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ABSTRACT. The purpose of the present article is to show that an upper bound of the induced connection on sections
of Toeplitz operators is bounded by a function of the Hankel and of the Toeplitz operators on a weighted Hilbert
Bergman space on a bounded domain of a complete Kähler manifold.
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1. INTRODUCTION

We state that an upper bound of the induced connection on sections of Toeplitz operators is
bounded by a function of the Hankel and Toeplitz operators on a weighted Hilbert Bergman
space on a bounded domain of a Kähler manifold such the weighted function is a smooth func-
tion, see below Theorem 3.1. The particular case when a weighted Hilbert Bergman space is
defined on a bounded domain of Cn, Engliš and Zhang has showed that the induced connection
on sections of Toeplitz operators is equal to a function of the Hankel and Toeplitz operators,
see Lemma 3.3 in [5] and see below. As it it is known that a Toeplitz operator is given in terms
of a Bergman kernel. Nonetheless, the expression of this kernel cannot be provided explicitly
in a Kähler manifold, e.g. Ma and Marinescu studied the asymptotic behaviour of the gener-
alized Bergman kernels on symplectic manifolds [12, 13]. Zelditch and Schlichenmaier have
obtained an asymptotic expansion of the Bergman kernel on the diagonal (resp. in a neighbor-
hood of the diagonal) of the Cartesian product of the unit circle principal bundle in the dual of
a positive holomorphic line bundle over a compact Kähler manifold [15] (resp. [10, Theorem
5.6]). Then, Hezari, Kelleher, Seto, and Xu state the existence of the asymptotic expansion of
the Bergman kernel in the Böchner coordinates [8, Theorem 1.1]. M. Engliš has determined
an asymptotic expansion of a weighted Bergman kernel on a pseudoconvex domain in Cn [3,
Theorem 1]. Therefore, to avoid the use of an asymptotic expression of a weighted Bergman
kernel, we cover our bounded Kähler domain by geodesic balls which are biholomorphic to
Euclidean complex balls and where the Bergman kernel can be determined explicitly for a suit-
able weighted function.

Let Mn be an n-dimensional complete Kähler manifold which is defined by the following
three tensors. The first one is a Riemannian metric g on Mn, that is, a positive definite symmet-
ric bilinear form on TMn, the tangent bundle of Mn, the second one is ω, the sympletic Kähler
form an antisymmetric bilinear form on TMn, and the third one is J , an almost complex struc-
ture on Mn, a TMn-valued endomorphism map on TMn such that J2 = −IdTMn . These
three tensors are connected by the following algebraic relations. Let (u1, u2) ∈ TpM

n × TpM
n
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for p ∈ Mn, we have g(Ju1, u2) = ω(u1, u2) and ω(Ju1, Jv2) = ω(u1, u2). Therefore, each
of g, ω, and J is determined by the remaining two. Locally the expression of ω is given by

ω =
i

2

∑n

l,k=1
hlkdzl ∧ dzk, where (hlk)l,k are the coefficients of a positive definite Hermitian

matrix, and the n-tensor ω⊗n := ωn is related to the Riemannian volume element dµg of (Mn, g)
as ωn = n!dµg .

Let z ∈ D, a domain in Cm, φ be a smooth positive function on V × D such that V is a
bounded domain of Mn and φz(·) = φ(z, ·). Let π be the projection map from Mn × D to D,
we denote by Lz

2 the Hilbert space L2(V, e−φzωn) of square-integrable measurable functions on
V with respect to the measure e−φzωn and endowed with the Hermitian inner product ⟨·, ·⟩Lz

2

defined as

⟨uz, vz⟩Lz
2
=

∫
V
uz(ξ)vz(ξ)e

−φz(ξ)ωn, for (uz = u(z, ·), vz = v(z, ·)) ∈ [Lz
2(V, e−φzωn)]2,

and we denote by Ez the subspace of Lz
2 of holomorphic functions with compact support on V .

