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Weighted approximation: Korovkin and quantitative type
theorems
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ABSTRACT. In the present paper, we consider Korovkin and quantitative theorems, which have been treated by
various authors to date, under weighted approximation. After giving the basic definitions and some of well-known
spaces, we mention the main theorems and their applications to linear positive operators, which have been specially
treated by the authors. Therefore, this study which can be considered as a survey study will direct the readers to
literature information. Furthermore, we give a general operator including well-known operators as an application of
some theorems given at the end of the paper.
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1. INTRODUCTION

Let J = [a, b] ⊂ R, Pn (J) = Span
{
1, x, x2, . . . , xn

}
and C (J) be the space of all contiunous

functions defined on J . Bernstein polynomials [8] which map C (J) into Pn (J) are an alge-
braic elegant method for proof of Weierstrass approximation theorem. Bernstein polynomials
are recognised as a pioneer of the linear positive operators in approximation theory. After
construction of the Bernstein polynomials, many sequences of linear positive operators were
introduced (for example, see [6, 30]). Since Weierstrass approximation theorem was presented
for the functions f ∈ C (J), the studies were restricted on closed and bounded, that is compact
intervals of R. In order to overcome this problem, A. D. Gadjiev [18, 19] introduced weighted
spaces of functions. Since the similar problem occurs in Bohman-Korovkin theorem, Bohman-
Korovkin type theorems were re-presented in the weighted spaces by Gadjiev.

The Banach and Steinhaus theorem yields an initial outcome regarding sets of test functions
for the norm convergence of Ln (f ;x) to f (x), where (Ln)n∈N is a sequence of bounded linear
operators. Korovkin showed that, in the case where the operators under consideration are posi-
tive, the set of test functions can be effectively reduced to a finite set. Curtis Jr. [12] and Dzjadyk
[16] presented Korovkin-type theorems for the functions f ∈ Lp (−π, π). Afterwards, in [25, 23]
weighted Korovkin type theorems were given in the space of locally integrable functions on R.
For further studies, see [1, 5, 20, 24].

In the present paper, with necessary references, Korovkin-type and quantitative theorems
obtained in previous works on certain weighted spaces are presented. Korovkin type theorems
in weighted spaces are mentioned and then quantitative theorems are discussed. Furthermore,
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we give a general operator including well-known operators. Since the work is survey, we
suggest the curious readers to consult the references mentioned for the proofs of the theorems.

2. KOROVKIN TYPE THEOREMS IN WEIGHTED SPACE OF CONTINUOUS FUNCTIONS

In this section, we mention that uniform convergence and approximation properties of a
sequence of positive linear operators in weighted space of continuous functions.

2.1. Korovkin type theorems in Cρ (R). Let B[a, b] denote the space of all bounded functions
on [a, b]. Furthermore, let ∥·∥ stands for the usual sup-norm inC[a, b]. If the sequence of positive
linear operators An : C[a, b] → B[a, b] satisfy the following three conditions:

lim
n→∞

∥An (e0, ·)− e0∥ = 0

lim
n→∞

∥An (e1, ·)− e1∥ = 0

lim
n→∞

∥An (e2, ·)− e2∥ = 0

where ei (x) = xi, i = 0, 1, 2, then, we have

lim
n→∞

∥An (f, x)− f∥ = 0

for all function f ∈ C[a, b] for which |f (x)| ≤Mf

(
1 + x2

)
hold on R. This theorem is known as

Korovkin theorem (see, [3, 31]) and it is important in approximation theory. The theorem shows
that convergence on three functions may be extended to all functions which are continuous on
[a, b] and bounded on R. Baskakov [7] generalized this result to unbounded functions on R. In
[18] and [19], by considering the general weight function ρ, the author defined the weighted
spaces Bρ and Cρ given by

Bρ (R) := {f : R → R : |f (x)| < Mfρ (x) , for every x ∈ R} ,
Cρ (R) := Bρ (R) ∩ C (R) ,

where ρ (x) = 1 + φ2 (x) , φ is an increasing function belonging to C (R).

Now, let C0
ρ (R) be the subspace of all function f ∈ Cρ (R) for which lim

|x|→∞

f (x)

ρ (x)
exists

finitely. Cρ (R) and Bρ (R) are normed linear space with the ρ-norm given by

∥f∥ρ = sup
x∈R

|f (x)|
ρ (x)

.

In [19], the author proved following Lemma and Theorems:

Lemma 2.1. If a sequence of positive linear operators An : Cρ (R) → Bρ (R) satisfies the conditions

lim
n→∞

∥An (φv)− φv∥ρ = 0, v = 0, 1, 2,

then, for every f ∈ Cρ (R) and any finite interval [a, b], we get

lim
n→∞

sup
x∈[a,b]

|An (f ;x)− f (x)| = 0.

Theorem 2.1. If a sequence of positive linear operators An : Cρ (R) → Bρ (R) satisfies the conditions

lim
n→∞

∥An (φv)− φv∥ρ = 0, v = 0, 1, 2,

then for every f ∈ C0
ρ (R), we have

lim
n→∞

∥An (f)− f∥ρ = 0,
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and there exists a function f∗ ∈ Cρ (R) \C0
ρ (R) such that

lim
n→∞

∥An (f∗)− f∗∥ρ ≥ 1.

If we choose ρ (x) = 1 + x2, we obtain the what follow:

Theorem 2.2. If a sequence of positive linear operators An : Cρ (R) → Bρ (R) satisfies the conditions

lim
n→∞

∥An (ηv)− ηv∥ρ = 0, v = 0, 1, 2,

where η (t) = t. Then for every f ∈ C0
ρ (R), we have

lim
n→∞

∥An (f)− f∥ρ = 0.

In [10], the author proved that a theorem of Korovkin type does not hold on the spaces
Cρ1 (R) and Bρ2 (R) with different weights ρ1 and ρ2. It is shown that if we put some appropri-
ate conditions on the weight functions it holds (see [11]).

Lemma 2.2. Suppose that for positive linear operators An : Cρ1 (R) → Bρ2 (R) the sequence
∥An∥Cρ1

→Bρ2
of operator norms is uniformly bounded and it satisfies the following conditions:

lim
|x|→∞

ρ1 (x)

ρ2 (x)
= 0(2.1)

lim
n→∞

sup
∥f∥ρ1

=1

sup
|x|≤s

|An (f ;x)− f (x)|
ρ1 (x)

= 0

for all f ∈ Cρ1 (R) and for any s ∈ R. Then,

lim
n→∞

∥An∥Cρ1
→Bρ2

= 0.

