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ABSTRACT. In this paper, we axiomatize the geometries obtained from the long root subgroup geometries by taking
as new lines the so-called imaginary lines. A generic such line is the union of the orbits of the centers of the two root
groups corresponding to two opposite long roots, which share at least two points. This extends characterizations
of Cuypers and Hall on copolar spaces, who treated the quadrangular case. Here, we treat the remaining case, the
hexagonal one. Our results hold over any field of size at least 5 and characteristic different from 2.
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1. INTRODUCTION

1.1. General context and motivation. Buildings, sometimes also called Tits-buildings, were
introduced by Jacques Tits [26] and give a geometric interpretation of semi-simple groups of al-
gebraic origin (semi-simple algebraic groups, classical groups, groups of mixed type, (twisted)
Chevalley groups). These buildings are, at first glance, complicated combinatorial structures;
however, the properties of spherical buildings can be made more accessible using associated
point-line geometries. The most commonly used point-line geometries that can be associated
to a spherical building ∆ of type (W,S) are the so called Lie incidence geometries [6]. For every
nonempty subset J ⊆ S, there is a canonical procedure that yields a Lie incidence geometry
with point set the set of J-simplices of ∆. Classical examples are given by the (Grassmannians
of) projective and polar spaces, which are associated to buildings of type An, and Bn or Dn,
respectively.

For every irreducible Moufang building ∆ (of rank at least two, not an octagon or a Mo-
ufang quadrangle of type F4), there is some (not necessarily unique, see Remark 2.3) subset
J ⊆ S for which there is a natural correspondence between the points of the associated Lie
incidence geometry and the long root subgroups of ∆. This geometry is referred to as the long
root (subgroup) geometry of ∆ and either forms a polar space–in which case we call it quadrangu-
lar–or contains a lot of non-thick generalized hexagons with thick lines–in which case we call
it hexagonal.

Long root geometries have been studied from different angles. From an algebraic point of
view, they were studied in the context of Timmesfelds theory of abstract root subgroups [25], which
axiomatizes the behaviour of (centers of) the root subgroups of long roots in spherical build-
ings. Moreover, these long root geometries appear as the so called extremal geometries ([5, 9])
of certain Lie algebras, and more recently, provide important classes of examples of Tits quad-
rangles and Tits hexagons ([18, 19]), which are higher rank generalizations of Moufang polygons.
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From an incidence geometric point of view, there are two main approaches. Firstly, the long
root geometries are studied in the context of other Lie incidence geometries, and are hence
classified as so called parapolar spaces that satisfy certain extra regularity conditions ([10, 23]).
Secondly, they appear as the most important examples of root filtration spaces ([3, 4]), which are
point-line geometries equipped with five relations between points that must satisfy a list of ax-
ioms (none of which involves any groups). These two incidence-geometric approaches, while
very powerful, have the disadvantage that they capture a broader class of incidence geometries
(namely, the root shadow spaces, see [4]), whose point set not necessarily coincides with the long
root subgroups of a spherical building.

We propose and axiomatize an alternative point-line geometry associated to ∆. This point-
line geometry, which we call the imaginary geometry of ∆, takes as point set the same point set
as the long root geometry of ∆ (i.e. the centers of the long root subgroups of ∆). Its lines,
which we call imaginary lines, are induced by the rank one groups generated by two opposite
long root subgroups. When the long root geometry is quadrangular, this imaginary geometry
has been studied and axiomatized before ([7, 11], see also Section 3.2). In this paper, we focus
on the hexagonal imaginary geometries.

In such hexagonal imaginary geometry, the set of imaginary lines through a point can be
given the structure of a Freudenthal triple system, and as such, these geometries have been stud-
ied (implicitly) throughout the literature (for example in [16]). We complement this algebraic
approach by providing an axiomatization of the hexagonal imaginary geometries. The protag-
onists of this incidence-geometric point of view are the imaginary geometries of buildings of
type A2, which are called A2-planes and should be considered as the imaginary counterparts
of non-thick generalized hexagons with thick lines. The main theorem roughly states that the
hexagonal imaginary geometries are characterized by these A2-planes and the local interactions
that they have with other points of the geometry. As was shown in [16], Freudenthal triple
systems (when generalized to arbitrary characteristic) can behave very different over fields of
characteristic 2. As a consequence, the imaginary geometries suffer from the same disease, and
for the axiomatization, we will restrict ourselves to hexagonal imaginary geometries defined
over fields of characteristic not two.

In [18], it is shown that every Moufang building of rank one of so called polar type arises as
the fixed point structure of a Galois involution of some imaginary geometry. The imaginary
lines of this imaginary geometry induce imaginary lines of the Moufang set, and the geometry
obtained like this is exactly the Tits web of the Moufang set, as was introduced in [27]. The
imaginary geometries defined here should be seen as higher rank counterparts of these Tits
webs.

Finally, we mention a further motivation. The rank one analogues of the Tits polygons men-
tioned above are the Tits sets, introduced in [17]. The abelian Tits sets have recently been classi-
fied by the first author in her PhD thesis [12] under a mild (and natural) additional condition,
and they arise from higher rank spherical buildings by considering the vertices of a so-called
Jordan type (the middle node in the An diagram, the extreme nodes in the other classical dia-
grams, and the node labeled 7 in the E7 diagram). The next natural class to consider is the class
of Tits sets corresponding to the long root geometries, and for this class, it is expected that the
characterization in the present paper will be very useful.

1.2. Formulation of the main results. The purpose of this paper is twofold. First of all, we
introduce imaginary geometries and investigate their behaviour. Secondly, we propose and
prove an incidence geometric axiomatization of hexagonal imaginary geometries. For notation
and definitions, we refer to Section 2.



Imaginary geometries 45

Definition 1.1. Let ∆ be an irreducible spherical Moufang building of rank at least two, and let E be
a (conjugacy) class of centers of long root subgroups of ∆. For A,B two opposite elements of E , define
the imaginary line through A and B to be the set {A} ∪ BA. We define Im(∆,E ) to be the point-line
geometry with as point set E and as line set the set of all imaginary lines. This space is called hexagonal
when there exist A,B ∈ E with [A,B] ∈ E , and quadrangular if no such A,B exist. Any point-line
geometry obtained like this is called an imaginary geometry.

