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ABSTRACT. The purpose of the present article is to show that an upper bound of the induced connection on sections
of Toeplitz operators is bounded by a function of the Hankel and of the Toeplitz operators on a weighted Hilbert
Bergman space on a bounded domain of a complete K&hler manifold.
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1. INTRODUCTION

We state that an upper bound of the induced connection on sections of Toeplitz operators is
bounded by a function of the Hankel and Toeplitz operators on a weighted Hilbert Bergman
space on a bounded domain of a Kdhler manifold such the weighted function is a smooth func-
tion, see below Theorem 3.1. The particular case when a weighted Hilbert Bergman space is
defined on a bounded domain of C", Engli§ and Zhang has showed that the induced connection
on sections of Toeplitz operators is equal to a function of the Hankel and Toeplitz operators,
see Lemma 3.3 in [5] and see below. As it it is known that a Toeplitz operator is given in terms
of a Bergman kernel. Nonetheless, the expression of this kernel cannot be provided explicitly
in a Kédhler manifold, e.g. Ma and Marinescu studied the asymptotic behaviour of the gener-
alized Bergman kernels on symplectic manifolds [12, 13]. Zelditch and Schlichenmaier have
obtained an asymptotic expansion of the Bergman kernel on the diagonal (resp. in a neighbor-
hood of the diagonal) of the Cartesian product of the unit circle principal bundle in the dual of
a positive holomorphic line bundle over a compact Kahler manifold [15] (resp. [10, Theorem
5.6]). Then, Hezari, Kelleher, Seto, and Xu state the existence of the asymptotic expansion of
the Bergman kernel in the Bochner coordinates [8, Theorem 1.1]. M. Engli$ has determined
an asymptotic expansion of a weighted Bergman kernel on a pseudoconvex domain in C" [3,
Theorem 1]. Therefore, to avoid the use of an asymptotic expression of a weighted Bergman
kernel, we cover our bounded Kédhler domain by geodesic balls which are biholomorphic to
Euclidean complex balls and where the Bergman kernel can be determined explicitly for a suit-
able weighted function.

Let M™ be an n-dimensional complete Kdhler manifold which is defined by the following
three tensors. The first one is a Riemannian metric g on M™, that is, a positive definite symmet-
ric bilinear form on T'M™", the tangent bundle of M", the second one is w, the sympletic Kdhler
form an antisymmetric bilinear form on 7M™, and the third one is J, an almost complex struc-
ture on M", a TM"-valued endomorphism map on T'M" such that J 2 = —TIdppn. These
three tensors are connected by the following algebraic relations. Let (u1,u2) € T, M™ x T,M™
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for p € M"™, we have g(Juy,us) = w(uy,us) and w(Juy, Jvy) = w(uy,us). Therefore, each
of g,w, and J is determined by the remaining two. Locally the expression of w is given by

w = 3 Zz - hgdz A dz;, where (h3); . are the coefficients of a positive definite Hermitian

matrix, and the n-tensor w®™ := w" is related to the Riemannian volume element dy,, of (M", g)
as w" = nldy,.

Let z € D, a domain in C™, ¢ be a smooth positive function on V x D such that V is a
bounded domain of M"™ and ¢.(-) = ¢(z,-). Let w be the projection map from M" x D to D,
we denote by L3 the Hilbert space L2 (V, e~ ¥=w") of square-integrable measurable functions on
V with respect to the measure e~ #-w" and endowed with the Hermitian inner product (-, -) r.;
defined as

(uz,v2)r; = / u, ()T ()e 9= O™, for (u, = u(z,-),v, = v(z,-)) € [LE(V, e~ ?=w™)]?,
v

and we denote by E. the subspace of L3 of holomorphic functions with compact support on V.
Let P be the Bergman projection onto E, on L3, that is, P(L3) = E,. The Toeplitz operator
with symbol f. = f(z,-), abounded function on V, is defined by T, = PM, where My_ is the
multiplication operator by f.-

The Hankel operator is defined from E, to E, by Hy, = (I — P)Mjy,, where I represents the
identity operator. Let u, be a smooth function on V and H; be the adjoint operator of Hy,.
Thus by using a straightforward calculus, we get

(1.1) Ty, —T. Ty =H; He.