Theorem 2.3. Let the weight functions ρ1 and ρ2 be as in Lemma 2.2 and for positive linear operators
An : Cρ1 (R) → Bρ2 (R), let the sequence ∥An∥Cρ1→Bρ2

of operator norms be uniformly bounded. If
the equality

lim
n→∞

|An (f ;x)− f (x)| = 0

holds for all s0 with |x| ≤ s0, then we get

lim
n→∞

∥An (f)− f∥ρ2 = 0

for all f ∈ Cρ1 (R) .

Remark 2.1. Let An : Cρ1 (R) → Bρ2 (R) be a sequence of positive linear operators for all n ∈ N.
Suppose that there exists M > 0 such that for all x ∈ R we have ρ1 (x) < Mρ2 (x) . If

lim
n→∞

∥An (ρ1)− ρ1∥ρ2 = 0,

then the sequence (An)n∈N is uniformly bounded.

Let φ1 and φ2 be two monotonically increasing and continuous functions on R such that
lim

x→±∞
φ1 (x) = lim

x→±∞
φ2 (x) = ±∞ and ρk (x) = 1 + φ2

k (x) , k = 1, 2.

Theorem 2.4. If the positive linear operators sequence An : Cρ1 (R) → Bρ2 (R) satisfies the following
three conditions

lim
n→∞

∥An (φv1)− φv1∥ρ2 = 0, v = 0, 1, 2,

and the condition expressed in equation (6.26), then we get

lim
n→∞

∥An (f)− f∥ρ2 = 0
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for all f ∈ Cρ1 (R) .

In [9], the authors presented some ideas about approximation of functions in weighted
spaces and explained some unsolved problems in weighted approximation theory. Some of
these problems can be explained as follows:

1. Let F be a linear subspace of I ⊆ R and An : F → C (I) a sequence of linear positive
operators. For which weights ρ, does An map Cρ (I) ∩ F onto Cρ (I) with uniformly
bounded norms?

2. For which functions f ∈ Cρ (I) do we have ∥Anf − f∥ρ → 0, as n→ ∞?
3. Which moduli of smoothness are appropriate for weighted approximation?

In [29], A. Holhoş presented some answers to these problems. For a given positive linear oper-
ators An and belonging to functions Cρ (I), A. Holhoş showed that ∥Anf − f∥ρ → 0 as n→ ∞
for all the weights ρ. Also, for f ∈ Bρ (I) and δ > 0, the authors introduced a suitable modulus
of continuity given by

(2.2) ωφ (f, δ) := sup
|φ(t)−φ(x)|≤δ

t,x∈I

|f (t)− f (x)| ,

where φ : I → J ⊂ R is a differentiable bijective function with ρ′ (x) > 0 for all x ∈ I . The
modulus of continuity given in (2.2) has the following properties:

1. ωφ (f, δ) = ω
(
f ◦ φ−1, δ

)
, where ω is the usual modulus of continuity,

2. limδ→0 ωφ (f, δ) → 0 for every uniformly continuous function f ◦ φ−1 on J .
Now, we give the main result presented in the article in order.

Theorem 2.5. Let An : Cρ (I) → Bρ (I) be a sequence of poisitive linear operators reproducing con-
stant functions and satisfying the conditions:

sup
x∈I

An (|φ (t)− φ (x)| , x) = an → 0, (n→ ∞)

sup
x∈I

An (|ρ (t)− ρ (x)| , x)
ρ (x)

= bn → 0, (n→ ∞) .

If An (f, x) is continuously differentiable and for every x ∈ I , it satisfies∣∣(Anf)′ (x)∣∣
φ′ (x)

≤ K (f, ρ, n) ρ (x) ,

where K (f, ρ, n) is a constant and ρ, φ are such that there exists a constant α > 0

ρ′ (x)

φ′ (x)
≤ αρ (x) .

Then, we have that the following statements are equilavent:
(i)

∥Anf − f∥ρ → 0 as n→ ∞.

(ii) f
ρ ◦ φ−1 is uniformly continuous on J .

Moreover, from these, we get

∥Anf − f∥ρ ≤ bn ∥f∥ρ + 2ωφ

(
f

ρ
, an

)
for every n ≥ 1.
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We can obtain the result on convergence of Szász-Mirakjan operators Sn : Cρ [0,∞) →
Cρ [0,∞) defined by

Sn(f, x) = e−nx
∞∑
k=0

(nx)
k

k!
f

(
k

n

)
, x ∈ [0,∞) .

Corollary 2.1. For every α > 0 and ρ (x) = eα
√
x, we have

∥Sn∥ρ = sup
x≥0

Sn (ρ, x)

ρ (x)
≤ Cα,

where Cα is a constant that only depends on α.

Corollary 2.2. Let α > 0 and ρ (x) = eα
√
x. If f

(
x2
)
e−αx is uniformly continuous on [0,∞), then

we obtain
∥Snf − f∥ρ → 0, as n→ ∞.

Furthermore, for f ∈ Cρ ([0,∞)), we get

∥Snf − f∥ρ ≤ ∥f∥ρ
αC√
n
+ 2ω

(
f
(
t2
)
e−αt,

1√
n

)
for every n ≥ 1,

where C = sup
n∈N

1

2

√
∥Snρ2∥ρ2 + 2 ∥Snρ∥ρ + 1 is constant that only depends on α.

2.2. Korovkin type Theorems in Hω . In [22], the authors present some Korovkin type the-
orems on uniform approximation of some subclass of continuous and bounded functions by

linear positive operators on all positive semi real axis R+ by using the test functions
(

x
x+1

)v
,

v = 0, 1, 2.
Let ω be a function of the type of modulus of continuity. The basic properties of this type

functions are the following:
1. ω is non-negative increasing function on R+,
2. ω (δ1 + δ2) ≤ ω (δ1) + ω (δ2) for any δ1, δ2 > 0,
3. lim

δ→0
ω (δ) = 0.

By Hω , we denote the space of all real-valued functions defined on R+ which satisfy the fol-
lowing condition:

(2.3) |f (x)− f (y)| ≤ ω

(∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣)
for any x, y ∈ R+. Also, by CB (R+), we denote the space of all bounded functions f ∈ C (R+)
with the usual sup-norm

∥f∥CB
= sup
x∈R+

|f (x)| .

