O} \to \mathbb{R}$, we may define the upper jet

$$
J^{2,+}u(p_0):=\left\{\big(\nabla_{\mathbb{G}}\phi(p_0),\big(D^2\phi\big)^{\star}(p_0)\big):\phi\in{\mathcal{TA}}\big(u(p_0)\big)\right\}
$$

and lower jet

$$
J^{2,-}u(p_0) := \left\{ \left(\nabla_{\mathbb{G}} \psi(p_0), \left(D^2 \psi \right)^{\star}(p_0) \right) : \psi \in \mathcal{TB} \left(u(p_0) \right) \right\} = -J^{2,+}(-u)(p_0).
$$

By $\overline{J}^{2,+}u(p_0)$ we will denote the collection of all $(\eta,X)\in\mathbb{R}^n\times\mathcal{S}^n$ such that there exists $(p_k)\subset\mathbb{G}$ and $(\eta_k, X_k) \in J^{2,+}u(p_k)$ which satisfy $(p_k, u(p_k), \eta_k, X_k) \to (p_0, u(p_0), \eta, X)$ as $k \to \infty$; a similar definition is made for $\overline{J}^{2,-}u(p_0)$.

Definition 3.3. *Let* $\Omega \in \mathbb{G}$ *be given. A function* $u \in \text{USC}(\Omega)$ *is a viscosity subsolution of Equation* [\(3.4\)](#page-2-1) *if for every* $p_0 \in \Omega$,

$$
\mathcal{H}(p_0,\eta,X)\leq 0
$$

for all $(\eta, X) \in \overline{J}^{2,+}u(p_0)$. A function $v \in LSC(\Omega)$ is a viscosity supersolution of [\(3.4\)](#page-2-1) if $-v$ is a *viscosity subsolution of* [\(3.4\)](#page-2-1), and a viscosity solution of (3.4) is a function $w \in C(\Omega)$ which is both a *viscosity sub- and supersolution of* [\(3.4\)](#page-2-1)*.*

The advantage of this second definition is that we can easily state the following result which, for a given function $u: \mathcal{O} \to \mathbb{R}$ and $p_0 \in \mathcal{O}$, relates the Euclidean upper jet $J_{\text{eucl}}^{2,+}u(p_0)$ to $J^{2,+}\,u(p_0).$ The proof in [\[2\]](#page-12-0) relies upon producing Grushin second-order Taylor Polynomials for $C_{\mathbb{G}}^2$ functions and then utilizing the twisting terms and factors in these polynomials to deduce the twisting necessary for jet entries (cf. [\[6,](#page-12-6) Corollary 3.2]). The proof is not significantly altered by replacing the vector fields considered in [\[2\]](#page-12-0) with our frame X.

Lemma 3.1 (Elliptic G Twisting Lemma). Let $\mathcal{O} \subseteq \mathbb{G}$ be open, let $u : \mathcal{O} \to \mathbb{R}$, and let $p_0 \in \mathcal{O}$. *Suppose that* $(\eta, \overline{X}) \in J_{\text{eucl}}^{2,+}u(p_0)$ *: Then*

(3.5)
$$
\left(\boldsymbol{A}(p_0)\cdot\eta,\boldsymbol{A}(p_0)\cdot\boldsymbol{X}\cdot\boldsymbol{A}^{\mathrm{T}}(p_0)+\boldsymbol{M}(\eta,p_0)\right)\in J^{2,+}u(p_0),
$$

where

(3.6)
$$
\left(\mathbf{A}(p_0)\right)_{k\ell} = \begin{cases} 1, & k = 1 = \ell \\ \rho_k(p), & 2 \le k = \ell \le n \\ 0, & \text{otherwise} \end{cases}
$$

and

(3.7)
$$
\left(\mathbf{M}(\eta, p_0)\right)_{k\ell} = \begin{cases} \frac{1}{2} \cdot \frac{\partial \rho_k}{\partial x_\ell}(p) \rho_\ell(p) \eta_k, & \ell < k \\ \frac{1}{2} \cdot \frac{\partial \rho_\ell}{\partial x_k}(p) \rho_k(p) \eta_\ell, & k < \ell \\ 0, & \text{otherwise.} \end{cases}
$$

Given the properties of the collections $J^{2,+}$ $u(p_0)$ and $J^{2,-}$ $u(p_0)$, a similar relationship holds for $J_{\text{eucl}}^{2,-}u(p_0)$ and $J^{2,-}u(p_0)$.

4. EXISTENCE & UNIQUENESS OF ∞-HARMONIC FUNCTIONS

Consider the Dirichlet problems

(4.8)
$$
\begin{cases} \mathcal{F}^{\varepsilon} w = 0 \text{ in } \Omega \\ w = g \text{ on } \partial \Omega \end{cases}
$$

(4.9)
$$
\begin{cases} \mathcal{G}^{\varepsilon} w = 0 \text{ in } \Omega \\ w = g \text{ on } \partial \Omega \end{cases}
$$

and

$$
\begin{cases}\n\Delta_{\infty} w = 0 \text{ in } \Omega \\
w = g \text{ on } \partial\Omega\n\end{cases}
$$

where $\Omega \in \mathbb{G}$ is a domain and we always assume that $g \in C(\partial \Omega)$. We will use the Problems [\(4.8\)](#page-4-1) and [\(4.9\)](#page-4-2) to show that Problem [\(DP\)](#page-0-0) possess a unique solution. Our first task is to extend our notion of viscosity solutions to Dirichlet problems.

Definition 4.4. Let $\mathcal{H} : \mathbb{G} \times \mathbb{R}^n \times \mathcal{S}^n \to \mathbb{R}$ represent one of the operators, $\Delta_p, \Delta_\infty, \mathcal{F}^\varepsilon$, or \mathcal{G}^ε ($\varepsilon \in \mathbb{R}$); *suppose that* Ω, g *are as above and that we are given the Dirichlet problem*

$$
\begin{cases} \mathcal{H}w = 0 \text{ in } \Omega \\ w = g \text{ on } \partial\Omega \end{cases}
$$

.

A viscosity subsolution u to such a problem is a viscosity subsolution to the equation $\mathcal{H}u = 0$ which *also satisfies* u ≤ g *on* ∂Ω*. We define a viscosity supersolution* v *to the Dirichlet problem similarly. The function* w *is a viscosity solution to the Dirichlet problem if it is both a viscosity sub- and supersolution of the problem.*

From here, we proceed as follows: We prove that each of the Problems [\(4.8\)](#page-4-1), [\(4.9\)](#page-4-2), and [\(DP\)](#page-0-0) possesses a viscosity solution; with existence proven, we show that Problems [\(4.8\)](#page-4-1) and [\(4.9\)](#page-4-2) support comparison principles which verify that solutions to these two problems are unique; and finally, we exploit relationships between the Problems (4.8) , (4.9) , and (DP) to show that the solution to [\(DP\)](#page-0-0) is unique.