Let P be the Bergman projection onto Ez on Lz
2, that is, P (Lz

2) = Ez . The Toeplitz operator
with symbol fz = f(z, ·), a bounded function on V , is defined by Tfz = PMfz where Mfz is the
multiplication operator by fz·

The Hankel operator is defined from Ez to Ez by Hfz = (I − P )Mfz , where I represents the
identity operator. Let uz be a smooth function on V and H∗

uz
be the adjoint operator of Huz .

Thus by using a straightforward calculus, we get

Tfzuz
− Tuz

Tfz = H∗
uz
Hfz

.(1.1)

Let (E, hE) be the holomorphic Hermitian vector bundle over D such that its fibers are the
family (Ez)z∈D such that the functions in Ez are holomorphic on Vz = π−1(z), where π is the
projection map from Mn × D to D, and a smooth section u of E close to z0 ∈ D is defined as
a function u = u(z, ξ) ∈ C∞(π−1(Uz0)) such that Uz0 is a neighborhood of z0, and we denote
by Γ(E) the set of smooth sections of E, we recall that hE is the Hermitian metric on E and
comprised by the smooth family (⟨·, ·⟩Ez )z∈D of sesquilinear maps ⟨·, ·⟩Ez : Ez × Ez → C.
Let (L2, h

L2) be the Hermitian vector bundle over D whose fibers are the family (Lz
2)z∈D. We

recall that a connection on Γ(E) is defined as a linear operator ∇ : X → ∇X for any X , a
tangent vector field on D, such that for any smooth function h on D and g ∈ Γ(E), we have
∇X(hg) = h∇Xg + (Xh)g and ∇hXg = h∇Xg. While the fibers Ez are infinite-dimensional
Hilbert spaces, the formalism of the Chern connection (see [9, Proposition 4.2.14]), remains
true for E. To be precise, let T (1,0)D be the holomorphic sub-bundle of the complex tangent
bundle TD, that is, J = i on T (1,0)D, also we call T (1,0)D the (1, 0) tangent vector field on D

spanned by
(

∂
∂zl

)
1≤l≤n

, we say that ∇ is a Chern connection onE if ∇0,1
Z = ∂Z for Z ∈ T (1,0)D,

and ∇ is compatible with the Hermitian metric, i.e. for all (u, v) ∈ [Γ(E)]2, we have

(1.2) d⟨uz, vz⟩Ez
(Z) = ⟨∇Zuz, vz⟩Ez

+ ⟨uz,∇Zvz⟩Ez
,

where d is the exterior derivative which decomposes into the sum of the complex exterior deriv-
ative of type (1, 0), denoted by ∂Z , and its conjugate ∂Z = ∂Z , the complex exterior derivative
of type (0, 1) and where ∂Z (resp. ∂Z) stands for the directional derivative in the direction of
Z ∈ T (1,0)D (resp. Z ∈ T (1,0)D) such that T (1,0)D is the (0, 1) tangent vector field onD spanned
by
(

∂
∂zl

)
1≤l≤n

. We recall that for a smooth function f on D, we have ∂Z(f) = Z(f), the or-

dinary derivative of f in the direction of Z, and ∇0,1
Z is the (0, 1) part of the decomposition of

∇Z := ∇1,0
Z +∇0,1

Z .
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1.1. The structure of the paper. In the second section, we provide the expression of the (1, 0)-
part of the Chern connections on L2 and E, respectively and their associated curvatures. Also,
we state the definition of the multiplicity of a covering of a manifold and a result on the multi-
plicity of this covering. In the third section, we state our main result on an upper bound of the
induced connection on sections of Toeplitz operators.

2. MISCELLANEOUS LEMMAS AND DEFINITIONS

The following lemma provides the expression of the Chern connection on L2 and on E,
respectively.