Considering the property 3. of modulus of continuity, it is obvious that any function in Hω

satisfies the inequality
|f (x)| ≤ f (0) + ω (1) , x ∈ R+

and therefore it is bounded on R+. So Hω ⊂ CB (R+) . Some examples of the functions, belong-
ing to Hω are the following [22] :

f1 (x) =

∞∑
k=0

ck

(
x

1 + x

)k
,
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where
∑∞
k=1 k |ck| <∞ with ω (t) = 2tα

∑∞
k=1 k |ck| , 0 < α ≤ 1 and

f2 (x) =
1 + 2x

1 + x

with ω (t) = t. In the case of ω (t) = Mtα, 0 < α ≤ 1, Hα is used instead of Hω . In this case, it
follows from (2.3) that

|f (x)− f (y)| ≤M
|x− y|α

(1 + x)
α
(1 + y)

α

and therefore, Hα ⊂ LipMα.
Following result is the Korovkin type theorem on the conditions of sequence linear positive

operators to functions in Hω. Note that this type theorem can not be obtained neither from
classical Korovkin’s theorem nor from the Korovkin’s theorem concerning Chebyhev’s system
since both of them are devoted the problem of approximation by positive operators on finite
intervals. It can not be obtained from weigted Korovkin’s type theorem in [18] and [19], since
all the test functions in these theorems connected with the weight functions ρ (x) ≥ 1.

Theorem 2.6. Let (An)n∈N be a sequence of positive linear operators, acting from Hω to CB (R+) and
satisfying the conditions

(2.4) lim
n→∞

∥An ((σ)v)− (σ)
v∥CB

= 0, v = 0, 1, 2,

where σ (t) = t
1+t . Then, for any function in Hω , we get

lim
n→∞

∥Anf − f∥CB
= 0.

Bleimann-Butzer-Hahn operator is given by

(2.5) Ln(f ;x) =
1

(1 + x)
n

∑∞

k=0
f

(
k

n− k + 1

)(
n

k

)
xk, x ∈ R+.

Corollary 2.3. Let (Ln)n∈N be a sequence of positive linear operators defined in (2.5). Then for any
function in Hω , we have

lim
n→∞

∥Lnf − f∥CB
= 0.

Proof. By Theorem 2.6, it is sufficient to verify the conditions (2.4). It is obvious that Ln(1;x) =
1. Then,

Ln(
t

1 + t
;x) =

n

n+ 1

(
x

1 + x

)
and therefore,

∥Ln (σ)− σ∥CB
≤ 1

n+ 1
.

Moreover, we have

Ln(

(
t

1 + t

)2

;x) =
n (n− 1)

(n+ 1)
2

(
x

1 + x

)2

+
n

(n+ 1)
2

x

1 + x
.

Then, we get ∥∥∥Ln ((σ)2)− (σ)
2
∥∥∥
CB

≤ 3n+ 2

(n+ 1)
2 .

This proves the theorem. □
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3. KOROVKIN TYPE THEOREMS IN WEIGHTED SPACE OF LEBESGUE MEASURABLE
FUNCTIONS

In this section, we give Korovkin type theorems in weighted Lebesgue spaces.

3.1. Korovkin type Theorems inLp,ω̃ (R). In [26], the authors studied Korovkin type theorems
in the weighted Lebesgue spaces considering a positive continuous function ω̃ on the whole
real axis which satisfies the condition

(3.6)
∫
R
t2pω̃ (t) dt <∞, p ∈ [1,∞) .

By Lp,ω̃ (R), we will denote the linear space of measurable, p−absolutely integrable functions
on R with respect to the weight function ω̃, i.e.

Lp,ω̃ (R) :=

{
f : R → R| ∥f∥p,ω̃ :=

(∫
R
|f (t)|p ω̃ (t) dt

) 1
p

<∞

}
.

In [26], the author proved following theorem:

Theorem 3.7. Let Ln : Lp,ω̃ (R) → Lp,ω̃ (R) be a uniformly bounded sequence of positive linear
operators which satisfy the conditions

lim
n→∞

∥Ln (ẽi)− ẽi∥p,ω̃ = 0, i = 0, 1, 2,

where ẽi (t) = ti. Then for every f ∈ Lp,ω̃ (R), we get

lim
n→∞

∥Lnf − f∥p,ω̃ = 0.

Furthermore, the authors established an analogue of Theorem 3.7 for the space of function
of multivariable. For 1 ≤ p < ∞, let Ω be a positive continuous function in Rn which satisfies
the condition ∫

Rn

|t|2p Ω (t) dt <∞,

and let

Lp,Ω (Rn) =

{
f : Rn → R| ∥f∥p,Ω =

(∫
Rn

|f (t)|p Ω (t) dt

) 1
p

<∞

}
.

Theorem 3.8. Let (Ln)n∈N be a uniformly bounded sequence of positive linear operators fromLp,Ω (Rn)
into itself, satisfying the conditions

lim
n→∞

∥Ln (1;x)− 1∥p,Ω = 0

lim
n→∞

∥Ln (ti;x)− xi∥p,Ω = 0, i = 1, . . . , n,

lim
n→∞

∥∥∥Ln (|t|2 ;x)− |x|2
∥∥∥
p,Ω

= 0.

Then for every f ∈ Lp,Ω (Rn), we have

lim
n→∞

∥Lnf − f∥p,Ω = 0.

4. QUANTITATIVE TYPE THEOREMS IN CERTAIN WEIGTED SPACES

In this section, we give some quantitative type theorems in certain weighted spaces.
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4.1. Quantitative type Theorems in Cρ (R+). In [27], the authors constructed a new type of
modulus of continuity in weighted spaces of continuous functions. While constructing the
new type of modulus of continuity, they considered the following conditions:

(i) ρ is a continuously differentiable function on R+ with ρ (0) = 1,
(ii) infx≥0 ρ

′ (x) ≥ 1.
For each f ∈ Cρ (R+) and δ > 0, the new type weighted modulus of continuity is defined by

(4.7) Ωρ (f ; δ)R+ = sup
|ρ(t)−ρ(x)|≤δ

t,x∈R+

|f (t)− f (x)|
[|ρ (t)− ρ (x)|+ 1] ρ (x)

.

Let Ckρ (R+) be the subspace of all function f ∈ Cρ (R+) for which lim
x→∞

f (x)

ρ (x)
= k ∈ R.

The modulus of continuity given in (4.7) has the some properties that are similar to proper-
ties of the usual modulus of continuity. For example, for any f ∈ Ckρ (R+), we have
limδ→0 Ωρ (f ; δ)R+ = 0. For more details, see [27]. In the same paper, the authors introduced an
analogy of the classical Lipschitz space LipMα.