Existence of solutions to the three Dirichlet problems above is standard and, following the approach of [\[7,](#page-12-7) Theorem 4.1], we condense the results supporting this finding into one theorem. As in [\[7\]](#page-12-7), the proof follows the layout of [\[1,](#page-12-8) Section 4].

Theorem 4.1 (Existence of ∞-Harmonic Functions)**.** *The following are true:*

(A) Let $\varepsilon \in \mathbb{R}$ and $p \ge 2$. If $u_p \in C(\Omega) \cap W^{1,p}_{loc}(\Omega)$ is a weak (sub-/super)solution to the p-Laplace *problem*

,

(4.10)
$$
\begin{cases} \Delta_{p} w = 0 & \text{in } \Omega \\ w = g & \text{on } \partial \Omega \end{cases}
$$

then u_p *is a viscosity (sub-/super)solution to [\(4.10\)](#page-4-3).*

(B) Let u_p be as before. Then, possibly passing to a subsequence of $(u_p)_{p>2}$, there exists some $u_{\infty} \in C(\Omega) \cap W^{1,\infty}_{loc}(\Omega)$ so that

 $u_{\rm p} \rightarrow u_{\infty}$ *uniformly in* Ω

 $as p \rightarrow \infty$ *.*

- (C) The function u_{∞} from the previous item is a viscosity solution of one of [\(4.8\)](#page-4-1), [\(4.9\)](#page-4-2), or [\(DP\)](#page-0-0), *the choice of problem depending only upon* ε*:*
	- (i) *If* $\varepsilon > 0$ *, then* u_{∞} *is a viscosity solution to Problem* [\(4.8\)](#page-4-1)*.*
	- (ii) *If* ε < 0, then u_{∞} *is a viscosity solution to Problem [\(4.9\)](#page-4-2).*
	- (iii) *If* $\varepsilon = 0$ *, then* u_{∞} *is a viscosity solution to Problem* [\(DP\)](#page-0-0).

It only remains to prove comparison principles and to employ the relationships between viscosity solutions of (4.8) , (4.9) , and (DP) . To simplify our presentation, we divide our work between the Subsections [4.1](#page-5-0) and [4.2.](#page-11-0)

Remark 4.3. *Theorem [4.1](#page-5-1) was recently proved for general sub-Riemannian spaces in more generality in* [\[11\]](#page-12-9)*.*

4.1. **Estimates for** ∞**-Subharmonic &** ∞**-Superharmonic Functions.** To start, we require a penalty function which is suited to match the geometry of our family of Grushin-type spaces:

$$
\varphi_{\tau_1,\dots,\tau_n}(p,q) = \varphi_{\vec{\tau}}(p,q) := \frac{1}{2} \sum_{k=1}^n \tau_k (x_k - y_k)^2.
$$

Utilizing the Iterated Maximum Principle of [\[2\]](#page-12-0) and its corollaries, it was shown in [\[8\]](#page-12-1) that, if $u \in USC(\Omega)$ and $v \in LSC(\Omega)$ possess the property

$$
\sup_{p \in \Omega} (u - v) = u(p_0) - v(p_0) > 0
$$

at some $p_0 = (x_1^0, \ldots, x_n^0) \in \Omega$, then denoting $\vec{\tau} := (\tau_1, \ldots, \tau_n)$ where $\tau_k > 0$ there exist $(p_{\vec{\tau}}, q_{\vec{\tau}}) \subset \Omega \times \Omega$ so that

(4.11)
$$
\begin{cases} \lim_{\tau_n \to \infty} \cdots \lim_{\tau_1 \to \infty} (u(p_{\vec{\tau}}) - v(q_{\vec{\tau}}) - \varphi_{\vec{\tau}}(p, q)) = u(p_0) - v(p_0) \\ \lim_{\tau_n \to \infty} \cdots \lim_{\tau_1 \to \infty} \varphi_{\vec{\tau}}(p, q) = \lim_{\tau_1, \dots, \tau_n \to \infty} \varphi_{\vec{\tau}}(p, q) = 0 \end{cases}
$$

and, writing $p_{\vec{\tau}} = (x_1^{\vec{\tau}}, \dots, x_n^{\vec{\tau}})$ and $q_{\vec{\tau}} = (y_1^{\vec{\tau}}, \dots, y_n^{\vec{\tau}})$,

(4.12)
$$
\begin{cases} p_{\tau_1,...,\tau_k} := \lim_{\tau_k \to \infty} \cdots \lim_{\tau_1 \to \infty} p_{\vec{\tau}} = (x_1^0,...,x_k^0, x_{k+1}^{\vec{\tau}},...,x_n^{\vec{\tau}}) \\ q_{\tau_1,...,\tau_k} := \lim_{\tau_k \to \infty} \cdots \lim_{\tau_1 \to \infty} q_{\vec{\tau}} = (x_1^0,...,x_k^0, y_{k+1}^{\vec{\tau}},...,y_n^{\vec{\tau}}) \end{cases}
$$

for each $1 \leq k \leq n$. Additionally, these limits will hold true even if the order of the iterated limits is changed (although the sequence $(p_{\vec{r}}, q_{\vec{r}})$ may change). The Iterated Maximum Principle and the results above are not dependent upon the frame \mathfrak{X} ; hence we may utilize Equations (4.11) and (4.12) freely in the lemma below.