The only irreducible spherical Moufang buildings of rank at least two that do not posses a
class of long root subgroups are the octagons and the Moufang quadrangle of type F4, so in
particular, we attach an imaginary geometry to all irreducible spherical Moufang buildings of
rank at least two that are not of those types. Moreover, whenever such a building ∆ is either
simply laced or defined over a field of characteristic not two or three, the set E is uniquely
determined. In this case, we denote Im(∆) := Im(∆,E ).

The imaginary geometry Im(∆,E ) fully determines ∆ and E , implying that studying Im(∆,E )
is equivalent to studying ∆. There is a unique Lie incidence geometry of ∆, called the long root
geometry, whose point set coincides with E .

We will focus on hexagonal imaginary geometries. It turns out that these are exactly the imagi-
nary geometries which contain imaginary geometries Im(A2(k)) for some skew field k. which
we will call A2-planes. We now provide an explicit construction of these A2-planes, along with
the most essential definitions to understand the main theorem below (referring forward for
details).

Definition 1.2. Let k be a skew field. Consider the projective plane P(k3), and denote its point and line
set with Pτ and Lτ , respectively. The geometry Im(A2(k)) is the point-line geometry (E ,I ) with

E := {(p, l) | p ∈ Pτ , l ∈ Lτ , p ∈ l},
I := {[q,m] | q ∈ Pτ ,m ∈ Lτ , q ̸∈ m}, where

[q,m] := {(p, pq) | p ∈ P, p ∈ m} for all q ∈ Pτ ,m ∈ Lτ with q ̸∈ m.

This geometry Im(A2(k)) is called the A2-plane over k. The corresponding long root geometry is the
point-line geometry (E ,L ) with L := {Tp | p ∈ Pτ} ∪ {Tl | l ∈ Lτ}, where

Tp := {(p,m) |m ∈ Lτ ,m ∋ p}, for all p ∈ Pτ ,

Tl := {(q, l) | q ∈ Pτ , q ∈ l} for all l ∈ Lτ .

One should note that the long root geometry (E ,L ) is a non-thick generalized hexagon with thick lines.
We will prove that elements of L are fully determined by the geometry Im(A2(k)). We can hence refer
to these elements as transversals of Im(A2(k)).

We refer forward to Section 3.4 to see that an A2-plane contains many dual affine planes. It
hence makes sense to consider the following definitions.

Definition 1.3. Let A be an A2-plane over a field k. A conical subset of A is a subset of A that intersects
any dual affine plane of A in a conic (Definition 2.6). Such a conical subset is called a conical subspace
when it intersects every transversal of A in 0, 1 or all of its points.

Notation 1. Let Y be an imaginary geometry (or a geometry axiomatizing it, as in the Main Theorem)
and let p be a point of Y , then p ̸≡ denotes the set of points in Y noncollinear to p.

Proposition 1.1. Let Y = Im(∆,E ) be a hexagonal imaginary geometry. Assume that every line of Y
contains at least four points (or equivalently, ∆ is not defined over F2). Moreover, if ∆ is of type An,
assume that ∆ = An(k) for some field k. Then Y is a connected partial linear space. Moreover, the
following properties hold:
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(Im1) Let l and m be two intersecting lines, and p a point on l.
(1) If |p̸≡ ∩m| = 1, any point of m \ {l ∩m} is noncollinear to exactly one point of l.
(2) If |p̸≡ ∩m| = 2, the lines l and m generate an A2-plane over some field.
The situation in (ii) occurs at least once.

(Im2) For any A2-plane A, and any point p, the set p ̸≡∩A forms a conical subspace of A and contains
three mutually collinear points, not on a common line.

(Im3) For any points p, q, if p ̸≡ = q ̸≡, then p = q.

It turns out that, at least when no A2-plane is defined over a field of characteristic two, the
axioms (Im1), (Im2) and (Im3) suffice to characterize all imaginary geometries.

Main Theorem. Let Y be a connected partial linear space that satisfies(Im1), (Im2) and (Im3). As-
sume that no A2-plane of Y is defined over a field of characteristic 2 or over F3. Then Y is the hexagonal
imaginary geometry of a spherical building, defined over a field k with |k| ≥ 5 and char(k) ̸= 2, or an
infinite rank analagon of such a hexagonal imaginary geometry (as defined in Remark 3.5).

1.3. Outline of paper. In Section 3, we introduce the notion of an imaginary geometry and
give several examples. In Section 4, we focus on the properties of hexagonal imaginary geome-
tries, in particular, we prove that such a geometry satisfies axioms (Im1), (Im2) and (Im3). In
Section 5, we discuss several different classes of conical subspaces of A2-planes. Sections 6 to 8
comprise the proof of the main Theorem.

The idea of the proof of the main theorem is the following: we start with the partial linear
space Y = (E ,I ), and use the presence of A2-planes in Y to define four possible relations
between two distinct points: linelike, symplectic, special and collinear, and to define a set of
transversals L . The goal is to show that the point-line geometry (E ,L ), equipped with the
relations defined above, forms a root filtration space. A priori however, it is not at all clear
whether these relations are disjoint, or whether the point-line geometry (E ,L ) is a partial
linear space.

The first difficulty we tackle, is proving that the four defined relations are disjoint. This
is done in Section 6. Next, we focus on the relation between two special points p and q: in
Section 7, we prove that the behaviour of any point linelike to both p and q is fully determined
by the behaviour of p and q, Axiom (Im3) will then ensure that there is a unique such a point.
The next difficulty is to find a way to distinguish between linelike and symplectic points, which
is done in Section 8.1, and again heavily relies on Axiom (Im3). At this point, one has all the
tools to prove that the four relations indeed define a filtration on E , which is done in Section 8.2.
A subtle, yet tedious detail is that one should still prove that (E ,L ) is a partial linear space;
this is done in Section 8.3. Once we have that (E ,L ) is non-degenerate root filtration space,
we can apply Theorem 2.1 to obtain that it is a hexagonal root shadow space. In Section 8.4, we
then conclude that (E ,L ) is a long root geometry, and that Y is the corresponding imaginary
geometry.