Definition 4.1. Let ρ (x) satisfy the conditions (i) and (ii), 0 < α ≤ 1 andM > 0. ByLipM (ρ (x) ;α),
we denote the set of all functions which satisfy the inequality

|f (t)− f (x)| ≤M |ρ (t)− ρ (x)|α , x, t ≥ 0.

We can immediately see that
LipMα ⊂ LipM (ρ (x) ;α)

and
LipMα = LipM (1 + x;α) .

Using (4.7) and Definition 4.1, we get

(4.8) Ωρ (f ; δ)R+ ≤Mδα.

Now, we give the following quantitative result:

Theorem 4.9. Let (Ln)n∈N be a sequence of positive linear operators which satisfies the conditions

∥Ln1− 1∥ρ = αn → 0, as n→ ∞,(4.9)

∥Lnρ− ρ∥ρ = βn → 0, as n→ ∞,(4.10) ∥∥Lnρ2 − ρ2
∥∥
ρ2

= γn → 0, as n→ ∞.(4.11)

Then for all f ∈ Ckρ (R+), we have

∥Lnf − f∥ρ4 ≤ 16Ωρ

(
f ;
√
αn + 2βn + γn

)
R+

+ ∥f∥ρ αn

for sufficiently large n.

Using the inequality (4.8), we can give the following corollary.

Corollary 4.4. Let (Ln)n∈N be a sequence of positive linear operators which satisfies the conditions
(4.9)-(4.11). For some α ∈ (0, 1], if f ∈ LipM (ρ (x) ;α), then we have

∥Lnf − f∥ρ4 ≤ 16M (αn + 2βn + γn)
α
2 + ∥f∥ρ αn

for sufficiently large n, where M > 0 is a constant independent of n.
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The theorem presented below establishes the convergence of sequences for positive linear
operators within the weighted space Ckρ (R+), with the convergence interval expanding as n→
∞.

Theorem 4.10. Under the assumptions of Theorem 4.9, if the sequence of positive real numbers ηn
satisfies the conditions

lim
n→∞

ηn = ∞

lim
n→∞

ρ
3
2 (ηn) δn = 0,

then, we get

sup
0≤x≤ηn

|Ln (f ;x)− f (x)|
ρ (x)

≤ 16Ωρ

(
f ; ρ

3
2 (ηn) δn

)
R+

+ ∥f∥ρ ρ
3
2 (ηn) δn

for each f ∈ Ckρ (R+) and sufficiently large n.

Finally, we give a more general result of Theorem 4.9. For given functions ψ1 and ψ2, let
ψ1 (x) ≤ ψ (x) and ψ2 (x) ≤ ψ (x) for all x ≥ 0, where ψ (x) = max (ψ1 (x) , ψ2 (x)).

Theorem 4.11. Let ρ (x) ≤ ψk (x) , k = 0, 1, 2, 3. If (Ln)n∈N a sequence of positive linear operators
satisfying the conditions

∥Ln1− 1∥ψ1
= αn → 0, as n→ ∞,

∥Lnρ− ρ∥ψ2
= βn → 0, as n→ ∞,∥∥Lnρ2 − ρ2

∥∥
ψ3

= γn → 0, as n→ ∞.

Then for any function f ∈ Ckρ (R+), we obtain inequality

∥Lnf − f∥ψρ2 ≤ 16Ωρ

(
f ;
√
αn + 2βn + γn

)
R+

+ ∥f∥ρ αn

for sufficiently large n.

In [28], for f ∈ Cρ (R+) and δ > 0, the author presented the modulus of continuity given by

(4.12) ωφ (f, δ) = sup
|φ(x)−φ(y)|≤δ

x,y≥0

|f (x)− f (y)|
ρ (x) + ρ (y)

.

Now, let us define the space

Uρ
(
R+
)
:=

{
f ∈ Cρ

(
R+
)
:
f

ρ
is uniformly continuous

}
.

The modulus of continuity given in (4.12) has some properties that are similar to proper-
ties of the classical modulus of continuity. For example, for every f ∈ Uρ (R+), we have
limδ→0 ωφ (f, δ) = 0. For more details, we refer the reader to [28]. Now, we give the main
results presented in the same paper.
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Theorem 4.12. Let Ln : Cρ (R+) → Bρ (R+) be a sequence of positive linear operators satisfying the
conditions ∥∥Lnφ0 − φ0

∥∥
ρ0

= an → 0, as n→ ∞,

∥Lnφ− φ∥
ρ

1
2
= bn → 0, as n→ ∞,∥∥Lnφ2 − φ2

∥∥
ρ
= cn → 0, as n→ ∞,∥∥Lnφ3 − φ3

∥∥
ρ

3
2
= dn → 0, as n→ ∞.

Then for all f ∈ Cρ (R+), we get

∥Lnf − f∥
ρ

3
2
≤ (7 + 4an + 2cn)ωφ (f, δn) + ∥f∥ρ an,

where δn = 2
√

(an + 2bn + cn) (1 + an) + an + 3bn + 3cn + dn.

Remark 4.2. Under the conditions of Theorem 4.12, we obtain

lim
n→∞

∥Lnf − f∥
ρ

3
2
= 0

for every f ∈ Ck
ρ

3
2
(R+).

Corollary 4.5. Let Ln : Cρ (R+) → Bρ (R+) be a sequence of positive linear operators satisfying the
conditions ∥∥Lnφ0 − φ0

∥∥
ρ0

= an → 0, as n→ ∞,

∥Lnφ− φ∥
ρ

1
2
= bn → 0, as n→ ∞,∥∥Lnφ2 − φ2

∥∥
ρ
= cn → 0, as n→ ∞,∥∥Lnφ3 − φ3

∥∥
ρ

3
2
= dn → 0, as n→ ∞.

Let ηn be a sequence of real numbers such that

lim
n→∞

ηn = ∞,

lim
n→∞

ρ
1
2 (ηn) δn = 0,

where δn = 2
√
(an + 2bn + cn) (1 + an) + an + 3bn + 3cn + dn. Then we have

sup
0≤x≤ηn

|Lnf (x)− f (x)|
ρ (x)

≤ (7 + 4an + 2cn)ωφ

(
f, ρ

1
2 (ηn) δn

)
+ ∥f∥ρ an

for all f ∈ Cρ (R+).

Now, we give an example of linear positive operators as an applications of the theorems
given in this subsection (see [27]). In what follows, we consider that ω : R → R, ω (x) = 1+x2.