Lemma 4.2 (cf. [\[8,](#page-12-1) Lemma 4.4]). *Let* $u, v, \varphi_{\vec{\tau}}$ *and* $(p_{\vec{\tau}}, q_{\vec{\tau}})$ *be as above. Assume that at least one of the functions* u, v *is locally* G*-Lipschitz. Then:*

- (A) *There exist* $(\eta^+_{\tau}, \mathcal{X}_{\tau}) \in \overline{J}^{2,+} u(p_{\tau})$ *and* $(\eta^-_{\tau}, \mathcal{Y}_{\tau}) \in \overline{J}^{2,-} v(q_{\tau}).$
- (B) *Define* $(p \diamond q)_k$ *to be the point whose* k-th coordinate coincides with q and whose other coordinates *coincide with* p*, in other words,*

$$
(p \diamond q)_k = (x_1, \ldots, x_{k-1}, y_k, x_{k+1}, \ldots, x_n).
$$

Then for each index $1 \leq k \leq n$ *,*

(4.13)
$$
\tau_k \left| x_k^{\vec{\tau}} - y_k^{\vec{\tau}} \right| \lesssim d_{CC}(p_{\vec{\tau}}, (p_{\vec{\tau}} \diamond q_{\vec{\tau}})_k) \text{ as } \tau_k \to \infty.
$$

In particular, $\tau_k\left|x_k^{\vec{\tau}}-y_k^{\vec{\tau}}\right| = O(1)$ as $\tau_k\to\infty$. (C) *The vector estimate*

(4.14)
$$
\left|\|\eta_{\vec{\tau}}^{+}\|^{2}-\|\eta_{\vec{\tau}}^{-}\|^{2}\right|=o(1) \text{ as } \tau_{k} \to \infty \text{ for all } k \leq n
$$

holds.

(D) *The matrix estimate*

(4.15)
$$
\langle \mathcal{X}_{\vec{\tau}} \cdot \eta_{\vec{\tau}}^+ , \eta_{\vec{\tau}}^+ \rangle - \langle \mathcal{Y}_{\vec{\tau}} \cdot \eta_{\vec{\tau}}^- , \eta_{\vec{\tau}}^- \rangle = o(1) \text{ as } \tau_k \to \infty \text{ for all } k \leq n
$$

holds.

Proof. The proof of the first two items proceeds precisely as in [\[8\]](#page-12-1). We will instead focus on the crucial differences in our proof of Items (C) and (D) arising from the frame $\mathfrak X$.

Item (C).

Owing to $[12,$ Theorem 3.2] and Lemma [3.1](#page-3-0) (The Elliptic $\mathbb G$ Twisting Lemma), we have that

$$
\begin{cases} \eta^+_{\vec{\tau}} = \mathcal{A}(p_{\vec{\tau}}) \cdot D_{\text{eucl}(p)} \varphi_{\vec{\tau}}(p_{\vec{\tau}}, q_{\vec{\tau}}) \\ \eta^-_{\vec{\tau}} = \mathcal{A}(q_{\vec{\tau}}) \cdot -D_{\text{eucl}(q)} \varphi_{\vec{\tau}}(p_{\vec{\tau}}, q_{\vec{\tau}}) \end{cases}.
$$

Direct calculation shows

$$
\frac{\partial}{\partial x_k} \varphi_{\vec{\tau}}(p_{\vec{\tau}}, q_{\vec{\tau}}) = \tau_k(x_k^{\vec{\tau}} - y_k^{\vec{\tau}}) = -\frac{\partial}{\partial y_k} \varphi_{\vec{\tau}}(p_{\vec{\tau}}, q_{\vec{\tau}}),
$$

so we conclude that

$$
[\eta^+_{\vec{\tau}}]_k = \begin{cases} \tau_k(x_k^{\vec{\tau}} - y_k^{\vec{\tau}}), & k = 1 \\ \tau_k(x_k^{\vec{\tau}} - y_k^{\vec{\tau}})\rho_k(p_{\vec{\tau}}), & 2 \leq k \end{cases}
$$

and

$$
[\eta_{\vec{\tau}}^-]_k = \begin{cases} \tau_k(x_k^{\vec{\tau}} - y_k^{\vec{\tau}}), & k = 1 \\ \tau_k(x_k^{\vec{\tau}} - y_k^{\vec{\tau}})\rho_k(q_{\vec{\tau}}), & 2 \leq k \end{cases}.
$$

This leads us to:

(4.16)
$$
\left|\|\eta_{\vec{\tau}}^{+}\|^{2}-\|\eta_{\vec{\tau}}^{-}\|^{2}\right|=\sum_{k=2}^{n}\tau_{k}^{2}(x_{k}^{\vec{\tau}}-y_{k}^{\vec{\tau}})^{2}\left|\rho_{k}^{2}(p_{\vec{\tau}})-\rho_{k}^{2}(q_{\vec{\tau}})\right|.
$$

Fixing any $2 \leq k \leq n$, observe that by Equation [\(4.12\)](#page-5-3) we must have

$$
\lim_{\tau_{k-1}\to\infty} \cdots \lim_{\tau_1\to\infty} \tau_k^2 (x_k^{\vec{\tau}} - y_k^{\vec{\tau}})^2 |\rho_k^2 (p_{\vec{\tau}}) - \rho_k^2 (q_{\vec{\tau}})| = |\rho_k^2 (x_1^0, \dots, x_{k-1}^0) - \rho_k^2 (x_1^0, \dots, x_{k-1}^0)|
$$

$$
\times \tau_k^2 (x_k^{\vec{\tau}} - y_k^{\vec{\tau}})^2
$$

= 0.

Applying the above to Inequality [\(4.16\)](#page-6-2) and utilizing the terminology of Equation [\(4.12\)](#page-5-3),

$$
\lim_{\tau_1 \to \infty} \left| \|\eta_{\vec{\tau}}^{+}\|^2 - \|\eta_{\vec{\tau}}^{-}\|^2 \right| = \sum_{k=3}^n \tau_k^2 (x_k^{\vec{\tau}} - y_k^{\vec{\tau}})^2 \left| \rho_k^2 (p_{\tau_1}) - \rho_k^2 (q_{\tau_1}) \right|
$$
\n
$$
\lim_{\tau_2 \to \infty} \lim_{\tau_1 \to \infty} \left| \|\eta_{\vec{\tau}}^{+}\|^2 - \|\eta_{\vec{\tau}}^{-}\|^2 \right| = \sum_{k=4}^n \tau_k^2 (x_k^{\vec{\tau}} - y_k^{\vec{\tau}})^2 \left| \rho_k^2 (p_{\tau_1, \tau_2}) - \rho_k^2 (q_{\tau_1, \tau_2}) \right|
$$
\n
$$
\vdots
$$
\n
$$
\lim_{\tau_{n-2} \to \infty} \cdots \lim_{\tau_1 \to \infty} \left| \|\eta_{\vec{\tau}}^{+}\|^2 - \|\eta_{\vec{\tau}}^{-}\|^2 \right| = \tau_n^2 (x_n^{\vec{\tau}} - y_n^{\vec{\tau}})^2 \left| \rho_n^2 (p_{\tau_1, \dots, \tau_{n-2}}) - \rho_n^2 (q_{\tau_1, \dots, \tau_{n-2}}) \right|
$$
\n
$$
\lim_{\tau_{n-1} \to \infty} \cdots \lim_{\tau_1 \to \infty} \left| \|\eta_{\vec{\tau}}^{+}\|^2 - \|\eta_{\vec{\tau}}^{-}\|^2 \right| = \tau_n^2 (x_n^{\vec{\tau}} - y_n^{\vec{\tau}})^2 \left| \rho_n^2 (x_1^0, \dots, x_{n-1}^0) - \rho_n^2 (x_1^0, \dots, x_{n-1}^0) \right|
$$

$$
=0.
$$

From this, the limit

$$
\lim_{\tau_n \to \infty} \cdots \lim_{\tau_1 \to \infty} \left| \| \eta_{\vec{\tau}}^+ \|^2 - \| \eta_{\vec{\tau}}^- \|^2 \right| = 0
$$

is clear.