2. PRELIMINARIES

In this section, we discuss four different classes of incidence structures. Schematically, and
ignoring the peculiarity that some root shadow spaces (namely those of infinite rank) are not
Lie incidence geometries, see Remark 2.2, these classes can be depicted as follows:

Point-line geometries ⊃ Lie incidence geometries ⊃ Root shadow spaces ⊃ Long root ge-
ometries.

Throughout the section, we will use some basic definitions regarding buildings, for which
we refer to [22].
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2.1. Point-line geometries. The most general incidence structures studied in incidence geom-
etry are point-line geometries. We recall some basic definitions, which can all be found in [24].

Definition 2.4. A point-line geometry is a pair (P,L ) consisting of a nonempty set P , and a
nonempty set L of subsets of P . The elements of P are called points, those of L are called lines.
We say that two points are collinear when they are contained in a common line, and say that they are
noncollinear when they are not. Let X = (P,L ) be a point-line geometry.
1. A subspace S of X is a subset of P for which every line that contains at least two points of S, is

contained in S. A subspace that consists of mutually collinear points is called a singular subspace. A
subspace that intersects every line in at least a point, is called a hyperplane.

2. For any set P ⊆ P , the subspace generated by P is defined to be the intersection of all subspaces that
contain P . A subset generated by three mutually collinear points, not on a common line, is called a
plane.

3. The point-line incidence graph of X is the bipartite graph that has vertex set P ∪ L and edge set
{(p, l) | p ∈ P, l ∈ L , p ∈ l}). We denote this graph with ΓX .

4. The geometry X is called (co)connected when (the complement of) ΓX is a connected graph.
5. The distance between points x, y is defined to be the half the distance between x and y in ΓX . In

particular, x and y are collinear if and only if they are at distance one.
6. The geometry X is called a partial linear space when every two collinear points p and q are contained

in exactly one line (which we then denote with pq), and where moreover every line contains at least
three points.

7. We define Aut(X) to be the group {σ ∈ Sym(P) |L σ = L }.

We give some examples of partial linear spaces that will be useful later on.

Example 2.1. Let V be a (left) vector space of dimension n ≥ 3 over some skew field k. The projective
space P(V ) is the partial linear space that has as points the 1-dimensional subspaces of V . The lines are
induced by the 2-dimensional subspaces of V . When n = 3, this is called the projective plane defined
over k.

Example 2.2. Let V be a (left) vector space (possibly of infinte dimension) over some skew field k. The
dual V ∗ of V is a (right) vector space over k. Let W ∗ be a subspace of V ∗ such that {v ∈ V |ϕ(v) =
0, ∀ϕ ∈ W ∗} = {o⃗}. If V is finite dimensional, the only possibility for W ∗ is V ∗. Denote P := P(V )
and H = P(W ∗). Note that H is a set of hyperplanes of P such that H forms a subspace of the dual of P
and no point of P is contained in all elements of H.

The partial linear space E (P,H) is defined as follows. The point set is the set {(p,H) | (p,H) ∈
P × H, p ∈ H}. The lineset consists of two types: subsets of the form {(p,H) | p ∈ l} where l is a
line of P that is contained in H , and subsets of the form {(p,H) |H ⊃ K} where K is a codimension-2
subspace of P that contains p for which there are at least two elements of H containing it.

A projective space defined over a field k and of dimension n is denoted by P(kn).

Definition 2.5. A polar space is a point-line geometry in which every point is collinear to one or all
points of a line. It is called nondegenerate when no point is collinear to all other points. We say that a
polar space has rank n ∈ N when every chain M1 ⊂ M2 ⊂ . . . of nonempty singular subspaces has
length at most n (where the length of a chain is defined to be the number of subspaces contained in it),
and when there moreover exists such a chain of length n. When no such n exists, we say that the polar
space has infinite rank.

We gather two examples of such polar spaces.

Example 2.3. Let V be a vector space defined over some field k, let q : V → k be a quadratic form
with associated symmetric bilinear form f : V × V → k, where f(v, w) = q(v + w)− q(v)− q(w). A
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subspace S of V is called isotropic when q(s) = 0 for all s of S. Assume that q contains some isotropic
2-space and that q is nondegenerate, that is, {v ∈ V | q(v) = f(v, w) = 0, ∀w ∈ V } = {o⃗}. The
point-line geometry with as points the isotropic 1-spaces of V and as lines the isotropic 2-spaces of V is
a nondegenerate polar space. Any polar space that can be realized like this is called an orthogonal polar
space.

Example 2.4. Let V be a 2n-dimensional vector space (n ≥ 2) with basis {ei}1≤i≤2n, and let f be
the alternating bilinear form on V given by f(x, y) = x1y2 − y1x2 + · · · + x2n−1y2n − y2n−1x2n for
x =

∑
xiei and y =

∑
yiei. A subspace S of V is called isotropic when f(v, w) = 0 for all v, w ∈ S.

Note that every 1-space of V is isotropic. The point-line geometry with as points the isotropic 1-spaces
of V and as lines the isotropic 2-spaces of V is a nondegenerate polar space of rank n. A polar space that
can be realized like this is called a symplectic polar space.

All polar spaces of rank at least 3 (including those of infinite rank) have been classified, and
besides the orthogonal and symplectic ones, there are the polar spaces defined using a pseudo-
quadratic form with an associated Hermitian form, and also the so-called nonembeddable ones.
We will not need the latter two classes. For more background and the proof of this classification
we refer to [26].

We finish this subsection with a few more definitions regarding (conics of) dual affine planes,
as they will play a crucial role in what follows.

Definition 2.6.

(1) A partial linear space τ = (P,L ) is called a dual affine plane if noncollinearity, denoted by
̸≡, induces an equivalence relation on P and moreover, for ∞ a (new) symbol not in P , the
following point-line geometry is a projective plane:

τ∞ := (P ∪ {∞},L ∪ {T ∪ {∞} |T equivalence class of ̸≡}).
If τ∞ = P(k3) for some skew field k, we say that τ is defined over k.