Definition 4.2. We consider a sequence of linear positive operators (Dn)n∈N given by

Dn (f ;x) = ρ2 (x)

∞∑
k=0

f
(
k
n

)
ρ2
(
k
n

)ak,n (x) ,
where ak,n, n = 1, 2, . . . , x ∈ R+ are nonnegative functions which satisfy the following conditions:

(i)
∞∑
k=0

ak,n (x) = 1,
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(ii)

lim
n→∞

∥∥∥∥∥
∞∑
k=0

(
k

n

)i
ak,n − ei

∥∥∥∥∥
ω

, i = 1, 2.

By straightforward calculation, we get

Dn (1;x)− 1 = ρ2 (x)

[ ∞∑
k=0

1

ρ2
(
k
n

)ak,n (x)− 1

ρ2 (x)

]
,

Dn (ρ;x)− ρ (x) = ρ2 (x)

[ ∞∑
k=0

1

ρ
(
k
n

)ak,n (x)− 1

ρ (x)

]
,

Dn

(
ρ2;x

)
− ρ2 (x) = 0.

Before presenting the results, we consider the following theorem:

Theorem 4.13 ([27]). Let Bn : Cω (R+) → Bω (R+) be a sequence of positive linear operators. If

lim
n→∞

∥Bn (ei; ·)− ei∥ω = 0 for i = 0, 1, 2,

then, we have
lim
n→∞

∥Bnf − f∥ω = 0

for all functions f ∈ Ckω (R+).

Since 1
ρ and 1

ρ2 are bounded functions, thanks to Theorem 4.13 we have

lim
n→∞

∥∥∥∥∥
∞∑
k=0

1

ρ2
(
k
n

)ak,n − 1

ρ2

∥∥∥∥∥
ω

= 0

lim
n→∞

∥∥∥∥∥
∞∑
k=0

1

ρ
(
k
n

)ak,n − 1

ρ

∥∥∥∥∥
ω

= 0.

Hence, we get

αn = lim
n→∞

∥Dn (1; ·)− 1∥ρ2ω = 0,

βn = lim
n→∞

∥Dn (ρ; ·)− ρ∥ρ2ω = 0,

γn = lim
n→∞

∥∥Dn

(
ρ2; ·

)
− ρ2

∥∥
ρ2ω

= 0.

Then, under the assumptions Theorem 4.11, we obtain for each f ∈ Ckρ (R+)

∥Dnf − f∥ρ4ω ≤ C (f) Ωρ

(
f ;
√
αn + 2βn + γn

)
,

where C (f) is the constant depending on f .

4.2. Quantitative type Theorems in Lp,ω̃ (R). In [2], the authors explored the approximation
properties of the operators in some weighted spaces Lp, 1 ≤ p < ∞. They considered the
weight function

ν : R → (0, 1] , ν (x) =
(
1 + x2m

)−p
,

where m > 1 is a fixed integer. Now, by Lp,ν (R+), we will denote the linear space of p−
absolutely integrable functions on R with respect to weight ν, that is

Lp,ν (R) :=
{
f : R → R : fν

1
p ∈ Lp (R) , 1 ≤ p <∞

}
.
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The norm on Lp,ν denoted by ∥f∥p,ν is defined by

∥f∥p,ν :=
∥∥∥fν 1

p

∥∥∥
Lp

=

(∫
R
|f (t)|p ν (t) dt

) 1
p

.

Remark 4.3. If we consider ω̃ = ν, since p ≥ 1 and m > 1, this weight function satisfies the condition
(3.6).

In the same paper, the authors introduced a new type modulus of continuity for the func-
tions f ∈ Lp,ν (R). The new type modulus of continuity is defined by

(4.13) ωp,m (f ; δ) = sup
0≤h≤δ

(∫
R

∣∣∣∣∣f (x+ h)− f (x)

1 + (|x|+ h)
2m

∣∣∣∣∣
p

dx

) 1
p

, δ ≥ 0.

The modulus of continuity given in (4.13) has some properties that are similar to proper-
ties of the classical modulus of continuity. For example, for every f ∈ Lp,ν (R), we have
limδ→0+ ωp,m (f ; δ) = 0. For more details, see [2].

Now for α ≥ 1, λ = 1
2α ∈

(
0, 12

]
and for each n ∈ N, we consider the positive linear operators

defined by

(4.14) (Lnf) (x) :=
1

an

∫ x

x−1

f (t+ τ2,n)
(
1− (x− t)

2α
)n

dt, x ∈ R,

where

an =

∫ 1

0

(
1− y2α

)n
dy,

τl,n =
B (n+ 1, lλ)

B (n+ 1, λ)
, p ∈ N.

Here, B is the usual Beta function. Now, we give the main results presented in [2].

Theorem 4.14. Let (Ln)n∈N be a sequence of positive linear operators as defined in (4.14). Then for all
f ∈ Lp,ν (R), we have

∥Lnf − f∥p,ν ≤ 2ωp,m

(
f ;
√
τ3,n − τ22,n

)
.

In the following theorem, the authors presented global smoothness preservation property.

Theorem 4.15. Let (Ln)n∈N be a sequence of positive linear operators as defined in (4.14). Then for
every f ∈ Lp,ν (R) and δ > 0, the inequality

ωp,m (Lnf ; δ) ≤ 22m−1
(
1 +

√
τ3,n − τ22,n

)
ωp,m (f ; δ)

holds.

5. APPLICATIONS

In this section, we establish general Durrmeyer type operators which occur to approximate
Lebesgue integrable function on finite and infinite interval in approximation by linear positive
operators. Ibragimov and Gadjiev [17] introduced operators {Gn} by

(5.15) Gn (f ;x) =

∞∑
ν=0

f

(
ν

n2ψn (0)

)
K(ν)
n (x, t, u)

(−αnψn (0))ν

ν!
,

where
(
K

(ν)
n (x, t, u)

)
n∈N

:= ∂ν

∂uνKn (x, t, u)
∣∣
u=αnψn(t),t=0

is a sequence of functions of trivari-

ate x, t, u, such that x, t ∈ [0, A] and u ≥ 0, satisfying following conditions:
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1. for each x, t ∈ [0, A] and for each n ∈ N = {1, 2, 3, ...} , Kn is entire function with respect
to variable u,

2. Kn (x, 0, 0) = 1, x ∈ [0, A] , n ∈ N,
3.
[
(−1)

ν ∂ν

∂uνKn (x, t, u)
∣∣
u=u1,t=0

]
≥ 0 for ν = 0, 1, ..., n ∈ N and x ∈ [0, A],

4. ∂ν

∂uνKn (x, t, u)
∣∣
u=u1,t=0

= −nx
[
∂ν−1

∂uν−1Km+n (x, t, u)
∣∣∣
u=u1,t=0

]
for all x ∈ [0, A] and

n, ν ∈ N, m is a number such that m+ n = 0 or a natural number.
Here, (φn (t))n∈N, (ψn (t))n∈N are sequences of functions in C [0,∞) , which is the space of

continuous function on [0,∞) , such that φn (0) = 0 and lim
n→∞

1

n2
ψn (0) = 0. Also let (αn)n∈N

denote a sequence of positive numbers satisfying the conditions:

(5.16) lim
n→∞

αn
n

= 1 and lim
n→∞

αnψn (0) = l1, l1 ≥ 0.

