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On the source problem for the diffusion equations with
conformable derivative
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ABSTRACT. In this article, we are interested in the problem of finding the source function of the diffusion equations
0 — Au = f(x), where f as the unknown source function and o € (0, 1). Furthermore, the fractional derivative o
of u is defined by the conformable time derivative. This is an ill-posed problem. So, we use the regularized Tikhonov
method to construct a regularization solution, and the estimation of convergence is also discussed.
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1. INTRODUCTION

Set 2 C R? (d > 1) is bounded domain. We regard the problem
(1.1) o (z,t) — Au(z,t) = f(z),z € Q,
where u(z, t) satisfies
u(@,t)|zeon =0, t€(0,T)
u(z,0) =up(z), z€Q
u(z, T)=g(x), z€Q
¢ is denote of conformable time derivative with a € (0, 1) (see Khalil [6]). With the given
function G : [0, 00) — R, the conformable derivative with order a € (0, 1) is defined by
12) e G(t + ptlpa) —G(t)
for all t > 0. With (0,),to > 0, and exist lim, .+ 02 G(t) then

07 Gto) = lim 7 G(r).

Many models of practical problems with comfortable time derivatives are applied in real life .

There are many kinds of fractional derivatives such as Riemann-Liouville, Caputo, con-
formable, Grunwald-Letnikov, and so on. Problems with non-integer derivatives have received
a lot of attention in recent years due to their good application flexibility [1, 2]. Our problem is
ill-posed in the sense of Hadamard (the solution is not continuity on the data), so we need to
construct a new approximation solution (is called the regularization solution). We emphasised
that input data g is not known, and we only have information that ¢° satisfy ||g — ¢°[|r2(0) < &

Received: 05.12.2023; Accepted: 01.03.2024; Published Online: 15.04.2024
*Corresponding author: Doan Vuong Nguyen; doanvuongnguyen@iuh.edu.vn

55


https://orcid.org/0000-0002-1211-6241
https://orcid.org/0009-0003-9938-6619
https://orcid.org/0000-0001-8805-4588
https://orcid.org/0000-0002-9438-6439

56 Nghiem Thi Van Anh, Vu Anh Tuan, Le Dinh Long and Doan Vuong Nguyen

with the error 6 > 0, although the input data error is small, the change of the solutions is large.
In literature, there are many results of the problem (find source function of diffusion equation).
The techniques used to establish the regularization of solution such as the quasi-reversibility
method [11], Quasi-boundary value method [8], Landweber iterative regularization method
[12, 13], fractional Landweber method [4], Tikhonov regularized method [10], Fourier trunca-
tion method [9]. In this work, our goal is to find the unknown source function of problem by
using fractional Tikhonov method [7, 3].

2. SOME PRIMINARY RESULTS

2.1. Some function spaces. Denote (-, -) inner product L?((2). There are exists an orthonormal
basis {¢;}52, (p; € Hy(Q2) N C>(Q)) of L*() satisfy

Agj(z) = =Ajpi(x), x€Q,
where {}; }jil is set of eigenvalues of A satisfy
D<A <A< <A<,

and lim;_, ., A; = oo. Furthermore, for each m > 0, we defined the space
m 2 - 2m 2
H™(Q) = {u € L*(): Z)\j [(u, ;)| < +oo},
j=1
so H™(Q) is Hilbert space equipped with the norm

lall 1m0y = (ZA? (w,0)) "

N

2.2. Source function formular. In this section, we introduce a mild solution of initial problem

otu(z, t) — Au(x,t) = f(z), z€Q
(2.3) u(z,t) =0, x €0 te (0,T].
u(z,0) = uo(z), x €N

Use the method of separation of variables to find the solution of (2.3). We assume that « has
Fourier expansions

4 ule,) = 3 wies(a) uylt) = (ul,0.9,).

From this, (2.4), we have

Jj=1

Z {exp )\jtaafl)uoyj + <f, s0j>/sa*1 exp ( —Aj (t(" — so‘)ofl)ds} @;(x).
0

Sett =T and ug,; = 0, we take

j=1

- T
(2.5) gj(x Z { f,e; /s"_1 exp (— A (T — sa)a_l)ds} ©;(z).
0
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From (2.5), we have

_ i (g.05)

=1 [so=lexp (= A\j(T™ — s*)a~1)ds

<.

Hence
_ i (9,95)9;(z)

=1 [so=lexp (= A\j(T™ — s*)a~1)ds

<.