 τ_n

Item (D).

We begin by decomposing the left-hand side of the Estimate (4.15) into two terms:

 $\left\langle \mathcal{X}_{\vec{\tau}}\cdot\eta^+_{\vec{\tau}},\eta^+_{\vec{\tau}}\right\rangle-\left\langle \mathcal{Y}_{\vec{\tau}}\cdot\eta^-_{\vec{\tau}},\eta^-_{\vec{\tau}}\right\rangle=I_1+I_2$

where, invoking [\[12,](#page-13-1) Theorem 3.2] and the Elliptic G Twisting Lemma once again, we have defined

$$
I_1 := \left\langle \left(\mathbf{A}(p_{\vec{\tau}}) \cdot X_{\vec{\tau}} \cdot \mathbf{A}^{\mathrm{T}}(p_{\vec{\tau}}) \right) \cdot \eta_{\vec{\tau}}^+, \eta_{\vec{\tau}}^+ \right\rangle - \left\langle \left(\mathbf{A}(q_{\vec{\tau}}) \cdot Y_{\vec{\tau}} \cdot \mathbf{A}^{\mathrm{T}}(q_{\vec{\tau}}) \right) \cdot \eta_{\vec{\tau}}^-, \eta_{\vec{\tau}}^- \right\rangle
$$

(recall that $X_{\vec{r}}, Y_{\vec{r}}$ are a result of [\[12,](#page-13-1) Theorem 3.2]), and

$$
I_2 := \langle \mathbf{M}(D_{\text{eucl}(p)}\varphi_{\vec{\tau}}(p_{\vec{\tau}},q_{\vec{\tau}}), p_{\vec{\tau}}) \cdot \eta_{\vec{\tau}}^+, \eta_{\vec{\tau}}^+ \rangle - \langle \mathbf{M}(D_{\text{eucl}(q)}\varphi_{\vec{\tau}}(p_{\vec{\tau}},q_{\vec{\tau}}), q_{\vec{\tau}}) \cdot \eta_{\vec{\tau}}^-, \eta_{\vec{\tau}}^- \rangle.
$$

Writing $\tilde{\epsilon} := A(p_{\vec{\tau}}) \cdot \epsilon$ and $\hat{\kappa} := A(q_{\vec{\tau}}) \cdot \kappa$ to represent twisting according to Lemma [3.1,](#page-3-0)

(4.17)
$$
I_1 = \left\langle X_{\vec{\tau}} \cdot \widetilde{\eta_{\vec{\tau}}}^{\perp}, \widetilde{\eta_{\vec{\tau}}}^{\perp} \right\rangle - \left\langle Y_{\vec{\tau}} \cdot \widehat{\eta_{\vec{\tau}}}^{\perp}, \widehat{\eta_{\vec{\tau}}}^{\perp} \right\rangle \\ \leq \left\langle \mathcal{C} \cdot \zeta, \zeta \right\rangle.
$$

Here, $\zeta := \eta^+_{\vec{\tau}} \oplus \eta^-_{\vec{\tau}} \in \mathbb{R}^{2n}$ and $\mathcal C$ is a $2n \times 2n$ matrix resulting from [\[12,](#page-13-1) Theorem 3.2] which can be represented in block form as

$$
\begin{pmatrix} B & -B \\ -B & B \end{pmatrix},
$$

where we define

$$
[B]_{k\ell}:=\left\{\begin{array}{ll}\tau_k+2\delta\tau_k^2, & k=\ell\\ 0, & k\neq \ell\end{array}\right.
$$

and $\delta > 0$ is an arbitrary parameter resulting from the theorem of [\[12\]](#page-13-1). The definition of C and B and Inequality [\(4.17\)](#page-7-0) together yield

(4.18)

$$
I_1 \leq \left\langle B \cdot (\widetilde{\eta_{\vec{\tau}}} + \widehat{\eta_{\vec{\tau}}}), (\widetilde{\eta_{\vec{\tau}}} + \widehat{\eta_{\vec{\tau}}}) \right\rangle
$$

$$
= \sum_{k=2}^n (\tau_k + 2\delta \tau_k^2) \cdot \left(\rho_k^2 (p_{\vec{\tau}}) - \rho_k^2 (q_{\vec{\tau}}) \right)^2 \cdot \tau_k^2 (x_k^{\vec{\tau}} - y_k^{\vec{\tau}})^2.
$$

Since the terms on the right-hand side of [\(4.18\)](#page-8-0) contain no factors τ_{ℓ} for $\ell \leq k - 1$,

(4.19)
$$
\lim_{\tau_{k-1}\to\infty}\cdots\lim_{\tau_1\to\infty}(\tau_k+2\delta\tau_k^2)\cdot(\rho_k^2(p_{\vec{\tau}})-\rho_k^2(q_{\vec{\tau}}))^2\cdot\tau_k^2(x_k^{\vec{\tau}}-y_k^{\vec{\tau}})^2=0.
$$

Equation [\(4.19\)](#page-8-1), work similar to what was employed in Item (C) , and Inequality [\(4.18\)](#page-8-0) therefore show that

$$
\lim_{\tau_n \to \infty} \cdots \lim_{\tau_1 \to \infty} I_1 = 0.
$$

It remains to show that I₂ tends to 0 as $\tau_k \to \infty$ for all $1 \leq k \leq n$. Recalling the definition of the matrix $M(\cdot, \cdot)$ from Equation [\(3.7\)](#page-4-4), we may calculate directly the first entry in both of the inner-products defining I_2 . Writing M_p and M_q to refer to the matrices resulting from $M(\cdot, \cdot)$ evaluated at $(D_{\text{eucl}(p)}\varphi_{\vec{\tau}}(p_{\vec{\tau}},q_{\vec{\tau}}), p_{\vec{\tau}}), (D_{\text{eucl}(q)}\varphi_{\vec{\tau}}(p_{\vec{\tau}},q_{\vec{\tau}}), q_{\vec{\tau}})$ respectively:

(4.21)
$$
[M_p \cdot \eta_{\vec{\tau}}^+]_h = \begin{cases} \frac{1}{2} \sum_{\ell=2}^n \left(\frac{\partial \rho_{\ell}}{\partial x_1} \rho_{\ell} \right) (p_{\vec{\tau}}) \cdot \tau_{\ell}^2 (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}})^2 & h = 1 \\ \frac{1}{2} \sum_{\ell=1}^{h-1} \left(\frac{\partial \rho_h}{\partial x_{\ell}} \rho_{\ell}^2 \right) (p_{\vec{\tau}}) \cdot \tau_{\ell} (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}}) \cdot \tau_h (x_{h}^{\vec{\tau}} - y_{h}^{\vec{\tau}}) & h \ge 2 \\ + \frac{1}{2} \sum_{\ell=h+1}^n \left(\frac{\partial \rho_{\ell}}{\partial x_h} \rho_{\ell} \rho_{h} \right) (p_{\vec{\tau}}) \cdot \tau_{\ell}^2 (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}})^2 & h \ge 2 \end{cases}
$$

and

(4.22)
$$
[M_q \cdot \eta_{\vec{\tau}}]_h = \begin{cases} \frac{1}{2} \sum_{\ell=2} \left(\frac{\partial \rho_{\ell}}{\partial x_1} \rho_{\ell} \right) (q_{\vec{\tau}}) \cdot \tau_{\ell}^2 (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}})^2 & h = 1 \\ \frac{1}{2} \sum_{\ell=1}^{h-1} \left(\frac{\partial \rho_h}{\partial x_{\ell}} \rho_{\ell}^2 \right) (q_{\vec{\tau}}) \cdot \tau_{\ell} (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}}) \cdot \tau_h (x_{h}^{\vec{\tau}} - y_{h}^{\vec{\tau}}) & h \ge 2 \\ + \frac{1}{2} \sum_{\ell=h+1}^{n} \left(\frac{\partial \rho_{\ell}}{\partial x_h} \rho_{\ell} \rho_{h} \right) (q_{\vec{\tau}}) \cdot \tau_{\ell}^2 (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}})^2 & h \ge 2. \end{cases}
$$

Owing to Equations [\(4.21\)](#page-8-2) and [\(4.22\)](#page-8-3) and the observation that $M(\cdot, \cdot)$ is symmetric, we may calculate I_2 as follows:

$$
I_2 = \langle M_p \cdot \eta_{\vec{\tau}}^+, \eta_{\vec{\tau}}^+ \rangle - \langle M_q \cdot \eta_{\vec{\tau}}^-, \eta_{\vec{\tau}}^- \rangle
$$

\n
$$
= \frac{1}{2} \sum_{\ell=2}^n \left(\frac{\partial \rho_{\ell}}{\partial x_1} \rho_{\ell} \right) (p_{\vec{\tau}}) \cdot \tau_{\ell}^2 (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}})^2 \cdot \tau_1 (x_1^{\vec{\tau}} - y_1^{\vec{\tau}})
$$

\n
$$
+ \frac{1}{2} \sum_{h=2}^n \sum_{\ell=1}^{h-1} \left(\frac{\partial \rho_h}{\partial x_\ell} \rho_h \rho_{\ell}^2 \right) (p_{\vec{\tau}}) \cdot \tau_{\ell} (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}}) \cdot \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2
$$

\n
$$
+ \frac{1}{2} \sum_{h=2}^{n-1} \sum_{\ell=h+1}^n \left(\frac{\partial \rho_{\ell}}{\partial x_h} \rho_{\ell} \rho_h^2 \right) (p_{\vec{\tau}}) \cdot \tau_h (x_h^{\vec{\tau}} - y_h^{\vec{\tau}}) \cdot \tau_{\ell}^2 (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}})^2
$$

\n
$$
- \frac{1}{2} \sum_{\ell=2}^n \left(\frac{\partial \rho_{\ell}}{\partial x_1} \rho_{\ell} \right) (q_{\vec{\tau}}) \cdot \tau_{\ell}^2 (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}})^2 \cdot \tau_1 (x_1^{\vec{\tau}} - y_1^{\vec{\tau}})
$$

\n
$$
- \frac{1}{2} \sum_{h=2}^n \sum_{\ell=1}^{h-1} \left(\frac{\partial \rho_h}{\partial x_\ell} \rho_h \rho_{\ell}^2 \right) (q_{\vec{\tau}}) \cdot \tau_{\ell} (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}}) \cdot \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2
$$

\n
$$
-
$$

The sums above may be combined as follows.

$$
2I_2 = \sum_{\ell=2}^n \tau_\ell^2 (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}})^2 \cdot \tau_1 (x_1^{\vec{\tau}} - y_1^{\vec{\tau}}) \cdot \left(\left(\frac{\partial \rho_\ell}{\partial x_1} \rho_\ell \right) (p_{\vec{\tau}}) - \left(\frac{\partial \rho_\ell}{\partial x_1} \rho_\ell \right) (q_{\vec{\tau}}) \right)
$$
\n
$$
+ \sum_{h=2}^n \sum_{\ell=1}^{h-1} \tau_\ell (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}}) \cdot \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2 \cdot \left(\left(\frac{\partial \rho_h}{\partial x_\ell} \rho_h \rho_\ell^2 \right) (p_{\vec{\tau}}) - \left(\frac{\partial \rho_h}{\partial x_\ell} \rho_h \rho_\ell^2 \right) (q_{\vec{\tau}}) \right)
$$
\n
$$
+ \sum_{h=2}^n \sum_{\ell=h+1}^n \tau_h (x_h^{\vec{\tau}} - y_h^{\vec{\tau}}) \cdot \tau_\ell^2 (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}})^2 \cdot \left(\left(\frac{\partial \rho_\ell}{\partial x_h} \rho_\ell \rho_h^2 \right) (p_{\vec{\tau}}) - \left(\frac{\partial \rho_\ell}{\partial x_h} \rho_\ell \rho_h^2 \right) (q_{\vec{\tau}}) \right).
$$