The operator Gn is defined by for x ∈ R+ and any function f defined on the interval R+.
Now, these sequences of positive linear operators are called Ibragimov-Gadjiev operators. The
authors studied uniform convergence and some shape preserving properties of the operators
Gn. As {Gn} contains well-known operators in the special cases (see [14]), this sequence of
linear positive operators has been studied extensively. In [13, 14], some generalization and
order of approximation of unbounded functions were obtained. Also, weighted approximation
results were presented in the papers [4, 21].

In the year 1967, Durrmeyer [15] introduced a modification of the Bernstein polynomials
with the aim of approximating Lebesgue integrable functions on [0, 1]. These operators, called
by Bernstein-Durrmeyer operators, are defined by

(5.17) Dn (f, x) = (n+ 1)

n∑
k=0

pn,k (x)

1∫
0

pn,k (t) f (t) dt, x ∈ [0, 1] ,

where pn,k (x) =
(
n
k

)
xk (1− x)

n−k
.

In the present paper, we introduce Durrmeyer modification of the operators (5.15). Firstly,
we give some auxiliary results to construct the new operators and calculate moments for these
operators. In last section, we obtain local approximation results for new Durrmeyer operators
using second order modulus of smoothness and modulus of continuity of f belongs to space
of functions bounded and continuous on [0,∞) . However, this condition can be replaced by
weaker conditions in some special cases of operators. We also study on asymptotic formulas. It
is well-known in approximation theory by linear positive operators that the classical Bernstein
operator Bn : C [0, 1] → C [0, 1] is given by

Bn (f, x) =

n∑
k=0

f

(
k

n

)(
n

k

)
xk (1− x)

n−k
, x ∈ [0, 1]

and Voronovskaya theorem proved in [32] as: If f is bounded on [0, 1], differentiable in some
neighborhood of x and has second derivative f ′′ for some x ∈ [0, 1] , then

(5.18) lim
n→∞

n [Bn (f, x)− f (x)] =
x (1− x)

2
f ′′ (x) .

This type results were also obtained for other operators as Szász and Baskakov operators and
their generalizations. We firstly obtain Voronovskaya type theorem for new Durrmeyer opera-
tors. We finally give a quantitative Voronovskaya result for new Durrmeyer operators.
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5.1. Construction of Ibragimov-Gadjiev-Durrmeyer operators. With similar consideration con-
structed by Ibragimov and Gadjiev, we purpose to define a general Durrmeyer type operators
including well-known Durrmeyer operators. In order to achieve this, additionally to four con-
ditions mentioned in introduction we also assume the following condition:

5.
∫ A
0
K

(ν)
n (x, t, u) dx = (−1)

ν ν!
(n−m)uν+1

1

.

Now we can give new generalized Durrmeyer operators:

Mn (f ;x) = (n−m)αnψn (0)

∞∑
ν=0

K(ν)
n (x, t, u)

[−αnψn (0)]ν

(ν)!

×
∫ A

0

f (y)K(ν)
n (y, t, u)

[−αnψn (0)]ν

(ν)!
dy.(5.19)

We call these new operators as Ibragimov-Gadjiev-Durrmeyer operators. The family of opera-
tors Mn (f ;x) is linear and positive.

5.2. Some auxilary results. We note that in this paper we study generalized operators (5.19)
with A = ∞. Using the assumptions on Kn (x, t, u), since Kn (x, t, u) is entire functions respec-
tively the variable u, we can write for any u1 ∈ R the following Taylor expansion

Kn (x, t, u) =

∞∑
ν=0

∂ν

∂uν
Kn (x, t, u)

∣∣∣∣
u=u1

(u− u1)
ν

ν!
.

Replacing u = φn (t) , u = αnφn (t) and t = 0, where (αn) is the sequence defined in (5.16),

Kn (x, 0, 0) =

∞∑
ν=0

∂ν

∂uν
Kn (x, t, u)

∣∣∣∣
u=αnφn(t),t=0

(−αnφn (0))ν

ν!

is obtained by the condition φn (0) = 0. Taking into account that Kn (x, 0, 0) = 1 by the condi-
tion (2), we have

∞∑
ν=0

∂ν

∂uν
Kn (x, t, u)

∣∣∣∣
u=αnφn(t),t=0

(−αnφn (0))ν

ν!
= 1.

Also we assume that the following three conditions satisfied:
a) Kn (0, 0, u) = 1 for any u ≥ 0, x ∈ [0, A] , p ∈ N and

lim
x→∞

xpK(ν)
n (x, t, u) = 0,

b) d
dx Kn (x, t, u)|u=u1,t=0 = −nu1 Km+n (x, t, u)|u=u1,t=0,

c) n+νm
1+u1mx

K
(ν)
n (x, t, u) = nK

(ν)
n+m (x, t, u).

Lemma 5.3. The condition b) is equivalent to the following equality

d

dx
K(ν)
n (x, t, u) =

ν

x
K(ν)
n (x, t, u)− nu1K

(ν)
n+m (x, t, u) .

Proof. By ν-multiple application of condition (4) , we obtain

(5.20) K(ν)
n (x, t, u) = (−1)

ν
n (n+m) ... (n+ (ν − 1)m)xν Kn+νm (x, t, u)|u=u1,t=0 .

Applying condition b), we get

(−1)
ν d

dx
K(ν)
n (x, t, u) = n (n+m) ... (n+ (ν − 1)m)
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×
{
νxν−1 Kn+νm (x, t, u)|u=u1,t=0 − xν (n+ νm)u1 Kn+(ν+1)m (x, t, u)

∣∣
u=u1,t=0

}
.