2.3. Ill-posedness. We define the linear operator 7" : L*(Q2) — L?*() :
T

Tf(x) = Z [/50“1 exp ( — (T — so‘)ofl)ds] <f, <pj>cpj(1‘)
J=1 0
26) - [ K@ oreas
Q
here,
T
=3 ([t (- 07 )as e )este)
Jj=1 0
Since K (z,§) = K(§, z), the T is adjoint operator. Next, we shall show T is compact. Assuming

T is defined by

27) Tnf(a =Z( / s exp (= AT %) )ds ) {1, 3)5 (o)

It is easy to show that T’y is bounded, finite dimension operator. Moreover, from (2.6) and (2.7),
we have

T
2
(2.8) HTNf - Tinz(Q) = /s eXp A (T — so‘)oz_l)ds) |<f, <pj>‘2.
j= N+1 0

With

TOL

Vo = /so‘*1 exp (— A (T — s*)a!)ds,
0

by setting s* = w, and using the method of substitution, we obtain
1 7
(2.9) Va:—/exp(f/\j(TO‘fs ) *1)ds< 1
o Aj
0
Combining (2.8) and (2.9), we have

(1 —exp (— )\jT“ofl)) < )\17

oo

HTNf—TfH2L2(Q) < Z )\2’<fv 6J>‘ :

j=N+1"3
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This means that
1
| T f - TfHLQ(Q) < E”fHL?(SZ)-
So, |[Tx — T'||r2¢0) — 0 when N — co. Hence, T' is compact.
Theorem 2.1. (1.1) is ill-posed.

Proof. The singular values of linearity compact self adjoint operator T is

T

A= /sa71 exp (— \j(T™ — s*)a ') ds.
0

On L?(R2), a set of all eigenvalues ¢; is an orthonormal basis. In view of (2.6), we rewrite (1.1)
such as

Tf(z) = g(x).

From the results of Kirsch ([5]), we conclude (1.1) is ill-posed. With g* = \‘/")\’Lk, we have the
source function is

fk(.'L‘) :i <gk’<pj>50j(x)

_ i () .
\/Eg s Lexp (— \p(T> — s*)a1)ds

If the latter output data is g = 0 then f = 0, g and g*, so we have the estimation:

lo* ~ ollzey = |2 | ==
VAR IL2©@Q) /A
this derive
. E_ _ 1 o
(2.10) kgrfoo 19" = gll2(0) kgrfm I 0.

The error estimator for f* and f:

. -1
ka - fHLQ(Q) = m<!sa_l exXp ( — )\k(Ta — Sa)a_l)d8>
" -1
(2.11) > J}k( 0/ L exp (= Au(T° — Sa>a—1)ds> v

So, we have || f* — fllr20) > vAe. And it follows

G (75 = e > Jim VAR = oo

Combining (2.10) , (2.12), we have conclusion . O
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2.4. Stability condition required for the source function.

Theorem 2.2. For s > 0 and suppose that f € H™ (), then

11120y < Cm, 1l c@)llgl Foigy-
here,
(2.12) Clm. @) = (11— exp(-MTa)]) 7 Flzm(ay ™
Proof. By applying Holder inequality, and in short, we denote,
T
B(\j,a) = /50‘71 exp (— A (T — s%)a" 1) ds,
0

and we have

N <9790J> m+1 |<9790j> m+1
By = 3 |5 ‘ v
12(Q) ; ; B0n.a
< [i ‘<g S0] :| "L+1 |:Z’ 9,0 |2:| m+1
> pt )’27n+2 = 7
oo
f7 (pj :| m+1 m:-]i
<[ o) G
On the other hand,
B\, @)™ >2™ B, )"
22 21— exp (A7)
this implies that
s U fm .y Xel(fenl”
=1 B0y, @) = 2|1 — exp(~\ Tea )"

Therefore,

2m
m+1

_2
113200 < (11 —exp-XTa)]) " £l e ol oy

< [COm, | Fllam@)llgl -

3. FRACTIONAL TIKHONOV METHOD

In order to regularize the solution of the problem with input data g € L?(12), we shall mini-
mize the functional

J =|Kf— g|? 8| £
[uin «@) () =K [f = glls + @Oz
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where €(J) is regularization parameter, || - ||¢ is semi-norm with the weighted and defined by
lvlle = HW%’U L2 forallvand W = (K*K)*~! (1/2 < ¢ < 1). This minimized problem has

a unique solution to satisfy

((K*K)€<5) + §I)f = (K*K)$ 1 K*g.
By using the singular value decomposition of the compact self adjoint operator, we have

< |BO, )
(3.13) Fo (@) =" | — |
Furthermore, if the measurement data of g is ¢® with erros ¢ then

) 26—1
B(A j ) a)
(3.14) fra() =3 — — |
= [€(9)]* + |B(>‘j7a)|

here ¢(6) is regularization parameter.
The following theorem obtain the estimation for || - ff( 5) || L2(Q) and the order of conver-

1
2 (9:05)¢5(2), 5 <E<TL

<€<1

)

N =

7 (9 (@), 0 ()5 (),

gences with suitable regularization parameter. First, we need the lemma.