(2) Suppose that τ = (P,L ) is a dual affine plane defined over a field k. A subset C of P is called
a conic of τ when either C or C ∪ {∞} is a conic of τ∞. In the latter case, we say that it is a
conic through the missing point of τ .

(3) Also when τ = (P,L ) is not defined over a field, we have the notion of a degenerate conic of
τ , which is a set C of P such that either C or C ∪ {∞} is empty, a point, a line, the union of
two lines or the whole of τ∞. By convention, we say that both the empty set and the plane τ are
degenerate conics of τ (both through the missing point of τ ).

2.2. Lie incidence geometries. In this section, we recall the definition of Lie incidence geome-
tries, which should be seen as Grassmannians of spherical buildings, and as such, are general-
izations of the projective and polar spaces discussed above. They were introduced in [6] as Lie
incidence systems.

Definition 2.7. Let (W,S) be a finite irreducible Coxeter system of rank at least 2, and ∆ a thick
building of type (W,S). For any J ⊆ S, we define a point-line geometry (PJ ,LJ):

PJ :={J-simplices of ∆}
LJ :={j-lines of ∆ | j ∈ J}.

For j ∈ J , a j-line is defined to be a set of the form {K |K is J-residue incident with F}, with F a
simplex of type S \ {j}. Any geometry that arrises like this is called a Lie incidence geometry. If ∆ has
type Xn, we say that (PJ ,LJ) is the Lie incidence geometry of type Xn,J related to ∆.

This definition is quite abstract, so we provide some examples related to classical buildings.
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Example 2.5. Let k be a skew field and let ∆ be the building An(k), for n ≥ 2.
(1) The Lie incidence geometry of type An,1 related to ∆ is the projective space P := P(kn+1).
(2) The Lie incidence geometry of type An,{1,n} related to ∆ is the point-line geometry E (P,H) as

defined is Example 2.2 with H the set of all hyperplanes of P. Note that this geometry has two
types of lines, the 1-lines and the n-lines, which is of course due to the fact that J has size 2.

Example 2.6. Let ∆ be a building of type Xn with Xn either Bn(n ≥ 3) or Dn(n ≥ 4).
(1) The Lie incidence geometry of type Xn,1 related to ∆ is a polar space Γ.
(2) The Lie incidence geometry of type Xn,2, n ≥ 3, related to ∆ is the line Grassmannian of this

polar space Γ. This line Grassmannian of any polar space Γ (possibly of infinite rank) is defined
as follows: its points are the lines of Γ, two points L and M are collinear when the corresponding
lines in Γ intersect in a point p of Γ and at the same time span a singular plane π of Γ. In this
case, the line LM is the set of lines in Γ through p in π.

Remark 2.1. If we refer to a Lie incidence geometry of a building ∆, then ∆ is not necessarily assumed
to be Moufang (see the addendum of [26]). As a consequence, any thick generalized quadrangle and
hexagon is a Lie incidence geometry of type B2,1 and G2,1, respectively.

2.3. Root shadow spaces and root filtration spaces. Some Lie incidence geometries behave
nicer than others. One particularly nice class of Lie incidence geometries are the root shadow
spaces, which are discussed in detail in [4].

Definition 2.8. Let Xn, n ≥ 2, be an irreducible crystallographic Coxeter diagram. There is at least
one Dynkin diagram Yn that has Xn as underlying Coxeter diagram. The extended (or affine) diagram
of Yn is obtained by adding one extra node to Yn corresponding to the highest root. Let J be the set of
nodes in Yn connected to this additional node. Any Lie incidence geometry of type Xn,J is called a root
shadow geometry. These are exactly the Lie incidence geometries of the following types (where n ≥ 2
unless stated otherwise):

An,{1,n},Bn,1,Bn,2,Dn,2 (for n ≥ 4),F4,1,F4,4,G2,1,G2,2,E6,2,E7,1,E8,8.

Remark 2.2. There are three more classes of geometries which are not Lie incidence geometries, but still
behave very similarly to the geometries above. We will also refer to them as root shadow geometries (of
infinite rank). They are the following:

(1) Polar spaces of infinite rank. These geometries behave similarly to Lie incidence geometries of
type Bn,1 for n ≥ 2 and Dn,1 for n ≥ 4.

(2) Line Grassmannians of polar spaces of infinite rank. These geometries behave similarly to Lie
incidence geometries of type Bn,2 for n ≥ 3 and Dn,2 for n ≥ 4.

(3) A geometry E (P,H) as defined in Example 2.2 with P an infinite dimensional projective space.
These geometries behave similarly to the Lie incidence geometries of type An,{1,n}.

Definition 2.9. A root shadow space is called quadrangular when it is a polar space (including infinite
rank!), and hexagonal when it is not.

There are several frameworks that axiomatize the hexagonal root shadow spaces. We will
make use of the notion of root filtration spaces.

Definition 2.10. A partial linear space X = (E ,L ) is a root filtration space with filtration Ei, −2 ≤
i ≤ 2 if the sets Ei ⊆ E ×E with −2 ≤ i ≤ 2, provide a partition of E ×E into five symmetric relations
satisfying the following for all x, y, z ∈ E :
(Rf1) The relation E−2 is equality.
(Rf2) The relation E−1 is collinearity of distinct points.
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(Rf3) For each (x, y) ∈ E1, there exists a unique point, denoted with [x, y], such that

Ei(x) ∩ Ej(y) ⊆ E≤i+j([x, y]).

(Rf4) If (x, y) ∈ E2, then E≤0(x) ∩ E≤−1(y) = ∅.
(Rf5) The subsets E≤i are subspaces of Γ, for −2 ≤ i ≤ 2.
(Rf6) The subset E≤1 is a geometric hyperplane of Γ.

The root filtration space X is called nondegenerate when:
(Rf7) The set E2 is nonempty.
(Rf8) The space X is connected.

Here we have denoted E≤i =
⋃i

j=−2 Ej and E(≤)i(x) := {y ∈ E | (x, y) ∈ E(≤)i}.

Theorem 2.1 ([4] and [13]). Every nondegenerate root filtration space is a hexagonal root shadow
space. Conversely, for every hexagonal root shadow space X (possibly of infinite rank), there is a unique
filtration such that it forms a root filtration space. The filtration can be defined as follows:

(x, y) ∈ E−2 ⇐⇒ x = y.