Using (5.20), we get desired result. □

Using condition c) and Lemma 5.3, we obtain:

Conclusion 1. We have

x (1 + u1mx)
d

dx
K(ν)
n (x, t, u) = (ν − xu1n)K

(ν)
n (x, t, u) .

Proposition 5.1. If the conditions 1.− 4. and a), b) are satisfied, we have∫ ∞

0

K(ν)
n (x, t, u) dx = (−1)

ν ν!

(n−m)uν+1
1

.

Proof. Using partial integration and condition 2., we have∫ ∞

0

K(ν)
n (x, t, u) dx = −

∫ ∞

0

x
d

dx
K(ν)
n (x, t, u) dx.

Using Lemma 5.3, we get∫ ∞

0

K(ν)
n (x, t, u) dx = −ν

∫ ∞

0

K(ν)
n (x, t, u) dx+ nu1

∫ ∞

0

xK
(ν)
n+m (x, t, u) dx.

Using condition 4., we have∫ ∞

0

K(ν)
n (x, t, u) dx = −ν

∫ ∞

0

K(ν)
n (x, t, u) dx− u1

∫ ∞

0

K(ν+1)
n (x, t, u) dx.

We can write ∫ ∞

0

K(ν)
n (x, t, u) dx =

−u1
ν + 1

∫ ∞

0

K(ν+1)
n (x, t, u) dx.

By ν- times application of above equality and using condition a) and b), we get∫ ∞

0

K(ν)
n (x, t, u) dx = − ν

u1

∫ ∞

0

K(ν−1)
n (x, t, u) dx

...

= (−1)
ν ν!

uν1

∫ ∞

0

Kn (x, t, u)|u=u1,t=0 dx

=
(−1)

ν+1
ν!

(n−m)uν+1
1

∫ ∞

0

d

dx
Kn−m (x, t, u)|u=u1,t=0 dx

= (−1)
ν ν!

(n−m)uν+1
1

.(5.21)

□

5.3. Moments of Ibragimov-Gadjiev-Durrmeyer operators. Firstly, we give the moments of
Ibragimov-Gadjiev operators.

Lemma 5.4. Let ν, n ∈ N. For any natural number r, we have

(5.22)
∫ ∞

0

xrK(ν)
n (x, t, u) dx =

(−1)
ν
(ν + r)!

(n−m) (n− 2m) ... (n− pm) (n− (r + 1)m)uν+r+1
1

.
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Proof. Using the condition (4) recursively ν- times, we get∫ ∞

0

xrK(ν)
n (x, t, u) dx =− 1

n−m

∫ ∞

0

xr−1K
(ν+1)
n−m (x, t, u) dx.

=
1

(n−m) (n− 2m)

∫ ∞

0

xr−2K
(ν+2)
n−2m (x, t, u) dx

...

=
(−1)

r

(n−m) (n− 2m) ... (n− rm)

∫ ∞

0

K
(ν+r)
n−rm (x, t, u) dx.

Using (5.21), we have∫ ∞

0

xpK(ν)
n (x, t, u) dx

=
(−1)

p

(n−m) (n− 2m) ... (n− pm)

(−1)
ν+p

(ν + p)!

(n− (p+ 1)m)uν+p+1
1

=
(−1)

ν
(ν + p)!

(n−m) (n− 2m) ... (n− pm) (n− (p+ 1)m)uν+p+1
1

.

□

Lemma 5.5. Let ν, n ∈ N. For any natural number r, we have

Mn (t
r;x) =

n2r

(n− 2m) ... (n− pm) (n− (r + 1)m) (αn)
r
(n2ψn (0))

r

×
r∑
j=0

n (n+m) ... (n+ (j − 1)m)Cj,r [αnψn (0)]
j
xj ,

where Cj,r = r!
j!

(
r
j

)
. Also,

Mn (1;x) = 1, Mn (t;x) =
n2

(n− 2m)αn

(
αn
n
x+

1

n2ψn (0)

)
,

(5.23)

Mn

(
t2;x

)
=

n4

(n− 2m) (n− 3m)α2
n

((αn
n
x
)2 (m+ n)

n
+
αn
n

4

n2ψn (0)
x+

2

(n2ψn (0))
2

)
.

(5.24)

Proof. Using (5.19), we obtain

Mn (t
r;x) = (n−m)αnψn (0)

∞∑
ν=0

K(ν)
n (x, t, u)

[−αnψn (0)]ν

(ν)!

×
∫ ∞

0

yrK(ν)
n (y, t, u)

[−αnψn (0)]ν

(ν)!
dy.
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Using (5.22), we have

Mn (t
r;x) = (n−m)αnψn (0)

∞∑
ν=0

K(ν)
n (x, t, u)

[−αnψn (0)]ν

(ν)!

× (−1)
ν
(ν + r)!

(n−m) (n− 2m) ... (n− rm) (n− (r + 1)m) (αnψn (0))
ν+r+1

[−αnψn (0)]ν

(ν)!
.

=

∞∑
ν=0

K(ν)
n (x, t, u)

[−αnψn (0)]ν

(ν)!

× 1

(n− 2m) ... (n− rm) (n− (r + 1)m) (αnψn (0))
r (ν + r) ... (ν + 1) ,

where

(ν + r) ... (ν + 1) =

r∑
j=0

Cj,r

j−1∏
l=0

(ν − l)

and Cj,r = r!
j!

(
r
j

)
. Using (5.21), we have

Mn (t
r;x) =

∞∑
ν=0

K(ν)
n (x, t, u)

[−αnψn (0)]ν

(ν)!

× 1

(n− 2m) ... (n− rm) (n− (r + 1)m) (αnφn (0))
r

r∑
j=0

Cj,r

j−1∏
l=0

(ν − l)

=
1

(n− 2m) ... (n− rm) (n− (r + 1)m) (αnψn (0))
r

×
r∑
j=0

Cj,r

∞∑
ν=0

j−1∏
l=0

(ν − l)K(ν)
n (x, t, u)

[−αnψn (0)]ν

(ν)!

=
1

(n− 2m) ... (n− rm) (n− (r + 1)m) (αnψn (0))
r

×
r∑
j=0

Cj,r

∞∑
ν=j

K(ν)
n (x, t, u)

[−αnψn (0)]ν

(ν − j)!

=
1

(n− 2m) ... (n− rm) (n− (r + 1)m)ur+1
1

×
r∑
j=0

Cj,rx
j

∞∑
ν=0

K(ν)
n (x, t, u)

(−1)
j
[−αnψn (0)]ν+j

(ν)!
.