Lemma 2.1. Let z ∈ D and Z ∈ T (1,0)D. Then the (1, 0)-part of the Chern connections on the bundles
L2 and on E are given locally by

∇L2

Z = ∂Z − ∂Zφz(2.3)

∇E
Z = P∂ZP − T∂Zφz .(2.4)

Proof. We prove (2.3), let (uz, vz) ∈ [Lz
2(V, e−φzωn)]2, then we have

d⟨uz, vz⟩Lz
2
=

∫
V
d
(
uz(ξ)vz(ξ)e

−φz(ξ)
)
ωn

=

∫
V
d(uz(ξ))vzξ)e

−φz(ξ)ωn +

∫
V
uz(ξ)d(vz(ξ))e

−φz(ξ)ωn

−
∫
V
uz(ξ)vz(ξ)d(φz(ξ))e

−φz(ξ)ωn

=

∫
V
(∂Zuz(ξ)− ∂Zφz(ξ)uz(ξ) + ∂Zuz(ξ))vz(ξ)e

−φz(ξ)ωn

+

∫
V
uz(ξ)(∂Zvz(ξ)− ∂Zφz(ξ)vz(ξ) + ∂Zvz(ξ))e

−φz(ξ)ωn.

Then the fact that ∇ is compatible with the Hermitian metric, namely,

d⟨uz, vz⟩Lz
2
(Z) = ⟨∇Zuz, vz⟩Lz

2
+ ⟨uz,∇Zvz⟩Lz

2
,

and the fact that ∇0,1
Z = ∂Z , we obtain

∇Zuz =∂Zuz − ∂Zφzuz + ∂Zuz

=∇L2

Z uz +∇0,1
Z uz.

So the (1,0)-part of the Chern connection on L2 is provided by

∇L2

Z = ∂Z − ∂Zφz.

Apropos the proof of (2.4), it is deduced from (2.3) and the Chern connection on E is given by

∇E
Z = P∇L2 = P∂ZP − T∂Zφz

.(2.5)

□

Let R(L2)(Z,Z) be the curvature of Chern connection ∇L2

Z + ∂Z defined as R(L2)(Z,Z) =

(∇L2

Z + ∂Z)
2.

Lemma 2.2. Let Z ∈ T 1,0D and z ∈ D. Then, locally we have R(L2)(Z,Z) = ∂Z∂Zφz.
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Proof. It is now that the (2, 0)-component (resp. (0, 2)-component) of the curvature of a Chern
connection vanishes [14, p.26 and Lemma 2.4], thus R(2,0)(L2)(Z,Z) = [∇L2

Z ]2 = 0 and
R(0,2)(L2)(Z,Z) = ∂

2

Z = 0. So, we obtain

R(L2)(Z,Z) =(∇L2

Z + ∂Z)
2

=(∇L2

Z )2 +∇L2

Z ∂Z + ∂Z∇L2

Z + ∂
2

Z

=∇L2

Z ∂Z + ∂Z∇L2

Z .

Then, by using the expression of ∇L2

Z (Lemma 2.1), the fact that ∂Z∂Z + ∂Z∂Z = 0 [14, Lemma
2.4], and considering f ∈ Γ(L2), we get

R(L2)(Z,Z)f =(∇L2

Z ∂Z + ∂Z∇L2

Z )f

=(∂Z − ∂Zφz)∂Zf + ∂Z(∂Zf − f∂Zφz)

=(∂Z∂Z + ∂Z∂Z)f − ∂Zφz ∧ ∂Zf − ∂Zf ∧ ∂Zφz + (∂Z∂Zφz)f

=(∂Z∂Zφz)f.

□

Consequently, if φz is a plurisubharmonic function onD, i.e. its complex Hessian is positive,
then the curvature of the Chern connection of ∇L2

Z + ∂Z is positive. Concerning the curvature
of the Chern connection ∇E

Z + ∂Z has been conducted by Berndtsson [2] and retrieved in [5].
Precisely, by adopting our notation, we have

R(E)(Z,Z) = T∂Z∂Zφz
−H∗

∂Zφz
H∂Zφz

.