Denote the terminal factor in each of the three sums of [\(4.23\)](#page-9-0) evaluated at $(p, q) \in \Omega \times \Omega$ by

$$
\begin{cases}\nT_{\ell}(p,q) := \left(\frac{\partial \rho_{\ell}}{\partial x_1} \rho_{\ell}\right)(p) - \left(\frac{\partial \rho_{\ell}}{\partial x_1} \rho_{\ell}\right)(q) \\
S_{h\ell}^1(p,q) := \left(\frac{\partial \rho_{\ell}}{\partial x_{\ell}} \rho_h \rho_{\ell}^2\right)(p) - \left(\frac{\partial \rho_{\ell}}{\partial x_{\ell}} \rho_h \rho_{\ell}^2\right)(q) \\
S_{h\ell}^2(p,q) := \left(\frac{\partial \rho_{\ell}}{\partial x_h} \rho_{\ell} \rho_h^2\right)(p) - \left(\frac{\partial \rho_{\ell}}{\partial x_h} \rho_{\ell} \rho_h^2\right)(q)\n\end{cases}
$$

respectively, in order of their appearance in [\(4.23\)](#page-9-0). Recalling $\tau_k(x_k^{\vec{\tau}} - y_k^{\vec{\tau}}) = O(1)$ as $\tau_k \to \infty$ for every $k \leq n$, we invoke Equation [\(4.12\)](#page-5-3) to conclude:

• For
$$
1 \leq k \leq \ell - 1
$$
,

$$
(4.24) \lim_{\tau_k \to \infty} \cdots \lim_{\tau_1 \to \infty} \tau_\ell^2 (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}})^2 \cdot \tau_1 (x_1^{\vec{\tau}} - y_1^{\vec{\tau}}) \cdot T_\ell (p_{\vec{\tau}}, q_{\vec{\tau}}) \sim \tau_\ell^2 (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}})^2 \cdot T_\ell (p_{\tau_1, \dots, \tau_k}, q_{\tau_1, \dots, \tau_k}).
$$

• For $\ell \leq k \leq h-1$,

$$
(4.25)\ \lim_{\tau_k \to \infty} \cdots \lim_{\tau_1 \to \infty} \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2 \cdot \tau_\ell (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}}) \cdot S_{h\ell}^1(p_{\vec{\tau}}, q_{\vec{\tau}}) \sim \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2 \cdot S_{h\ell}^1(p_{\tau_1, \dots, \tau_k}, q_{\tau_1, \dots, \tau_k}).
$$

• For $h \leq k \leq \ell - 1$,

$$
(4.26)\ \lim_{\tau_k \to \infty} \cdots \lim_{\tau_1 \to \infty} \tau_\ell^2 (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}})^2 \cdot \tau_h(x_h^{\vec{\tau}} - y_h^{\vec{\tau}}) \cdot S_{h\ell}^2(p_{\vec{\tau}}, q_{\vec{\tau}}) \sim \tau_\ell^2 (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}})^2 \cdot S_{h\ell}^2(p_{\tau_1, \dots, \tau_k}, q_{\tau_1, \dots, \tau_k}).
$$

Since ρ_k depends only upon x_1, \ldots, x_{k-1} ,

$$
\begin{cases}\nT_{\ell}(p_{\tau_1,\ldots,\tau_k}, q_{\tau_1,\ldots,\tau_k}) = 0 & \text{when } k = \ell - 1 \\
S_{h\ell}^1(p_{\tau_1,\ldots,\tau_k}, q_{\tau_1,\ldots,\tau_k}) = 0 & \text{when } k = h - 1 \\
S_{h\ell}^2(p_{\tau_1,\ldots,\tau_k}, q_{\tau_1,\ldots,\tau_k}) = 0 & \text{when } k = \ell - 1\n\end{cases}
$$

Iterated limits of I_2 are now calculated from Equations [\(4.24\)](#page-9-1), [\(4.25\)](#page-10-0), and [\(4.26\)](#page-10-1):

$$
\lim_{\tau_1 \to \infty} 2I_2 \sim \sum_{\ell=3}^n \tau_{\ell}^2 (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}})^2 \cdot T_{\ell}(p_{\tau_1}, q_{\tau_1}) \n+ \sum_{h=3}^n \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2 \cdot S_{h1}^1(p_{\tau_1}, q_{\tau_1}) \n+ \sum_{h=3}^n \sum_{\ell=2}^{h-1} \tau_{\ell} (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}}) \cdot \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2 \cdot S_{h\ell}^1(p_{\tau_1}, q_{\tau_1}) \n+ \sum_{h=2}^n \sum_{\ell=h+1}^n \tau_h (x_h^{\vec{\tau}} - y_h^{\vec{\tau}}) \cdot \tau_{\ell}^2 (x_{\ell}^{\vec{\tau}} - y_{\ell}^{\vec{\tau}})^2 \cdot S_{h\ell}^2(p_{\tau_1}, q_{\tau_1}),
$$

$$
\lim_{\tau_2 \to \infty} \lim_{\tau_1 \to \infty} 2I_2 \sim \sum_{\ell=4}^n \tau_\ell^2 (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}})^2 \cdot T_\ell(p_{\tau_1, \tau_2}, q_{\tau_1, \tau_2}) \n+ \sum_{h=4}^n \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2 \cdot S_{h1}^1(p_{\tau_1, \tau_2}, q_{\tau_1, \tau_2}) \n+ \sum_{h=4}^n \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2 \cdot S_{h2}^1(p_{\tau_1, \tau_2}, q_{\tau_1, \tau_2}) \n+ \sum_{h=4}^n \sum_{\ell=3}^{h-1} \tau_\ell (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}}) \cdot \tau_h^2 (x_h^{\vec{\tau}} - y_h^{\vec{\tau}})^2 \cdot S_{h\ell}^1(p_{\tau_1, \tau_2}, q_{\tau_1, \tau_2}) \n+ \sum_{\ell=4}^n \tau_\ell^2 (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}})^2 \cdot S_{2\ell}^2(p_{\tau_1, \tau_2}, q_{\tau_1, \tau_2}) \n+ \sum_{h=3}^{n-1} \sum_{\ell=h+1}^n \tau_h (x_h^{\vec{\tau}} - y_h^{\vec{\tau}}) \cdot \tau_\ell^2 (x_\ell^{\vec{\tau}} - y_\ell^{\vec{\tau}})^2 \cdot S_{h\ell}^2(p_{\tau_1, \tau_2}, q_{\tau_1, \tau_2}),
$$