Let (E,h") be the holomorphic Hermitian vector bundle over D such that its fibers are the
family (E.).cp such that the functions in E, are holomorphic on V, = 7~ !(z), where 7 is the
projection map from M"™ x D to D, and a smooth section u of E close to zy € D is defined as
a function u = u(z,£) € C* (7~ (U,,)) such that U,, is a neighborhood of z, and we denote
by T'(E) the set of smooth sections of E, we recall that h¥ is the Hermitian metric on E and
comprised by the smooth family ({-,)g.).ep of sesquilinear maps (-,-)g, : E, x E, — C.
Let (L2, h'2) be the Hermitian vector bundle over D whose fibers are the family (L3).cp. We
recall that a connection on I'(E) is defined as a linear operator V : X — Vx for any X, a
tangent vector field on D, such that for any smooth function h on D and g € I'(E), we have
Vx(hg) = hVxg + (Xh)g and Vyxg = hVxg. While the fibers E, are infinite-dimensional
Hilbert spaces, the formalism of the Chern connection (see [9, Proposition 4.2.14]), remains
true for E. To be precise, let T(1%) D be the holomorphic sub-bundle of the complex tangent
bundle 7D, that is, J = i on T(:?) D, also we call T(X:%) D the (1,0) tangent vector field on D

spanned by (B%L) i<,y WESAY that V is a Chern connection on E if V' = 8 for Z € T(L9)D,

and V is compatible with the Hermitian metric, i.e. for all (u,v) € [['(E)]?, we have
(12) d(uz,v2)E.(Z) = (Vzuz,v:) B, + (U, V202) B,

where d is the exterior derivative which decomposes into the sum of the complex exterior deriv-
ative of type (1,0), denoted by 9z, and its conjugate 9z = d, the complex exterior derivative
of type (0,1) and where 9 (resp. dz) stands for the directional derivative in the direction of
Z € TMO D (resp. Z € T D) such that 7% D is the (0, 1) tangent vector field on D spanned

by (%) <ren’ We recall that for a smooth function f on D, we have 0z(f) = Z(f), the or-
1<I<n

dinary derivative of f in the direction of Z, and V%" is the (0, 1) part of the decomposition of
Vz =V, + VY
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1.1. The structure of the paper. In the second section, we provide the expression of the (1, 0)-
part of the Chern connections on L and F, respectively and their associated curvatures. Also,
we state the definition of the multiplicity of a covering of a manifold and a result on the multi-
plicity of this covering. In the third section, we state our main result on an upper bound of the
induced connection on sections of Toeplitz operators.

2. MISCELLANEOUS LEMMAS AND DEFINITIONS

The following lemma provides the expression of the Chern connection on L, and on E,
respectively.

Lemma 2.1. Let z € D and Z € T"%) D. Then the (1, 0)-part of the Chern connections on the bundles
Ly and on E are given locally by

(2.3) VL =0, — 0z¢.
(2.4) V5 =POzP —Ts,,..

Proof. We prove (2.3), let (u,,v,) € [L3(V,e"¥:w")]?, then we have

d(uz,v2)r; = /vd (uz(g)@(@e*s@z(é)> "

—

A () O + [ w(©d(rz(e)e O

v

u= ()2 (§)d(p=(€))e?*Dum

(Dzu-(&) — 20 (E)uz(€) + Dzu.(€))T5(€)e™?=Eyn

+ / U (€)(D70.(€) — Dz, (E)v.(€) + Dzv.(€))e =,
v

Then the fact that V is compatible with the Hermitian metric, namely,
d(uz,v2)15(Z) = (Vzus, v2)n; + (uz, Vzus) Lz,
and the fact that V%' = 9, we obtain
Vzu, =9zu. — zp.u. + dzu.
=V2u, + V%’luz.
So the (1,0)-part of the Chern connection on L is provided by
VL =3y — 0z,
Apropos the proof of (2.4), it is deduced from (2.3) and the Chern connection on F is given by
(2.5) V5 =PV =PoyP —Ty,,..
O

Let R(L2)(Z, Z) be the curvature of Chern connection V52 + 0 defined as R(L2)(Z, Z) =
(Vé2 + 52)2.