(x, y) ∈ E−1 ⇐⇒ x and y are collinear in X.

(x, y) ∈ E0 ⇐⇒ x and y are at distance 2 in X and have at least 2 common neighbours;
in this case we say that x and y are symplectic.

(x, y) ∈ E1 ⇐⇒ x and y are at distance 2 in X and have exactly 1 common neighbour : [x, y];
in this case we say that x and y are special.

(x, y) ∈ E2 ⇐⇒ x and y are at distance 3 in X.

in this case we say that x and y are opposite.

2.4. Long roots, abstract root subgroups and long root geometries. For (almost) every irre-
ducible, spherical, thick Moufang building ∆ of rank at least two, there is one root shadow
space related to ∆ for which its points coincide with the root subgroups of the long roots of
∆. In this subsection, we recall the definition of these long roots, the special role of their root
groups and their connection to root shadow geometries. An excellent reference for background
on root groups and buildings is [1]. For the long root (subgroup) geometries themselves, see
[25].

Notation 2. In this subsection, ∆ denotes a thick, irreducible Moufang building of rank at least two.
For a root (also called a half-apartment) α of ∆, the group Uα denotes the root group of α. Moreover, set
G+ := ⟨Uα |α root of ∆⟩.

We first recall which roots of ∆ are called long roots. More details can be found in [15].

Definition 2.11. Let Σ be an apartment of ∆, and let α, β be two roots of Σ. We define the angle θ
between α and β as follows. If α = β, set θ(α, β) := 0. If α = −β, set θ(α, β) := π. Suppose that
α ̸= ±β. Let T be a rank 2 residue of ∆ such that both α ∩ T and α ∩ T are roots of T . If T is a n-gon,
and α ∩ β ∩ T contains p chambers, then we define θ(α, β) := (n−p)

n π. One can check that such T
always exists, and that θ(α, β) is independent of the choice of T .

Definition 2.12. A root α of ∆ is called long when for every apartment Σ containing α and every root
β of Σ one of the following holds:

(1) θ(α, β) > π/3 or α = β,
(2) θ(α, β) = π/3, the group Uα is abelian, [Uα, Uβ ] = Uγ with γ the unique root of Σ at angle

π/3 with both α and β,
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(3) θ(α, β) ≤ π/2, Z(Uα) ̸= 1 and [Z(Uα), Uβ ] = 1.
A G+-orbit of long roots in ∆ called a class of long roots. A root group of a long root is called a long root
subgroup.

Proposition 2.2 (Theorem 3.8 of [15]). If ∆ is not an octagon or a Moufang quadrangle of type F4, it
contains a class of long roots.

Classes of long roots of ∆ are particularly interesting because the centers of their root groups
form a set of abstract root subgroups, which were studied by Timmesfeld in [25].

Definition 2.13. A rank one group is a group generated by two nontrivial nilpotent subgroups A and
B such that for each a ∈ A∗, there exists an element b ∈ B∗ with Ab = Ba and vice versa.

An example of a rank one group is given by PSL2(k), with k a field. This group is generated
by the upper and lower triangular matrices with 1s on the diagonal.

Definition 2.14. Let G be a group, with E a conjugacy class of abelian subgroups of G such that
G = ⟨E ⟩. The set E is called a class of abstract root subgroups of G when for each A,B ∈ E , exactly
one of the following occurs:
(E≤0) The groups A and B commute.
(E1) The group [A,B] belongs to E and equals [A, b] = [a,B] for all a in A and b in B.
(E2) The group ⟨A,B⟩ is a rank one group. In this case, A and B are called opposite.

If all possibilities above occur, we call E nondegenerate. If possibilities (1) and (3) occur, but not (2), we
call E a class of abstract transvection groups. If for all opposite elements A,B of E , the rank one group
⟨A,B⟩ ∼= PSL2(k) for some fixed field k, then E is called a class of k-root subgroups of E (or a class of
k-transvection groups).

Proposition 2.3 ([25]). Let M be a class of long roots of ∆, and set E := {Z(Uα) |α ∈ M}. One of
the following holds:

(1) The set E is a nondegenerate class of abstract root subgroups of G+. Define the line set L to be
the set of all subsets of E of cardinality at least 3 that are of the form

{C |C ≤ AB} for A,B ∈ E with [A,B] = 1.

The point-line geometry (E ,L ) forms a hexagonal root shadow space related to ∆.
(2) The set E is a class of abstract transvection groups of G+. For A in E , set CE (A) := {B ∈

E | [A,B] = 1}. Moreover, define the line set L to be the subsets of E of the form

{C |C ≤ Z(⟨CE (A) ∩ CE (B)⟩)} for A,B ∈ E with [A,B] = 1.

The point-line geometry (E ,L ) forms a quadrangular root shadow space related to ∆.
A root shadow space that can be obtained like this is called a long root geometry (related to ∆).

We give a quick overview of the long root geometries obtained in Proposition 2.3.

Example 2.7. If ∆ is simply laced (or equivalently, of type An,Dn for n ≥ 4 or En for 6 ≤ n ≤ 8), the
set of all of its roots forms a G+ orbit, implying that there is exactly one class of long roots. At the same
time, there is only one root shadow space related to ∆, which is always hexagonal. Its point set coincides
with the set of all root subgroups of ∆.

Example 2.8. If ∆ is not simply laced, the group G+ has two orbits on the roots of ∆, and there are two
root shadow spaces related to ∆.

(1) If ∆ has type Bn for n ≥ 3, the Lie incidence geometry of type Bn,1 related to ∆ is a polar space
Γ.
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(a) If Γ is an orthogonal polar space, the line Grassmannian of Γ is a hexagonal long root
geometry.

(b) If Γ is not orthogonal, then the polar space Γ itself is a quadrangular long root geometry.
(2) If ∆ has type F4, any root shadow space for which the convex closure of symplectic points forms

an orthogonal polar space, is an hexagonal long root geometry.
(3) If ∆ has type B2 or G2, one can easily read off from the commutator relations in [29] which roots

are long. Unless ∆ is a Moufang quadrangle of type F4, we can always find at least one long
root geometry related to ∆, which is quadrangular or hexagonal depending on whether ∆ is of
type B2 or G2.