Lemma 3.1. Forz > Ay and 3 < & <1, then

: < F(ﬁ,A)eiﬁ,

(3.15) Gi(z) = A2E J p2E =

here B(, A) independent of e, z.

1
Proof. For 3 < ¢ < 1, from (3.15), we take the solution of G (z) = 0, we get

1

2o = A(26 — 1) 2€¢ %€,
And by 2y , the equation (3.15), has

G1(2) < Gi(z) < €% (A”f@g - 1)—215) |

2¢
U

Lemma3.2. Forz > X\, 1 < ¢ <1, then

2,26-m (26)7! <(2§ —m) 25"‘5m14_mm2w§>6?7 0<m<2€

€z

GQ(Z) = A2§+€222£ S
(A26\26) T2 m > 2

Proof. This result as the [7], we omit here. O

Theorem 3.3. Assume that f € H™(Q) and g € L?(2) then
§ _1
17 - f5(5)HL2(Q) < Cole(d)]
26—m

N {(2@- (26 — m) =" A=mm ) || £|

m
3

am@le@)]e,  0<m <2

(AN 72 7Y £ g [€(6)), m > 2¢

with A =

A% (1 —exp(— )\1Ta0f1)>

J

, C independent of €(0).
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Remark 3.1. This theorem suggests the choice of the following regularization parameter

) T
) ** then

o If0 < m < 2¢, we can choose €(J) = (W
Hm ()

If = £s) ||L2(Q) is convergences with order §m+2 .

s
o Ifm > 2¢, we can choose €(6) = (”f”d)  then
Hm™(Q)

£

If = £ | (@ i convergences with order 5+
Proof. Applying triangle inequality, we have the result

Hf o fg(J)HL?(Q) < er(é) - 5(5)”,;2(9) + Hf_ fe(é)HL2(Q)

Ay A,
with
=[BT s
.A = xr) — x), v T i x),
s By e
= (B 1 )
3.16 Ay = _ oY @)
o ; ([e(é)PHB(Aj,a)\ £ B\, 0) (9, 25)¢i ()

Step 1: First, the estimation of ||.A;[|1,2(q) will be shown. From

= 1 o, —1 i
I
and the other hand
) <[~ 2 )]
7 j
it follows
2
ng—l
Aj

2€ <g6 _g,@j>2

1Q1lL2(0) < Z
j=1

[5(5)]2 + % (1 — exp ( — )\lTaa—l))
3 Aj i 52
S; [€(8)]2A% + |1 — exp (= M Ta~1) |* (9" = 9.03)"

Employing Lemma 3.1, we have

m""

(3.17) 1Q1llz2() < Cé(e(d)) 2
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Step 2: Next, we have estimates || Az | z2(q),

)’2571 1

HA2HL2 Q)fz ( )’25 - ’B(Ajva)|> |<97<Pj>|2

=1 24+ |B

o0

o) L
Zl< B, )| (@) + ;B@j,a”%)) [{g.5)]

IN

<.

i ()] (g, 0)]"

(1o + [BO. ) 180w )

3 @A X))
; (fe(o)12 + fB(Aj,a>|2’5)2 1B\, )|

Since the above estimation, we conclude

IN

<.

(3.18)

IN

A 22 < G ] ‘<g SOJ |
Al < sup|G20) jZl 500l
:S_UP|G2()\j)| I f Il )
JEN
with
[e(O)]2A; ™
Ga(Nj) = J
) o+ B
(22N
()N + ]%j (1-exp (= MTe0)) ]25
Let A= |5 (1 —exp (- >\1To‘o¢_1)) , applying the Lemma 3.2,
(2671 ((26 —m) T AT mE) (@) ¥, 0 <m <2
(3.19) Ga(Ny) <

(A2AT 26 7 ()2, m > 2
In view of (3.18) and (3.19), we show that

(26)71((2¢ = m) T A= mE) | £l g o) [€(8)] E, 0 < m < 26
| A2l 2 () <

(A2 2) T o O], m> 2%
From Step 1 and Step 2, we get
15 = 7o)l g2y < COle(d)) ¢

L Jeortee-m AT M) || oy [€0)] F, 0 < m < 28
(AZEXT72) Y £ o (e [€(8)), m > 2¢
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And the regularization parameter €(d) is chosen:

5\
<> L 0<m<at

(3.20) «(6) = Ilf 1l )

1

(i) -
T 5 m =
Il e ()

Thus, with € is confirmed by (3.20), we have show that

Claim 1: If 0 < m < 2¢, then

1F = £oo | oy <0 [5’"+2||f||}3229)

m+1 €

I 267 (26 - m) "7 4.

Claim 2: If m > 2¢, then

17 = Fo |2y < 0 i[lflls“ o O+ (4%) 6s+1||f||;1ts(g}
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