It is known that a connection for a vector bundle induces a new connection for other vector
bundles. Therefore, for our case, we consider the new vector bundle End(E), the space of
endomorphisms on E, and its associated induced connection on sections of Toeplitz operators
Tfz ∈ End(E) is defined by

∇Ind(E)
Z Tfz = [∇E

Z , Tfz ] := ∇E
ZTfz − Tfz∇E

Z .

In the sequel, we need to consider Mn such that the V-valued exponential map, noted by expp,
is holomorphic on the tangent space TpV at each point p ∈ V , e.g., whenMn is biholomorphic to
Euclidean space. Then, by using a direct calculus, the absolute value of the Jacobean associated
to expp is equal to one. Whence, through the inverse mapping theorem, expp is biholomorphic
from an open neighborhoodU0 ⊂ TpV of the origin, to its image Up—called normal neighborhood.
Then, we have the following local biholomorphic chart called normal coordinate chart (Up,X−1

p )

such that X−1
p := E−1

p ◦ exp−1
p : Up

exp−1
p7→ U0

E−1
p7→ X−1

p (Up) ⊂ Cn with Ep is a TpV-valued isometric
map on Cn. This isometry sends the standard orthonormal basis of Cn to an orthonormal basis
of TpV . Then, for our study, let us consider the normal coordinate chart

(
B(p, δ),X−1

p↾B(p,δ)

)
such that X−1

p↾B(p,δ)
(B(p, δ)) = B(0, δ) ⊂ U0, where B(0, δ) stands for the complex ball of center

the origin 0 in Cn and of radius δ and B(p, δ) is the geodesic normal ball of center p ∈ V and
of radius δ. We define by i(p,V) > 0 the injectivity radius at p, i.e. the large value of δ such
that X−1

p is a biholomorphic map on B(p, δ). By definition iV := inf
p∈V

i(p,V) is the injectivity

radius of V . Therefore, for each p = X (0) ∈ V , the map X−1
p↾B(p,δ)

: B(p, δ) 7−→ B(0, δ) is
biholomorphic with δ ∈ (0, iV). Apropos of the properties of the exponential maps and the
injectivity radius, we can look to, e.g., [1, Chapter 1 §3 and §4] or [6]. The following definition
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deals with the multiplicity of covering for M, a manifold with bounded geometry, i.e. iM > 0
and all covariants curvature tensor are bounded.

Definition 2.1. Let M be a manifold with bounded geometry and
⋃

j∈J⊂N
Uj be a covering of M

such that (Uj)j∈J is a family of open sets Uj . The multiplicity of this covering is the maximum possible
number N0 of different (j1, j2, . . . , jN0) ∈ JN0 with

⋂N0

l=1 Ujl ̸= ∅.

By using Zorn Lemma and on the Gromov’s paper [7], the authors V. Kondratiev and M.
Shubin [11, Lemma 2.5] found an upper bound of N0 corresponding to (M, g), a Riemannian
Manifold of bounded geometry, that is, the corresponding injectivity radius is strictly positive
and all covariants curvature tensor are bounded. More precisely, they showed:

Lemma 2.3. Let r ∈ (0, iM), then there exist a covering of (M, g), a Riemannian Manifold of bounded
geometry, by geodesic balls Bg(xj , r) with the multiplicity of this covering

N0 ≤
sup
x∈M

(vol(Bg(x, 2r)))

inf
x∈M

(
vol(Bg(x,

r

2
))
) ,

vol(·) is the volume w.r.t. the Riemann metrics g.

The fact that V is a bounded domain then has the structure of bounded geometry and we
can cover V by geodesic normal balls of radius δ such that 2δ ≤ iO, and the volume of each
geodesic ball is less than the Euclidean ball volume. Whence, Lemma 2.3 yields N0 ≤ 4n.