Remark 2.3. When the building ∆ is defined over a bad characteristic (which is 2 if ∆ is a building
of type Bn or F4, and 3 if ∆ is a building of type G2), it could be that ∆ has two classes of long root
subgroups, and hence has two distinct long root geometries related to it.

Definition 2.15. As in Remark 2.2, there are some classes of geometries of infinite rank which are not
Lie incidence geometries, but behave similarly to the long root geometries defined in Proposition 2.3.
These geometries are the following:

(1) Non-orthogonal polar spaces of infinite rank.
(2) Line Grassmannians of orthogonal polar spaces of infinite rank.
(3) The geometries E (P,H) with P an infinite dimensional projective space (see Example 2.2).

We will refer to them as long root geometries (of infinite rank).

Remark 2.4. Let X = (E ,L ) be a hexagonal long root geometry (possibly of infinite rank), then for
any point x ∈ E , we define the group

Zx := {θ ∈ Aut(X) | yθ = y, ∀ y ∈ E≤0(x) and yθ ∈ y[x, y], ∀ y ∈ E1(x)}.
The set {Zx |x ∈ E } is a class of abstract root subgroups of ⟨Zx |x ∈ E ⟩. We refer to this set as the
canonical class of root subgroups related to X . If some points x and y are collinear or symplectic, then
[Zx, Zy] = 0. If they are special, then [Zx, Zy] = Z[x,y]. In the latter case, the group Zx acts sharply
transitively on the points of the line y[x, y] different from [x, y]. If they are opposite, then ⟨Zx, Zy⟩ is a
rank one group.

Proposition 2.4. Let X = (E ,L ) be an hexagonal long root geometry with {Zx | x ∈ E } its canonical
class of root subgroups. Let x and y be two opposite points of X , and let p and q be two special points of
X for which [p, q] = x. Denote with S the smallest subspace of X for which the following hold:

(1) it contains the points p, q and y.
(2) for every two special points p′ and q′ of S, [p′, q′] ∈ S.

Then S is a long root geometry of type A2,{1,2}, which is defined over a skew field k as soon as X itself
is not of type A2,{1,2}. If X is not of type E (P,H), then k is automatically a field. No two points of S
are symplectic, and points in the long root geometry S are opposite (collinear, special) if and only if they
are opposite (collinear, special) in X .

Proof. This is proved for all cases throughout [14]. Alternatively, one can also argue as in the
proof of Proposition 4.6 (Im2), see Section 4.2. Finally, one can translate the assertion to the root
subgroup language and then use Section V.2 of [25]. □

We finish this subsection by mentioning a common property of hexagonal long root geome-
tries.

Lemma 2.1. Let X be a hexagonal root long root geometry (possibly of infinite rank), and let y1 and y2
be symplectic points, both opposite some point x. There is a point w that is opposite x and collinear to
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y1 and y2. If X is not of type E (P,H) or of type B3,2, then there also exists a point u that is special to x
and collinear to y1 and y2.

Proof. Properties (a) and (b) of Section 3 of [4] imply that y1 and y2 are contained in a subspace
Γ isomorphic to a polar space containing a (unique) point z symplectic to x. Under the given
assumptions, Γ, which is an orthogonal polar space, contains a point w collinear to both y1 and
y2, but not to z, and a point u collinear to all of y1, y2 and z. The assertion now follows from
Conditions (Rf4) and (Rf6). □

3. IMAGINARY GEOMETRIES

In this section, we define the main objects of this paper: the imaginary geometries. These
geometries have the same point set as long root geometries, but have a different set of lines.
Depending on whether the corresponding long root geometry is quadrangular or hexagonal,
the imaginary geometry behaves very differently.

3.1. Definition of imaginary geometries. We start by defining imaginary geometries related
to spherical buildings.

Definition 3.16. Let ∆ be a thick, irreducible, spherical Moufang building of rank at least two, and
let E be a class of centers of long root subgroups of ∆. If A,B in E are opposite, it follows from [25,
Lemma 2.1] that

{C ∈ E |C ∈ ⟨A,B⟩} = A⟨A,B⟩ = {A} ∪BA = {B} ∪AB .

We refer to this set as the imaginary line through A and B. Define Im(∆,E ) to be the point-line
geometry with as point set E and as line set the set of all imaginary lines. If ∆ has type Xn, we say that
the imaginary geometry Im(∆,E ) is also of type Xn

As in Definition 2.15, there are some geometries that are not associated to spherical build-
ings, but still behave very similarly to the geometries Im(∆,E ). We will therefore work with
the following more general definition.

Definition 3.17. Let X = (E ,L ) be a long root geometry (possibly of infinite rank) with canonical set
of abstract root subgroups {Zx |x ∈ E }. For any two opposite points x, y of E , the group ⟨Zx, Zy⟩ is
an abstract root subgroup. It follows from [25, Lemma 2.1] that

{z ∈ E |Zz ≤ ⟨Zx, Zy⟩} = x⟨Zx,Zy⟩ = y⟨Zx,Zy⟩ = {x} ∪ yZx = {y} ∪ xZy .

We denote this set with xy and call it the imaginary line defined by x and y.

Definition 3.18. A point-line geometry Y is called an imaginary geometry if there is a long root ge-
ometry X such that the point set of X coincides with the point set of Y and the lines are the imaginary
lines of X . If this is the case, we will say that Y is the imaginary geometry of X . We call Y hexagonal
(quadrangular) when X is hexagonal (quadrangular).

If Y is the imaginary geometry of the long root geometry X , it could a priori be that there is
another long root geometry X ′, not isomorphic to X , such that Y is also the imaginary geom-
etry of X ′, in particular, Y could even both be quadrangular and hexagonal. This is of course
not the case, as we will prove in Proposition 4.6.

