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Perov’s theorem applied to systems of equations

GABRIELA MOTRONEA , DIANA OTROCOL* , AND IOAN RAŞA

ABSTRACT. In this paper, we consider systems of equations having a linear part and also a nonlinear part. We give
sufficient conditions which imply the existence and uniqueness of solutions to the system. Using Perov’s theorem, our
results extend some results in the literature. An application using the iterative method, numerical experiments and
graphics illustrate the main result.
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1. INTRODUCTION

Consider the matrix

A =

 a11 a12 · · · a1m
...

... · · ·
...

am1 am2 · · · amm

 ,

where aij≥0, i, j = 1, . . . ,m. Let fi : [0,∞) → [0,∞), i = 1, . . . ,m be Lipschitz functions, i.e.,

(1.1) |fi(x)− fi(y)| ≤ l |x− y| , x, y ∈ [0,∞),

where l > 0 is a given constant. Systems of equations of the form

(1.2)

 a11 a12 · · · a1m
...

... · · ·
...

am1 am2 · · · amm


 x1

...
xm

 =

 f1(x1)
...

fm(xm)


were investigated in several papers (see [1]-[9], [13]-[15] and the references therein). The exis-
tence and the uniqueness of a solution (x1, . . . , xm) ∈ [0,∞)m were established using, among
other results, Brouwer’s theorem and the iterative monotonic convergence method. Such sys-
tems appear frequently in applications.

Several real-world problems can be attacked using systems with the above characteristics.
The corresponding mathematical models involve also second order Dirichlet problems, Dirich-
let problems for partial difference equations, equations with periodic solutions, numerical so-
lutions for differential equations, all of them with important applications to economics. Details
can be found in the papers mentioned in our bibliography and in the references therein. In this
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paper, we consider systems of the form

(1.3)

 a11 a12 · · · a1m
...

... · · ·
...

am1 am2 · · · amm


 f1(x1)

...
fm(xm)

 =

 x1

...
xm

 .

In order to study the existence and the uniqueness of a solution we use Perov’s theorem.

2. PEROV’S THEOREM

Let (X, d) be a metric space and A : X → X an operator. In this paper, we use the terminolo-
gies and notations from [12]. For the convenience of the reader, we shall recall some of them.
Denote by A0 := IdX , A1 := A, An+1 := A ◦An, n ∈ N, the iterate operators of the operator A
and by FA := {x ∈ X| A(x) = x} the fixed point set of A.

Definition 2.1. A : X → X is called a Picard operator (briefly PO) if: FA = {x∗} and An(x) → x∗

as n → ∞, for all x ∈ X.

Definition 2.2. A : X → X is said to be a weakly Picard operator (briefly WPO) if the sequence
(An(x))n∈N converges for all x ∈ X and the limit (which may depend on x) is a fixed point of A.

Definition 2.3. A matrix Q ∈ Mm×m ([0,∞)) is called a matrix convergent to zero iff Qk → 0 as
k → ∞.

As concerns matrices which are convergent to zero, we mention the following equivalent
characterizations:

Theorem 2.1 ([11]). Let Q ∈ Mm×m ([0,∞)). The following statements are equivalent:

(i) Q is a matrix convergent to zero;
(ii) Qkx → 0 as k → ∞, ∀x ∈ Rm;

(iii) Im −Q is non-singular and (Im −Q)−1 = I2 +Q+Q2 + · · · ;
(iv) Im −Q is non-singular and (Im −Q)−1 has nonnegative elements;
(v) λ ∈ C, det(Q− λIm) = 0 imply |λ| < 1;

(vi) there exists at least one subordinate matrix norm such that ∥Q∥ < 1.

The matrices convergent to zero were used by Perov [10] to generalize the contraction prin-
ciple in the case of generalized metric spaces with the metric taking values in the positive cone
of Rm.

Definition 2.4 ([10]). Let (X, d) be a complete generalized metric space with d : X ×X → [0,∞)m

and A : X → X . The operator A is called a Q-contraction if there exists a matrix Q ∈ Mm×m ([0,∞))
such that:

(i) Q is a matrix convergent to zero;
(ii) d(A(x), A(y)) ≤ Qd(x, y), ∀x, y ∈ X .