Lemma 2.2. Let Z € T*°D and z € D. Then, locally we have R(L2)(Z,Z) = 070 z¢..
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Proof. It is now that the (2, 0)-component (resp. (0,2)-component) of the curvature of a Chern
connection vanishes [14, p.26 and Lemma 2.4], thus R>?)(L)(Z, Z) = [V5*]> = 0 and

RO (L) (2, Z) = 522 = 0. So, we obtain
R(L2)(Z,Z) =(V? +z)*

—(VE)2 4+ VEd, + 5,V + 5,

:V?gz + 52V52.
Then, by using the expression of V? (Lemma 2.1), the fact that 00 + 0,07 = 0 [14, Lemma
2.4], and considering f € I'(Ls), we get

R(L2)(Z,2)f =(V30z + 02V 3) f

(07 — 0z22)02f + 92(0zf — fOz¢-)
(0207 +0202)f = 020: NIz f —0zf Nz + (0202¢:) f
=(020z¢:)f

O

Consequently, if ¢, is a plurisubharmonic function on D, i.e. its complex Hessian is positive,
then the curvature of the Chern connection of V5> + 8 is positive. Concerning the curvature
of the Chern connection VZ + 0 has been conducted by Berndtsson [2] and retrieved in [5].
Precisely, by adopting our notation, we have

R(E)(Z77) = T625Zgoz - nggazHaztpz'

It is known that a connection for a vector bundle induces a new connection for other vector
bundles. Therefore, for our case, we consider the new vector bundle End(E), the space of
endomorphisms on F, and its associated induced connection on sections of Toeplitz operators
Ty, € End(E) is defined by

VT, = [VE, Ty ] = VET,, — Ty V.

In the sequel, we need to consider M" such that the V-valued exponential map, noted by exp,,,
is holomorphic on the tangent space 7,V at each pointp € V, e.g., when M" is biholomorphic to
Euclidean space. Then, by using a direct calculus, the absolute value of the Jacobean associated
to exp, is equal to one. Whence, through the inverse mapping theorem, exp,, is biholomorphic
from an open neighborhood Uy C T,V of the origin, to its image i/,—called normal neighborhood.
Then, we have the following local biholomorphic chart called normal coordinate chart (U,, X, ")

exp,

suchthat X, ' := &, Toexp, ' : — Uy i X, ' (Uy) C C" with &, is a T, V-valued isometric
map on C™. This isometry sends the standard orthonormal basis of C" to an orthonormal basis

of T,V. Then for our study, let us consider the normal coordinate chart ( (p,9), X ;(p 8))

such that &, - (B(p 0)) = B(0,9) C Uy, where B(0, §) stands for the complex ball of center

the origin 0 in (C” and of radius ¢ and B(p, d) is the geodesic normal ball of center p € V and
of radius 6. We define by i(p,V) > 0 the injectivity radius at p, i.e. the large value of § such
that X, ' is a biholomorphic map on B(p,§). By definition i := lrel;[; i(p,V) is the injectivity

radius of V. Therefore, for each p = X' (0) € V, the map A} 1( o : B(p,d) — B(0,0) is

biholomorphic with § € (0,iy). Apropos of the properties of the exponential maps and the
injectivity radius, we can look to, e.g., [1, Chapter 1 §3 and §4] or [6]. The following definition
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deals with the multiplicity of covering for M, a manifold with bounded geometry, i.e. irg > 0
and all covariants curvature tensor are bounded.

Definition 2.1. Let M be a manifold with bounded geometry and U e U; be a covering of M
J

such that (U;) je s is a family of open sets U;. The multiplicity of this covering is the maximum possible
number Ny of different (j1,ja, ..., jn,) € JN° with ﬂf\i’l U, # 0.

By using Zorn Lemma and on the Gromov’s paper [7], the authors V. Kondratiev and M.
Shubin [11, Lemma 2.5] found an upper bound of Ny corresponding to (M, g), a Riemannian
Manifold of bounded geometry, that is, the corresponding injectivity radius is strictly positive
and all covariants curvature tensor are bounded. More precisely, they showed:

Lemma 2.3. Let r € (0,ipq), then there exist a covering of (M, g), a Riemannian Manifold of bounded
geometry, by geodesic balls By (x;, r) with the multiplicity of this covering

su/a (vol(By(x,2r)))
Ny < £ NN
0 mf (UOl(Bg (?7 7)))

reM 2

vol(+) is the volume w.r.t. the Riemann metrics g.