$$
\lim_{\tau_3 \to \infty} \lim_{\tau_2 \to \infty} \lim_{\tau_1 \to \infty} 2I_2 \sim \sum_{\ell=5}^n \tau_\ell^2 (x_\ell^{\vec{r}} - y_\ell^{\vec{r}})^2 \cdot T_\ell (p_{\tau_1, \tau_2, \tau_3}, q_{\tau_1, \tau_2, \tau_3}) \n+ \sum_{h=5}^n \tau_h^2 (x_h^{\vec{r}} - y_h^{\vec{r}})^2 \cdot S_{h1}^1 (p_{\tau_1, \tau_2, \tau_3}, q_{\tau_1, \tau_2, \tau_3}) \n+ \sum_{h=5}^n \tau_h^2 (x_h^{\vec{r}} - y_h^{\vec{r}})^2 \cdot S_{h2}^1 (p_{\tau_1, \tau_2, \tau_3}, q_{\tau_1, \tau_2, \tau_3}) \n+ \sum_{h=5}^n \tau_h^2 (x_h^{\vec{r}} - y_h^{\vec{r}})^2 \cdot S_{h3}^1 (p_{\tau_1, \tau_2, \tau_3}, q_{\tau_1, \tau_2, \tau_3}) \n+ \sum_{h=5}^n \sum_{\ell=4}^n \tau_\ell (x_\ell^{\vec{r}} - y_\ell^{\vec{r}}) \cdot \tau_h^2 (x_h^{\vec{r}} - y_h^{\vec{r}})^2 \cdot S_{h\ell}^1 (p_{\tau_1, \tau_2, \tau_3}, q_{\tau_1, \tau_2, \tau_3}) \n+ \sum_{\ell=5}^n \tau_\ell^2 (x_\ell^{\vec{r}} - y_\ell^{\vec{r}})^2 \cdot S_{2\ell}^2 (p_{\tau_1, \tau_2, \tau_3}, q_{\tau_1, \tau_2, \tau_3}) \n+ \sum_{\ell=5}^n \tau_\ell^2 (x_\ell^{\vec{r}} - y_\ell^{\vec{r}})^2 \cdot S_{3\ell}^2 (p_{\tau_1, \tau_2, \tau_3}, q_{\tau_1, \tau_2, \tau_3}, q_{\tau_1, \tau_2, \tau_3}) \n+ \sum_{h=4}^n \sum_{\ell=h+1}^n \tau_h (x_h^{\vec{r}} - y_h^{\vec{r}}) \cdot \tau_\ell^2 (x_\ell^{\vec{r}} - y_\ell^{\vec{
$$

$$
\lim_{\tau_{n-2}\to\infty} \cdots \lim_{\tau_1\to\infty} 2I_2 \sim \tau_n^2 (x_n^{\vec{\tau}} - y_n^{\vec{\tau}})^2 \cdot T_n(p_{\tau_1,\dots,\tau_{n-2}}, q_{\tau_1,\dots,\tau_{n-2}})
$$

$$
+ \tau_n^2 (x_n^{\vec{\tau}} - y_n^{\vec{\tau}})^2 \sum_{\substack{r=1 \ n-1}}^{n-1} S_{nr}^1(p_{\tau_1,\dots,\tau_{n-2}}, q_{\tau_1,\dots,\tau_{n-2}})
$$

$$
+ \tau_n^2 (x_n^{\vec{\tau}} - y_n^{\vec{\tau}})^2 \sum_{r=2}^{n-1} \cdot S_{rn}^2(p_{\tau_1,\dots,\tau_{n-2}}, q_{\tau_1,\dots,\tau_{n-2}}).
$$

The the iterated limits presented above, particularly the final limit, imply that

$$
\lim_{\tau_{n-1}\to\infty}\lim_{\tau_{n-2}\to\infty}\cdots\lim_{\tau_1\to\infty}2I_2=0,
$$

hence

$$
\lim_{\tau_n \to \infty} \cdots \lim_{\tau_1 \to \infty} I_2 = 0.
$$

This and the iterated limit (4.20) together prove Item (D) .

4.2. **Comparison Principles.** Lemma [4.2](#page-6-4) can now be used to prove a comparison principle for the operators $\mathcal{F}^{\varepsilon}$ and $\mathcal{G}^{\varepsilon}$ defined in Section [3.](#page-2-0)

Theorem 4.2. *Assume that* u_{∞} *is the viscosity solution to* [\(4.8\)](#page-4-1) *proven to exist by Theorem [4.1;](#page-5-1) assume also that v is a viscosity subsolution to Problem* [\(4.8\)](#page-4-1)*. Then* $v \le u_{\infty}$ *on* $\overline{\Omega}$ *.*

Proof. Suppose to the contrary and recall that, since u_{∞} is both a viscosity sub- and supersolu-tion to [\(4.8\)](#page-4-1), we will have $v \le g \le u_{\infty}$ on $\partial \Omega$ by our definitions. It must be that

(4.27)
$$
\sup_{\Omega}(v - u_{\infty}) = v(p_0) - u_{\infty}(p_0) > 0.
$$

[\[1,](#page-12-8) Lemma 5.1] and [1, Theorem 5.3] permit us to assume that there exists $\mu(\cdot) > 0$ so that

$$
\mathcal{F}^\varepsilon u_\infty(p) = \mu(p) > 0.
$$

$$
\sqcup
$$

Taking the difference of $\mathcal{F}^{\varepsilon}u_{\infty}$ and $\mathcal{F}^{\varepsilon}v$ on the sequence $(p_{\vec{\tau}},q_{\vec{\tau}})\subset \Omega\times\Omega$,

$$
\begin{split} 0 &< \mu(q_{\vec{\tau}}) << \mathcal{F}^{\varepsilon} u_{\infty}(q_{\vec{\tau}}) - \mathcal{F}^{\varepsilon} v(p_{\vec{\tau}}) \\ &= \min \left\{ \|\eta_{\vec{\tau}}\|^2 - \varepsilon^2, -\left\langle \mathcal{Y}_{\vec{\tau}} \cdot \eta_{\vec{\tau}} \cdot \eta_{\vec{\tau}} \right\rangle \right\} - \min \left\{ \|\eta_{\vec{\tau}}^+\|^2 - \varepsilon^2, -\left\langle \mathcal{X}_{\vec{\tau}} \cdot \eta_{\vec{\tau}}^+ \right\rangle \eta_{\vec{\tau}} \right\} \\ &\leq \max \left\{ \|\eta_{\vec{\tau}}^-\|^2 - \|\eta_{\vec{\tau}}^+\|^2, \left\langle \mathcal{X}_{\vec{\tau}} \cdot \eta_{\vec{\tau}}^+ \right\rangle, \eta_{\vec{\tau}}^+\right\rangle - \left\langle \mathcal{Y}_{\vec{\tau}} \cdot \eta_{\vec{\tau}}^- \right\rangle \right\}. \end{split}
$$