Notation 3. In an imaginary geometry Y (or more general, in an incidence structure that axiomatizes
such an imaginary geometry), we denote collinearity with ≡, and noncollinearity with ̸≡. Moreover, for
any point p, we denote

p≡ = {q | q point of Y with q ≡ p} and p̸≡ = {q | q point of Y with q ̸≡ p}.
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For any sets S1, S2 of points, we denote

S ̸≡
1 =

⋂
s∈S1

s̸≡ and S1 ̸≡ S2 if S2 ⊆ S ̸≡
1 .

3.2. Quadrangular imaginary geometries. Imaginary geometries of quadrangular long root
geometries have been studied and axiomatized before, for example in [7], [8] and [11]. In the
former two, imaginary lines are called hyperbolic lines, and the imaginary geometry is re-
ferred to as the hyperbolic geometry of polar spaces. The reason why we call it “imaginary” is
that we reserve this name for objects that contain points at distance 3 in the original geome-
try, while “hyperbolic” refers to objects at distance 2 in the original geometry (this is conform
the terminology in Chapter 6 of [28]). In this subsection, we shortly discuss one example of
a quadrangular imaginary geometry, and state the axiomatization theorem of quadrangular
imaginary geometries, as obtained in [8].

Construction 1. Let Y be a quadrangular long root geometry. Two points x and y of X are opposite
when they are not collinear, in which case they are at distance 2 in X . Suppose this is the case, then the
imaginary line xy coincides with ({x, y}≡)≡.

Proof. If X is a polar space of rank at least 3, this follows from [7, Section 4]. If X has rank
2, it is a Moufang quadrangle, not of type F4, and the result immediately follows from the
commutator relations in the appropriate, but various chapters of [29]. □

Example 3.9. Let X be a symplectic polar space of rank n. The point set of X coincides with the point
set of the projective space P(k2n+1). Two points p1 and p2 of X are opposite when they are not collinear
in X , in this case, the imaginary line through p1 and p2 is the (non-isotropic) line p1p2 of P(k2n+1).

Lemma 3.2 ([7]). The following properties hold in a quadrangular imaginary geometry Y :
(1) For any line l and point p, the point p is collinear to all, all but one or no points of l.
(2) A plane is either a dual affine plane or a linear plane (that is, a plane in which any two points

are collinear).
(3) There is a unique quadrangular long root geometry X for which Y is the imaginary geometry

of X .

Proposition 3.5 ([7]). Let Y = (E ,I ) be a connected and coconnected partial linear space in which
the axioms below hold (where we denote (non)collinearity as in Notation 3):

(1) If l is a line and p is a point with |p̸≡ ∩ l| = 1, then p and l generate a dual affine plane.
(2) If π is a subspace of Y isomorphic to a dual affine plane, containing a point q. If |q ̸≡∩p̸≡∩π| ≥ 2

for some point p, then q ̸≡ ∩ π ⊆ p̸≡.
(3) If p and q are points with p≡ ⊆ q≡, then p = q.
(4) Every line contains at least four points.

Then X = (E ,L ) with L the set of subsets of E given by

pq := {r | p ̸≡ ∩ q ̸≡ ⊆ r ̸≡} for p and q elements of E with p ̸≡ q

is a quadrangular long root geometry. Moreover, if every line l ∈ I coincides with (l ̸≡)̸≡, the set I is
the set of imaginary lines of X , and Y is the imaginary geometry of X .

3.3. Hexagonal imaginary geometries. We provide a construction of imaginary lines in a hexag-
onal long root geometry, and apply this construction to give some explicit examples of hexag-
onal imaginary geometries, using the corresponding long root geometries.
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Construction 2. Let X = (E ,L ) be a hexagonal long root geometry containing opposite points x and
y. Let px and qx be points collinear to x and special to y, such that px and qx are also special. Denote
py := [px, y] and qy := [qx, y]. The imaginary line xy coincides with

{[p, q] | p ∈ pxpy, q ∈ qxqy with p special to q}.

Proof. It follows from basic properties of root shadow spaces [4] that every point of pxpy is
special to a unique point of qxqy , while being opposite to all other points of that line. Moreover,
we find that px and qx are special, with x = [px, qx] and that py and qy are special, with y =
[py, qy].

Let {Zx | x ∈ E } be the canonical class of root subgroups related to X , defined in Remark 2.4.
Using Definition 3.18, we find that xy = {x} ∪ yZx = {[px, qx]} ∪ {[pzy, qzy ] | z ∈ Zx}. The proof
now follows from the fact that, as noted in Remark 2.4, the group Zx acts transitively on the
points of the line pxpy different from px. □

Example 3.10. Let X be the hexagonal long root geometry E (P,H), with P and H as in Example 2.2.
Two points (p1, H1) and (p2, H2) are opposite in X when p1 ̸∈ H2 and p2 ̸∈ H1. In this case, the
imaginary line through (p1, H1) and (p2, H2) is given by the set

{(q, ⟨q,H1 ∩H2⟩) | q point on p1p2} = {(H ∩ p1p2, H) |H hyperplane through H1 ∩H2}.
If Y is an imaginary geometry of X , we will say that Y is of type E (P,H). When P is a projective plane,
this example is discussed in more detail in Section 3.4.

Example 3.11. Let Γ be an orthogonal polar space (possibly of infinite rank), and let X be the hexagonal
long root geometry related to Γ (that is, the line Grassmannian of Γ). Two lines l and m of Γ are opposite
points of X when in Γ every point of l is collinear to a unique point of m and vice versa. Let k1 and k2
be two lines of Γ that intersect both l and m. Then the imaginary line lm of X is the set of lines of Γ that
intersect both k1 and k2. This set is independent of the choice of k1 and k2.

Remark 3.5. An hexagonal imaginary geometry of infinite rank is one of the following:
(1) an imaginary geometry of type E (P,H) with P an infinite-dimensional projective space.
(2) an imaginary geometry of a line Grassmannian of an orthogonal polar space of infinite rank.

3.4. Imaginary geometries of type A2. We finish this section by zooming in on one particular
example of hexagonal imaginary geometries, namely those related to a building of type A2, as
this will be the main building block of the axiomatic hexagonal imaginary geometries.

Notation 4. In this subsection, ∆ denotes a thick Moufang building of type A2 defined over some field
k. As mentioned in Example 2.5, the Lie incidence geometry of type A2,1 related to ∆ is a projective
plane τ = P(k3), whose point and line set we denote with Pτ and Lτ . Throughout the subsection, we
assume that |k| ≥ 3.