The fact that V is a bounded domain then has the structure of bounded geometry and we
can cover V by geodesic normal balls of radius § such that 2§ < i, and the volume of each
geodesic ball is less than the Euclidean ball volume. Whence, Lemma 2.3 yields Ny < 4™.

Lemma 2.4. Let 3 € B(0,0) such that 6 < iy and 3 be close to zero. Then detg(3) < 2"n! and
w™ < nl?27d;.
Proof. As we know, the map Xp_l : B(p,d) — B(0,6) is biholomorphic with § € (0,iy).

'B(p.5)

Therefore, we have that the coefficients g;i(p) are equal to 8, for (j, k) € {1,...,n}*" and the
derivatives of g, at p are equal to zero [1, Chapter 1, Definition 1.24]. We recall that p = X'(0),
thus its coordinates are equal to zero and the Taylor series for each smooth function g, at
p € B(p,0) provides g;x(3) = 8;1 + O(|3]*) when ; is close to zero, i.e. |g;x(3)| < 8k + Cirejk
with g, — 0 and C}, is a positive constant. In local coordinates, we have the famous equality
dpg = +/det g(3)d3, where dj is the Lebesgue measure in C". Whence, from the definition of the
determinant, we have

detg(a) < Z |gla(1)(3)‘|920(2) (3)' s |gncr(n) (5)|

oESH
<> [6i06) + Ciotreion):
oES, j=1
(2.6) <2".n!
Sy, stands for the set of all symmetric permutations on {1, ...,n} such that its cardinal is equal
to n!. Regarding inequality (2.6), we have picked ¢, ;) such that Cj,(j)e;5(;) < 1forall (j,0) €
{1,2,...,n} x S,. So from the expression of w and inequality (2.6), we have

w™ = nldu, = nly/detg(3)d; < nl?2"d;.
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3. MAIN THEOREM

The following main result states that VIZ"d(E)TfZ is bounded by a function given in terms of

the Hankel and Toeplitz operators and for the proof we use the techniques employed for the
proof of Lemma 3.3 in [5].

Theorem 3.1. Let Z € THO D and =z € D. Then, we have
VT, < ot (Tazfz - H}‘jHazwz) :

Proof. Let us consider g € E. which does depend on z € D and we have [P9;P, Ty |g =
07Ty, g. Therefore, by employing (2.5), we have

=[POzP —To,,..T}.]

:[PaZPv sz] + [szvTaztpz]
(37) :aZsz + [szvTastz]'
Therefore, without loss in generality, below, we perform the calculation of (0,7%.g,h) g, for
(g,h) € E, x E, and do not rely on z € D. We stress that to do directly the calculus of this
latter inner product on a bounded Kéhler manifold generally is a little bite hard. Therefore,

to avoid this standoff, we need to employ a suitable partition of unity. Whence, the fact that
the integration on a manifold does not depend on the choice of a partition of unity locally

finite, let us define the following one (¢x)x>1 subordinated to the covering (ng)) keg of V,

where J is a finite subset of N and Bf;k) = B(px, ) as follows. Let Vi € C§° (B (0,0)) and

be smooth positive function with compact support in B, (0,d) = ]B%f;k) and bounded by one.

Now, let us transfer the function vy, to ng), as follows. Let 9% (r) = Ur (X5 (v)) for (r,k) €
Vi(x)

B((sk) x N. Consequently, we define the smooth function ¢;, as follows ¢ (r) = - Our

> (x)

1>1
elected partition of unity is locally finite. Therefore, let h € L3 with compact support in V
and covered by geodesic balls with finite multiplicity, so the support of h¢;, belongs to the set

(k) (k) F) oo s , (k)
(B5") | <pcgons suchthat () Bs™” # 0 ¢ . The fact that By is biholomorphic to B;" through
=r= k=1
the exponential map, and by using Lemma 2.4 at ng), let us show that 7’ _, the Toeplitz operator
with symbol f., on L27h(5’((5k), e~ ¥=w™") is less, up to a multiplicative constant, to T, X s the