Hence

Mn (t
r;x) =

n2r

(n− 2m) ... (n− rm) (n− (r + 1)m) (αn)
r
(n2ψn (0))

r

×
r∑
j=0

n (n+m) ... (n+ (j − 1)m)Cj,r [αnψn (0)]
j
xj .

□

Lemma 5.6. For each x ≥ 0 and n > 3m, we have
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(i) Mn (t− x;x) = 2mx
(n−2m) +

1
(n−2m)αnψn(0)

,

(ii) Mn

(
(t− x)

2
;x
)
= x2

[
m(2n+6m)

(n−2m)(n−3m)

]
+ (2n+6m)αnψn(0)x+2

(n−2m)(n−3m)α2
nψ

2
n(0)

,

(iii) Mn ((t− x)
r
;x) = O

(
(nαnψn (0))

−[ r+1
2 ]
)
, where [.] is integral part of (r + 1) /2.

Proof. Proof is clear from the Lemma 5.5. □

Lemma 5.7. For each x ≥ 0 and n > 3m, we have:

(5.25) Mn

(
(t− x)

2
;x
)
≤ C

(n− 2m)αnψn (0)

[
φ2 (x) +

1

(n+ 3m)αnψn (0)

]
,

where φ (x) :=
√
x (1 + xmαnψn (0)) and C = supn∈N

{
2n+6m
(n−3m)

}
.

Proof. If we consider the equalities (5.23) and (5.24), we can write

Mn

(
(t− x)

2
;x
)

=
n4

(n− 2m) (n− 3m)α2
n

((αn
n
x
)2 (m+ n)

n
+
αn
n

4

n2ψn (0)
x+

2

(n2ψn (0))
2

)

−2x

[
n2

(n− 2m)αn

(
αn
n
x+

1

n2ψn (0)

)]
+ x2

= x2
[

n (m+ n)

(n− 2m) (n− 3m)
− 2n

(n− 2m)
+ 1

]
+x

[
4n

(n− 2m) (n− 3m)αnψn (0)
− 2

(n− 2m)αnψn (0)

]
+

2

(n− 2m) (n− 3m)α2
nψ

2
n (0)

= x2
[

m (2n+ 6m)αnψn (0)

(n− 2m) (n− 3m)αnψn (0)

]
+ x

[
2n+ 6m

(n− 2m) (n− 3m)αnψn (0)

]
+

2

(n− 2m) (n− 3m)α2
nψ

2
n (0)

=

[
(2n+ 6m)

(n− 2m) (n− 3m)αnψn (0)

] [
x (1 + xmαnψn (0)) +

1

(n+ 3m)αnψn (0)

]
and if we choose C = supn∈N

{
2n+6m
(n−3m)

}
, we have

Mn

(
(t− x)

2
;x
)
≤ C

(n− 2m)αnψn (0)

[
φ2 (x) +

1

(n+ 3m)αnψn (0)

]
,

which is desired. □

6. VORONOVSKAYA TYPE RESULTS

This section will be dedicated to results on Voronovskaya type theorems. Let ρ1 (x) = 1+x2

and ρ2 (x) = 1 + x4. From (5.23) and (5.24), we have

sup
x∈R+

|Mn (ρ1;x)|
ρ2 (x)

≤ 1+
n4

(n− 2m) (n− 3m)α2
n

((αn
n

)2 (m+ n)

n
+
αn
n

4

n2ψn (0)
+

2

(n2ψn (0))
2

)
.
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Since the right hand side of above inequality tends to zero, we get Mn : Cρ1 → Cρ2 and

lim
n→∞

∥Mn (t
v;x)− xv∥ρ2 = 0, v = 0, 1, 2.

Then, we have:

Theorem 6.16. For all f ∈ Cρ1(R+),

lim
n→∞

∥Mn (f)− f∥ρ2 = 0.

Theorem 6.17. Let f ∈ Cρ1 (R+) . Suppose that the first and second derivative f ′and f ′′ exist at a
point x ∈ [0,∞), then we have

lim
n→∞

nαnψn (0) [Mn (f ;x)− f (x)] = (2xml1 + 1) f ′ (x) + x (xml1 + 1) f ′′ (x) .

Theorem 6.18. For all f ∈ Cρ1 (R+), we have

∥Mn (f)− f∥ρ2 ≤ 8
(
1 +

√
A
)
Ωρ1

(
f ;

√
C

(n− 2m)αnψn (0)

[
αnψn (0) +

1

(n+ 3m)αnψn (0)

])
R+

.

Proof. From the definitions of the operators (5.19), we have

|Mn (f ;x)− f (x)| ≤ 8ρ1 (x)

(
1 +

1

δ2
Mn

(
(ρ1 (t)− ρ1 (x))

2
;x
))

Ωρ1 (f ; δ)R+

and Mn

(
(ρ1 (t)− ρ1 (x))

2
;x
)
≤
[
Mn

(
(t− x)

2
;x
)]1/2 [

Mn

(
(t+ x)

2
;x
)]1/2

. Then, we get

Mn

(
(t− x)

2
;x
)

√
ρ2 (x)

≤ C

(n− 2m)αnψn (0)

[
φ2 (x)√
ρ2 (x)

+
1

(n+ 3m)αnψn (0)

]
(6.26)

≤ C

(n− 2m)αnψn (0)

[
αnψn (0) +

1

(n+ 3m)αnψn (0)

]
and

Mn

(
(t+ x)

2
;x
)

√
ρ2 (x)

≤ n4

(n− 2m) (n− 3m)α2
n

((αn
n

)2 (m+ n)

n
+
αn
n

4

n2ψn (0)
+

2

(n2ψn (0))
2

)(6.27)

+ 2

(
n2

(n− 2m)αn

(
αn
n

+
1

n2ψn (0)

))
+ 1,

where φ (x) :=
√
x (1 + xmαnψn (0)) and C = supn∈N

{
2n+6m
(n−3m)

}
. The right hand side of (6.27)

is convergent, it follows that ∃ A > 0 such that

Mn

(
(t+ x)

2
;x
)

√
ρ2 (x)

< A

for all n ∈ N. Choosing δ =
√

C
(n−2m)αnψn(0)

[
αnψn (0) +

1
(n+3m)αnψn(0)

]
, we obtain

|Mn (f ;x)− f (x)|
ρ2 (x)

≤ 8
(
1 +

√
A
)
Ωρ1 (f ; δ)R+ .

It completes the proof. □
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