Since $u_{\infty} \in C(\Omega) \cap W^{1,\infty}_{loc}(\Omega)$, the assumptions of Lemma [4.2](#page-6-4) are satisfied – so we may apply it, [\[1,](#page-12-8) Lemma 5.1], and [\[1,](#page-12-8) Theorem 5.3] and notice

$$
\mu(q_{\vec{\tau}}) \to \mu(p_0) > 0
$$

and

(4.30)
$$
\max \left\{ \|\eta_{\vec{\tau}}^-\|^2 - \|\eta_{\vec{\tau}}^+\|^2, \langle \mathcal{X}_{\vec{\tau}} \cdot \eta_{\vec{\tau}}^+, \eta_{\vec{\tau}}^+ \rangle - \langle \mathcal{Y}_{\vec{\tau}} \cdot \eta_{\vec{\tau}}^-, \eta_{\vec{\tau}}^- \rangle \right\} \to 0
$$

as $\tau_1, \ldots, \tau_n \to \infty$. We arrive at a contradiction by applying [\(4.28\)](#page-12-10), [\(4.29\)](#page-12-11), and [\(4.30\)](#page-12-12).

In the same manner, we can prove a similar result for the operator $\mathcal{G}^{\varepsilon}$.

Corollary 4.1. *Assume that* u_{∞} *is the viscosity solution to* [\(4.9\)](#page-4-2) *proven to exist by Theorem [4.1;](#page-5-1) assume also that v is a viscosity supersolution to Problem* [\(4.9\)](#page-4-2)*. Then* $u_{\infty} \le v$ *on* $\overline{\Omega}$ *.*

The following properties of of solutions to (4.8) and (4.9) are evident from the definition of the operators $\mathcal{F}^{\varepsilon}$ and $\mathcal{G}^{\varepsilon}$:

- If u is a viscosity solution to Problem [\(4.8\)](#page-4-1), then it is a viscosity *supersolution* to Problem [\(DP\)](#page-0-0) – that is, u is ∞ -superharmonic.
- If u is a viscosity solution to Problem [\(4.9\)](#page-4-2), then it is a viscosity *subsolution* to Problem [\(DP\)](#page-0-0) – that is, u is ∞ -subharmonic.

We now state a lemma which relates solutions of (4.8) and (4.9) . In light of the comparisons above, the uniqueness of the ∞ -harmonic function u_{∞} follows as a corollary.

Lemma 4.3 (cf. [\[1,](#page-12-8) Lemma 5.6]). Let u^{ε} and u_{ε} represent the solutions to Problems [\(4.8\)](#page-4-1) and [\(4.9\)](#page-4-2) *respectively. Given* $\delta > 0$ *, there exists* $\varepsilon > 0$ *so that*

$$
u_\varepsilon\leq u^\varepsilon\leq u_\varepsilon+\delta.
$$

REFERENCES

- [1] T. Bieske: *On Infinite Harmonic Functions on the Heisenberg Group*, Comm. in PDE, **27** (3 & 4) (2002), 727–762.
- [2] T. Bieske: *Lipschitz Extensions on Generalized Grushin Spaces*, Michigan Math. J., **53** (1) (2005), 3–31.
- [3] T. Bieske: *Fundamental solutions to the p-Laplace equation in a class of Grushin vector fields*, Electron. J. Diff. Equ., Vol. 2011 **84** (2011), 1–10.
- [4] T. Bieske: *A comparison principle for a class of subparabolic equations in Grushin-type spaces*, Electron. J. Diff. Eqns., Vol. 2007 **30** (2007), 1–9.
- [5] T. Bieske: *Properties of Infinite Harmonic Functions on Grushin-Type Spaces*, Rocky Mountain J. Math., **39** (3) (2009), 729–756.
- [6] T. Bieske: *A sub-Riemannian maximum principle and its application to the* p*-Laplacian in Carnot groups*, Ann. Acad. Sci. Fenn. Math., **37** (1) (2012), 119–134.
- [7] T. Bieske: *The* ∞(x)*-Equation in Grushin-Type Spaces*, Electron. J. Diff. Eqns., Vol. 2016 **125** (2016), 1–13.
- [8] T. Bieske, Z. Forrest: *Existence and Uniqueness of Viscosity Solutions to the Infinity Laplacian Relative to a Class of Grushin-Type Vector Fields*, Constr. Math. Anal., **6** (2) (2023), 77–89.
- [9] T. Bieske, J. Gong: *The* P*-Laplace Equation on a Class of Grushin-Type Spaces*, Proc. Amer. Math. Soc., **134** (12) (2006), 3585–3594.
- [10] A. Bellaïche: *The Tangent Space in Sub-Riemannian Geometry*, In *Sub-Riemannian Geometry*; Bellaïche, André., Risler, Jean-Jacques., Eds.; Progress in Mathematics; Birkhäuser: Basel, Switzerland. **144** (1996), 1–78.
- [11] L. Capogna, G. Giovannardi, A. Pinamonti and S. Verzellesi: *The Asymptotic p-Poisson Equation as* $p \to \infty$ *in Carnot-Carathéodory Spaces*, Math. Ann., to appear.
- [12] M. Crandall, H. Ishii and P.-L. Lions: *User's Guide to Viscosity Solutions of Second Order Partial Differential Equations*, Bull. Amer. Math. Soc., **27** (1) (1992), 1–67.
- [13] R. Jensen: Uniqueness of Lipschitz Extensions: *Minimizing the Sup Norm of the Gradient*, Arch. Rational. Mech. Anal., **123** (1993), 51–74.
- [14] P. Juutinen, P. Lindqvist and J. Manfredi: *On the Equivalence of Viscosity Solutions and Weak Solutions for a Quasi-Linear Equation*, SIAM J. Math. Anal., **33** (3) (2001), 699–717.
- [15] P. Juutinen: *Minimization Problems for Lipschitz Functions via Viscosity Solutions*, Ann. Acad. Sci. Fenn. Math. Diss., **115** (1998).

THOMAS BIESKE UNIVERSITY OF SOUTH FLORIDA DEPARTMENT OF MATHEMATICS AND STATISTICS 4202 E. FOWLER AVE. CMC342, TAMPA, FL 33620, USA *Email address*: tbieske@usf.edu

ZACHARY FORREST UNIVERSITY OF SOUTH FLORIDA DEPARTMENT OF MATHEMATICS 4202 E. FOWLER AVE. CMC342, TAMPA, FL 33620, USA *Email address*: zachary9@usf.edu