Lemma 2.4. Let z ∈ B(0, δ) such that δ ≤ iV and z be close to zero. Then det g(z) ≤ 2nn! and
ωn ≤ n!22ndz.

Proof. As we know, the map X−1
p↾B(p,δ)

: B(p, δ) 7−→ B(0, δ) is biholomorphic with δ ∈ (0, iV).
Therefore, we have that the coefficients gjk(p) are equal to δδδjk for (j, k) ∈ {1, . . . , n}2n and the
derivatives of gjk at p are equal to zero [1, Chapter 1, Definition 1.24]. We recall that p = X (0),
thus its coordinates are equal to zero and the Taylor series for each smooth function gjk at
p ∈ B(p, δ) provides gjk(z) = δδδjk + O(|z|2) when z is close to zero, i.e. |gjk(z)| ≤ δδδjk + Cjkεjk
with εjk → 0+ and Cjk is a positive constant. In local coordinates, we have the famous equality
dµg =

√
det g(z)dz, where dz is the Lebesgue measure in Cn. Whence, from the definition of the

determinant, we have

det g(z) ≤
∑
σ∈Sn

|g1σ(1)(z)||g2σ(2)(z)| . . . |gnσ(n)(z)|

≤
∑
σ∈Sn

n∏
j=1

(δδδjσ(j) + Cjσ(j)εjσ(j)),

≤2n.n!(2.6)

Sn stands for the set of all symmetric permutations on {1, . . . , n} such that its cardinal is equal
to n!. Regarding inequality (2.6), we have picked εjσ(j) such that Cjσ(j)εjσ(j) ≤ 1 for all (j, σ) ∈
{1, 2, . . . , n} × Sn. So from the expression of ω and inequality (2.6), we have

ωn = n!dµg = n!
√

detg(z)dz ≤ n!22ndz.

□
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3. MAIN THEOREM

The following main result states that ∇Ind(E)
Z Tfz is bounded by a function given in terms of

the Hankel and Toeplitz operators and for the proof we use the techniques employed for the
proof of Lemma 3.3 in [5].

Theorem 3.1. Let Z ∈ T (1,0)D and z ∈ D. Then, we have

∇Ind(E)
Z Tfz ≤ n!323n

(
T∂Zfz −H∗

fz
H∂Zφz

)
.

Proof. Let us consider g ∈ Ez which does depend on z ∈ D and we have [P∂ZP, Tfz ]g =
∂ZTfzg. Therefore, by employing (2.5), we have

∇Ind(E)
Z Tfz =[∇E

Z , Tfz ]

=[P∂ZP − T∂Zφz
, Tfz ]

=[P∂ZP, Tfz ] + [Tfz , T∂Zφz ]

=∂ZTfz + [Tfz , T∂Zφz ].(3.7)

Therefore, without loss in generality, below, we perform the calculation of ⟨∂ZTfzg, h⟩Ez for
(g, h) ∈ Ez × Ez and do not rely on z ∈ D. We stress that to do directly the calculus of this
latter inner product on a bounded Kähler manifold generally is a little bite hard. Therefore,
to avoid this standoff, we need to employ a suitable partition of unity. Whence, the fact that
the integration on a manifold does not depend on the choice of a partition of unity locally
finite, let us define the following one (ϕk)k≥1 subordinated to the covering (B(k)

δ )k∈J of V ,
where J is a finite subset of N and B(k)

δ = B(pk, δ) as follows. Let ψ̃k ∈ C∞
0 (Bk(0, δ)) and

be smooth positive function with compact support in Bk(0, δ) = B(k)
δ and bounded by one.