Theorem 2.2 (Perov’s theorem). Let (X, d) be a complete generalized metric space with d : X×X →
[0,∞)m and A : X → X be a Q-contraction. Then,

(i) A is a Picard operator, FA = FAn = {x∗}, ∀n ∈ N∗;
(ii) d(An(x), x∗) ≤ (Im −Q)−1Qnd(x,A(x)),∀x ∈ X.
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3. MAIN RESULTS

Consider again the matrix A with aij ≥ 0, i, j = 1, . . . ,m and the functions fi : [0,∞) →
[0,∞), i = 1, . . . ,m satisfying the Lipschitz condition (1.1). Denote

x =

 x1

...
xm

 , G(x) = A

 f1(x1)
...

fm(xm)

 .

Then x ∈ [0,∞)m, G(x) ∈ [0,∞)m. The system (1.3) can be written as

(3.4) G(x) = x.

For x, y ∈ [0,∞)m, let

d(x, y) :=

 |x1 − y1|
...

|xm − ym|

 .

Then, d is a generalized metric and [0,∞)m is a complete generalized metric space.

Theorem 3.3. Suppose that the matrix Q := lA is convergent to zero. Then G : [0,∞)m → [0,∞)m

is a Q-contraction. Moreover, G is a Picard operator, FG = FGn = {x∗}, x∗ is the unique solution to
the system (3.4) and

d(Gn(x), x∗) ≤ (Im −Q)
−1

Qnd(x,G(x)), x ∈ [0,∞)m.

Proof. Let x, y ∈ [0,∞)m. Then

d(G(x), G(y)) =

 |a11 (f1(x1)− f1(y1)) + . . .+ a1m (fm(xm)− fm(ym))|
...

|am1 (f1(x1)− f1(y1)) + . . .+ amm (fm(xm)− fm(ym))|


≤

 a11l |x1 − y1|+ . . .+ a1ml |xm − ym|
...

am1l |x1 − y1|+ . . .+ amml |xm − ym|

 ,

where ≤ is understood componentwise. It follows that

d(G(x), G(y)) ≤ lA

 |x1 − y1|
...

|xm − ym|

 ,

and finally,
d(G(x), G(y)) ≤ Qd(x, y), x, y ∈ [0,∞)m.

This shows that G is a Q-contraction. We finish the proof by using Perov’s theorem. □

Now let us consider the system of equations

(3.5)


x1 = f1 (a11x1 + . . .+ a1mxm + p1)
...
xm = fm (am1x1 + . . .+ ammxm + pm)

,
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where, as before, aij ≥ 0, pi ≥ 0, i, j = 1, . . . ,m. Let x ∈ [0,∞)m and

H(x) :=

 f1 (a11x1 + . . .+ a1mxm + p1)
...

fm (am1x1 + . . .+ ammxm + pm)

 .

Then the system (3.5) can be written as

(3.6) H(x) = x.

With the same distance d as before, we can state:

Theorem 3.4. If Q := lA is a matrix convergent to zero, then H : [0,∞)m → [0,∞)m is a Q-
contraction. H is also a Picard operator, FH = FHn = {x∗} and x∗ is the unique solution to (3.6). For
each x ∈ [0,∞)m, we have

d (Hn(x), x∗) ≤ (Im −Q)
−1

Qnd(x,H(x)), n ≥ 1.

Proof. For x, y ∈ [0,∞)m, we have

d(H(x), H(y))

=

 |f1 (a11x1 + . . .+ a1mxm + p1)− f1 (a11y1 + . . .+ a1mym + p1)|
...

|fm (am1x1 + . . .+ ammxm + pm)− fm (am1y1 + . . .+ ammym + pm)|


≤

 a11l |x1 − y1|+ . . .+ a1ml |xm − ym|
...

am1l |x1 − y1|+ . . .+ amml |xm − ym|


=lA

 |x1 − y1|
...

|xm − ym|

 = lAd(x, y) = Qd(x, y).

Therefore H is a Q-contraction and the rest of the proof follows from Perov’s theorem. □

Remark 3.1. In the above considerations, we need Q := lA to be a matrix convergent to zero. Given the
matrix A, let µ1, . . . , µm be its eigenvalues and let M := max {|µ1| , . . . , |µm|}. Let 0 < l < M. Then
the eigenvalues of Q are lµ1, . . . , lµm, and |lµj | < 1, j = 1, . . . ,m. This means that Q is a matrix
convergent to zero.