Toeplitz operator with symbol f, o &}, , on Lo p (IB%f;k), e~ #=°% du). Thus for g a holomorphic
function in ng), we have

Ty.0(S) £ (QOK-(&Qa(Q)e ¢ Own

B

—n! " Fo (X (W) K (X, (3), Xy (1)) 9( X, ()™= (Ko (WD gy

a2 [ (R (1) Ky, (5), X ()0, () 2=k Dy

<n2" [ f0 X, () KRy, (5), Ao (1)g © Ay, ()P0 ()
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(3.8) =n!*2" Ty ox, (80 Xp,)(3),

where K, (&, () is the reproducing kernel for the the Hilbert space L27;L(B§k), e ?w")and (K, o
V)3, 1) == K (X, (3), Xp, (1)) is the reproducing kernel for Lg,h(ng), e~ %=°% du), e.g., by in-
spiring from [5, Example 2.4], let e=#=°%ex (") = (1 — |2|> — |u|?)® for @ > —1 and z € D, the
unit complex disk, we consider B, = {£ € C" : |[£|*> < 1 — |z|?}. Then E, has the following
reproducing kernel

1—]z 2\14+«
KZ(XPk (3)7 ka (u)) = (1 7( |Z|2 |331)1+04+n’

and consequently, we have

(1 — o)t

Kz(&vC) = :
(1= |22 = 5. (€)X (¢)) 1ot

Also, we have

0zT7.9(©B( e O =nl | 05Ty (x,,18(Xp (6))(Xp, (3))e P+ Dl

B B

) <”'22"/ 02T}, 0,00 Gy (3))e e

Whence, by using the integration on each chart (B§k), Xp_kl> and the above partition of unity

locally finite, Lemma 2.4 and inequality (3.9) in each geodesic normal ball ng), and the fact
that Ny < 227, we have

aZszga b> E,

/3Zsz Je —¢=(&) ym

g; [ 0@ @m0 O
<n'22"Z I
—n'22"Z / ( / 02 (£ (X () (X, 5), A ()= Hon g (2, () ) du>
xE(ka@)e - ) gy
—n'zz"z / o 77 (o QO (3,60 Ay )™
%9 (X ()X, (5))e ™+ 9 ) duds
" Z L P K. 05

><]E(k>

xg( pk(u))az(b( Xy, (3))e ™= 6D duds.
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Hence,

n
<8Zsz g, b>Ez S?’l|22" Z 8Z <TfZOka (g o ka)v h © ka>L2(Bk7e*«pz0X9k d3)
k=1

Ny
2 Y0 [ L )KL ). Ay () g, 1)
k=1"Bs xB;

X (X, (3))020: (X, (3)) e 2= (Xer () dudy

2y [0 (. e @) (X, (5)ds
k=1"5s

a2 Z/B@)(szoxpkg 0 Xy, ) (0702 (X, (3))B(Xp, (3))e 7=y
k=1 B

No

=nl2 )7 [ 02O ) (gh) ()"
k=1 3

No
0220 [ (17 0@ OO O
k=1"5s

<22 (Toos0, (foevs) + To,0.T7.)8, b) .

=022 (To, f.~f.020. + Tore.T1.)8,) E.
Whence, we have
(3.10) 97Ty, < P2 (Top. - t.04¢. + Toze.Tt.)-
Let us recall equality (1.1).
(3.11) Ty, — T, Ty = Hy Hp
Therefore, by using (3.11) with u, = 9z, and (3.10), inequality (3.7) becomes:
(312) VT, <nl9¥ T,y — HE Hoyp,).

O

Remark 3.1. For the particular case when V is a bounded subspace of C", Englis and Zhang state
that VIan(E)TfZ =To,5 — H;—Haz<p27 see [5, Lemma 3.3]. Thus, we are asking whether it is also

possible to look for on a lower bound of V;"d(E)sz in (3.12). Likewise, it is also possible to provide a
upper bounded of ag““’f), the induced connection associated to the (0, 1)-part of the Chern connection

for Z € TOY D, the anti-holomorphic sub-bundle of the complex tangent bundle TD, i.e. J = —i on
7DD,
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