Now, let us transfer the function ψ̃k to B(k)
δ , as follows. Let ψk(x) = ψ̃k(X−1

pk
(x)) for (x, k) ∈

B(k)
δ × N. Consequently, we define the smooth function ϕk as follows ϕk(x) =

ψk(x)∑
l≥1

ψl(x)
· Our

elected partition of unity is locally finite. Therefore, let h ∈ Lz
2 with compact support in V

and covered by geodesic balls with finite multiplicity, so the support of hϕk belongs to the set{(
B(k)
δ

)
1≤k≤22n

, such that
N0⋂
k=1

B(k)
δ ̸= ∅

}
. The fact that B(k)

δ is biholomorphic to B(k)
δ through

the exponential map, and by using Lemma 2.4 at B(k)
δ , let us show that Tfz , the Toeplitz operator

with symbol fz , on L2,h(B(k)
δ , e−φzωn) is less, up to a multiplicative constant, to Tfz◦Xpk

, the

Toeplitz operator with symbol fz ◦ Xpk
, on L2,h(B(k)

δ , e−φz◦Xpk du). Thus for g a holomorphic
function in B(k)

δ , we have

Tfzg(ξ) =

∫
B(k)

δ

fz(ζ)Kz(ξ, ζ)g(ζ)e
−φz(ζ)ωn

=n!

∫
B(k)
δ

fz(Xpk
(u))Kz(Xpk

(z),Xpk
(u))g(Xpk

(u))e−φz(Xpk
(u))dµg

≤n!22n
∫
B(k)
δ

fz(Xpk
(u))Kz(Xpk

(z),Xpk
(u))g(Xpk

(u))e−φz(Xpk
(u))du

≤n!22n
∫
B(k)
δ

fz ◦ Xpk
(u))Kz(Xpk

(z),Xpk
(u))g ◦ Xpk

(u))e−φz◦Xpk
(u))du
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=n!22nTfz◦Xpk
(g ◦ Xpk

)(z),(3.8)

where Kz(ξ, ζ) is the reproducing kernel for the the Hilbert space L2,h(B(k)
δ , e−φzωn) and (Kz ◦

ψ)(z, u) := Kz(Xpk
(z),Xpk

(u)) is the reproducing kernel for L2,h(B(k)
δ , e−φz◦Xpk du), e.g., by in-

spiring from [5, Example 2.4], let e−φz◦Xpk
(u) = (1 − |z|2 − |u|2)α for α > −1 and z ∈ D, the

unit complex disk, we consider Bz = {ξ ∈ Cn : |ξ|2 ≤ 1 − |z|2}. Then Ez has the following
reproducing kernel

Kz(Xpk
(z),Xpk

(u)) =
(1− |z|2)1+α

(1− |z|2 − zu)1+α+n
,

and consequently, we have

Kz(ξ, ζ) =
(1− |z|2)1+α

(1− |z|2 −X−1
pk (ξ)X−1

pk (ζ))1+α+n
·

Also, we have∫
B(k)

δ

∂ZTfzg(ξ)h(ξ)e
−φz(ξ)ωn =n!

∫
B(k)
δ

∂ZTfz(Xpk
)g(Xpk

(z))h(Xpk
(z))e−φz(Xpk

(z))dµg

≤n!22n
∫
B(k)
δ

∂ZTfz(Xpk
)g(Xpk

(z))h(Xpk
(z))e−φz(Xpk

(z))dz·(3.9)

Whence, by using the integration on each chart
(
B(k)
δ ,X−1

pk

)
and the above partition of unity

locally finite, Lemma 2.4 and inequality (3.9) in each geodesic normal ball B(k)
δ , and the fact

that N0 ≤ 22n, we have

⟨∂ZTfzg, h⟩Ez

=

∫
V
∂ZTfzg(ξ)h(ξ)e

−φz(ξ)ωn

≤
N0∑
k=1

∫
B(k)