4. APPLICATIONS

Consider the system of equations

(4.7)


1

3
log(x1 + 2) +

2

3
log(x2 + 3) = x1

3

5
log(x1 + 2) +

2

5
log(x2 + 3) = x2

,
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where x1, x2 ≥ 0. Then, m = 2, f1(t) = log(t + 2), f2(t) = log(t + 3), t ≥ 0. Since f ′
i(t) ≤

1
2 , i = 1, 2, t ≥ 0, we can take l = 1

2 . Moreover, the system is of the form (3) with

A =


1

3

2

3

3

5

2

5


and A has the eigenvalues µ1 = 1, µ2 = − 4

15 . Consequently, the matrix

Q = lA =


1

6

1

3

3

10

1

5


has eigenvalues 1

2 and − 2
15 , according to Theorem 2.1, Q is convergent to zero. With x =(

x1

x2

)
, the operator G has the form

G(x) =


1

3

2

3

3

5

2

5


 log(x1 + 2)

log(x2 + 3)

 , x1, x2 ≥ 0.

According to Theorem 3.3, G is a Q-contraction and its unique fixed point x∗ is the unique
solution of the system (4.7). Let

x(0) =

(
x
(0)
1

x
(0)
2

)
, x

(0)
1 , x

(0)
2 ≥ 0

be given. Let x(1) = G(x(0)), x(2) = G(x(1)), . . .. Then x(n) = Gn(x(0)) and

d(x(n), x∗) = d(Gn(x(0)), x∗) ≤ (I2 −Q)−1Qnd(G(x(0)), x(0)) →
n→∞

0.

In our case,

Qn =
1

2n
An =

1

19 · 2n

 9 + 10
(
− 4

15

)n
10− 10

(
− 4

15

)n
9− 9

(
− 4

15

)n
10 + 9

(
− 4

15

)n


and this gives an estimate of the rate of convergence in

lim
n→∞

d(x(n), x∗) = 0.

From x(n+1) = G(x(n)), n ≥ 0, we have

(4.8)


x
(n+1)
1 =

1

3
log(x

(n)
1 + 2) +

2

3
log(x

(n)
2 + 3)

x
(n+1)
2 =

3

5
log(x

(n)
1 + 2) +

2

5
log(x

(n)
2 + 3)

.

Choosing different values for x(0)
1 and x

(0)
2 , we get in Figure 1, Figure 2 and Figure 3 the itera-

tions and the representation of solutions.
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Iterations x1 x2

1 0.1 0.1
2 1.0015805 1.1120442
3 1.3089932 1.2835545
4 1.3687368 1.310636
5 1.3789029 1.3149648
6 1.3805765 1.3156634
7 1.3808495 1.3157766
8 1.3808939 1.315795
9 1.3809011 1.315798
10 1.3809022 1.3157985
11 1.3809024 1.3157985
12 1.3809025 1.3157986
13 1.3809025 1.3157986
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FIGURE 1. Graphical illustration ofthe iteratesfor x(0)
1 =0.1, x

(0)
2 =0.1.

Iterations x1 x2

1 5 1
2 1.572833 1.318533
3 1.3997301 1.3193839
4 1.3833072 1.3165573
5 1.3812567 1.3159317
6 1.380958 1.3158207
7 1.3809114 1.3158022
8 1.3809039 1.3157991
9 1.3809027 1.3157987

10 1.3809025 1.3157986
11 1.3809025 1.3157986
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FIGURE 2. Graphical illustration of the iterates for x(0)
1 = 5, x

(0)
2 = 1.

Iterations x1 x2

1 1 1
2 1.2904003 1.2691233
3 1.3646087 1.3085504
4 1.3781716 1.3146414
5 1.3804543 1.3156118
6 1.3808294 1.3157683
7 1.3808906 1.3157936
8 1.3809005 1.3157978
9 1.3809022 1.3157984

10 1.3809024 1.3157985
11 1.3809025 1.3157986
12 1.3809025 1.3157986

FIGURE 3. Graphical illustration of the iterates for x(0)
1 = 1, x

(0)
2 = 1.
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5. CONCLUSIONS AND FURTHER WORK

Our paper is devoted to a specific family of algebraic systems, having significant applica-
tions to real-world problems. Several papers from the literature are concerned with finding
approximate solutions to them. Our approach is based on the Perov’s theorem. This allows to
estimate componentwise the rate of convergence.

We intend to return to this topic in order to compare our results with other existent ones and
to find new applications.
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TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

DEPARTMENT OF MATHEMATICS

STR MEMORANDUMULUI NO 28, 400114, CLUJ-NAPOCA, ROMANIA

Email address: ioan.rasa@math.utcluj.ro


	1. Introduction
	2. Perov's theorem
	3. Main results
	4. Applications
	5. Conclusions and further work
	References