δ

∂ZTfzg(ξ)h(ξ)ϕk(ξ)e
−φz(ξ)ωn

≤n!22n
N0∑
k=1

∫
B(k)
δ

∂ZTfz(Xpk
)g(Xpk

(z))h(Xpk
(z))e−φz(Xpk

(z))dz

=n!22n
N0∑
k=1

∫
B(k)
δ

(∫
B(k)
δ

∂Z

(
fz(Xpk

(u)))Kz(Xpk
(z),Xpk

(u))e−φz(Xpk
(u))g(Xpk

(u))
)
du

)
×h(Xpk

(z))e−φz(Xpk
(z))dz

=n!22n
N0∑
k=1

∫
B(k)
δ ×B(k)

δ

∂Z

(
fz(Xpk

(u))Kz(Xpk
(z),Xpk

(u))e−φz(u)

×g(Xpk
(u))h(Xpk

(z))e−φz(Xpk
(z))
)
dudz

−n!22n
N0∑
k=1

∫
B(k)
δ ×B(k)

δ

fz(Xpk
(u))Kz(Xpk

(z),Xpk
(u))e−φz(Xpk

(u))

×g(Xpk
(u))∂Z(h(Xpk

(z))e−φz(Xpk
(z)))dudz.
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Hence,

⟨∂ZTfzg, h⟩Ez ≤n!22n
n∑

k=1

∂Z⟨Tfz◦Xpk
(g ◦ Xpk

), h ◦ Xpk
⟩L2(Bk,e

−φz◦Xpk dz)

+n!22n
N0∑
k=1

∫
B(k)
δ ×B(k)

δ

fz(Xpk
(u))Kz(Xpk

(z),Xpk
(u))e−φz(Xpk

(u)))g(Xpk
(u))

×h(Xpk
(z))∂Zφz(Xpk

(z))e−φz(Xpk
(z))dudz

=n!22n
N0∑
k=1

∫
B(k)
δ

∂Z

(
fz(Xpk

(z))e−φz(Xpk
(z))
)
(gh)(Xpk

(z))dz

+n!22n
n∑

k=1

∫
B(k)
δ

(Tfz◦Xpk
g ◦ Xpk

)(∂Zφz(Xpk
(z))h(Xpk

(z))e−φz(Xpk
(z))dz

=n!22n
N0∑
k=1

∫
B(k)

δ

∂Z(fz(ξ)e
−φz(ξ))(gh)(ξ)ωn

+n!22n
N0∑
k=1

∫
B(k)

δ

(Tfzg)(∂Zφz(ξ)h(ξ))e
−φz(ξ)ωn

≤n!223n⟨(Teφz∂Z(fze−φz ) + T∂Zφz
Tfz )g, h⟩Ez

=n!223n⟨(T∂Zfz−fz∂Zφz
+ T∂Zφz

Tfz )g, h⟩Ez
.

Whence, we have

(3.10) ∂ZTfz ≤ n!323n(T∂Zfz−fz∂Zφz
+ T∂Zφz

Tfz ).

Let us recall equality (1.1).

(3.11) Tfzuz
− TuzTfz = H∗

uz
Hfz

·

Therefore, by using (3.11) with uz = ∂Zφz and (3.10), inequality (3.7) becomes:

∇Ind(E)
Z Tfz ≤ n!323n(T∂Zfz −H∗

fz
H∂Zφz

).(3.12)

□

Remark 3.1. For the particular case when V is a bounded subspace of Cn, Engliš and Zhang state
that ∇Ind(E)

Z Tfz = T∂Zfz − H∗
fz
H∂Zφz , see [5, Lemma 3.3]. Thus, we are asking whether it is also

possible to look for on a lower bound of ∇Ind(E)
Z Tfz in (3.12). Likewise, it is also possible to provide a

upper bounded of ∂Ind(E)

Z
, the induced connection associated to the (0, 1)-part of the Chern connection

for Z ∈ T (0,1)D, the anti-holomorphic sub-bundle of the complex tangent bundle TD, i.e. J = −i on
T (0,1)D.
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