We first describe the long root geometry and the imaginary geometry of ∆. Note that these
are exactly the geometries obtained in Example 2.2 and Example 3.10 with P = τ .

Example 3.12. The long root geometry related to τ is the point-line geometry X = (E ,L ) with

E := {(p, l) ∈ Pτ × Lτ | p ∈ l},
L := {Tp | p ∈ Pτ} ∪ {Tl | l ∈ Lτ},

where for any point p of τ and line l of τ , the sets Tp and Tl are defined as follows:

Tp := {(p,m) |m ∈ Lτ ,m ∋ p} and Tl := {(q, l) | q ∈ Pτ , q ∈ l}.
As already noted, X is a non-thick generalized hexagon with thick lines.
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Example 3.13. The imaginary geometry related to ∆ is the point-line geometry Y = (E ,I ), where E
is the point set of X defined in Example 3.12 and

I := {[q,m] | q ∈ Pτ ,m ∈ Lτ , q /∈ m} with [q,m] := {(p, pq) | p ∈ m} = {(l ∩m, l) | q ∈ l}.

Notation 5. In the rest of this subsection, we will work with both X and Y from Example 3.12 and
Example 3.13, which have the same point set but a different set of lines. We refer to lines of X as
transversals of X , and lines of Y as lines. Two distinct points are called collinear when they are contained
in a common line and noncollinear when they are not. We will make use of Notation 3 for Y . If two
points are contained in a common transversal of X , they are called linelike in X .

In Theorem 2.1, we saw that there are five possible relations between points of a long root ge-
ometry. In X however, no two points are symplectic, so this amounts to four different relations
between points. We describe them explicitly in the following lemma.

Lemma 3.3. Let (p, l) and (q,m) be two points of X . Exactly one of the following occurs:
(E−2) p = q and l = m. The points are equal.
(E−1) p = q or l = m, but not both. There exists a unique transversal (namely Tp or Tl respectively)

that contains both (p, l) and (q,m). The points are linelike in X .
(E1) p ∈ m or q ∈ l, but not both. There exists a unique point, namely (p,m) or (q, l) respectively,

which is linelike in X to both (p, l) and (q,m). We denote this point with [(p, l), (q,m)]. The
points are special in X .

(E2) p ̸∈ m and q ̸∈ l. There is a unique line that contains (p, l) and (q,m), namely [l ∩m, pq]. The
points are collinear (in Y ).

When two distinct points in Y are noncollinear, they can hence either be linelike or special
in X . We come back to that in Lemma 3.6.

As pointed out in Lemma 3.2, every quadrangular imaginary geometry contains a lot of dual
affine planes. We show that this is also the case for the hexagonal imaginary geometry Y .

Definition 3.19. For p ∈ Pτ and l ∈ Lτ , we define the following subsets of Y :

πp := {(q,m) ∈ E | q ̸= p and p ∈ m}.
πl := {(q,m) ∈ E |m ̸= l and q ∈ l}.

Lemma 3.4. For p ∈ Pτ and l ∈ Lτ , the subsets πp and πl form subspaces of Y and are dual affine
planes.

Proof. We prove this for πp, the proof for πl then follows immediately by dualizing. Each line
of Y which contains two points of πp is of the form [p, l], and is hence fully contained in πp,
which implies that πp is a subspace of Y . The points of τ different from p, together with the
lines of τ not through p form a dual affine plane. The map

πp → τ \ {p} : (q,m) 7→ q

is clearly an isomorphism between πp and this dual affine plane. □

The next lemma determines the planes of Y . The proof is an easy verification in τ and is
omitted.

Lemma 3.5. Let [p, l] and [q,m] be two lines in Y that intersect in the point (r, n). Exactly one of the
following cases occurs:

(1) p = q and l = m. In this case, (p, l) and (q,m) are equal.
(2) p = q or l = m, but not both. The two lines generate the dual affine plane πp (or πl). Any point

of [p, l] \ {(r, n)} is noncollinear to a unique point of [q,m] and vice versa.
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(3) p ̸= q and l ̸= m. The lines generate A. Any point of [p, l] \ {(r, n)} is noncollinear with
exactly two points of [q,m] and vice versa.

In particular, every plane of Y is either Y itself, or is one of the dual affine planes described in Defini-
tion 3.19.

Remark 3.6. If k would be equal to F2, then the subspace in Y generated by [p, l] and [q,m] with p ̸∈ m
and q ̸∈ l would just be [p, l] ∪ [q,m], which is not the whole of A.

We can use Lemma 3.5 to distinguish whether two noncollinear points in Y are linelike or
special in X . This is done in the next lemma. The proof of this lemma is again just a verification,
and is hence omitted.

Lemma 3.6. Let p and q be two distinct noncollinear points p and q in Y . The following hold:
(1) The points p and q are linelike in X if and only if there is a dual affine plane of Y that contains

both p and q. In this case, the transversal in X through p and q is given by ({p, q}̸≡) ̸≡.
(2) The points p and q are special in X when there is no dual affine plane of Y that contains both p

and q. In this case, [p, q] is the unique point in Y linelike to both p and q.

Remark 3.7. Lemma 3.6 implies that the imaginary geometry Y determines whether two distinct non-
colllinear points are linelike or special in X . Moreover, the transversals of X are determined by the lines
of Y . We can hence say that two points are linelike (or special) in Y and speak of transversals of Y .

Definition 3.20. For a dual affine plane π of Y , a transversal of Y is called a transversal of π if it
contains at least two points of π. Define π̄ to be the union of all transversals of π, and define Tπ := π̄\π.
We will refer to π̄ as the transversal closure of π.

Notation 6. For a transversal T of Y , the set T ̸≡ is the union of all transversals of Y that intersect T
in a point. The set T ̸≡ \ T is a dual affine plane, which we denote with πT .

Remark 3.8. Using Definitions 6 and 3.20, one deduces the following natural correspondence between
dual affine planes of A and transversals of A: a transversal T corresponds to the dual affine plane πT

and a dual affine plane π corresponds to the transversal Tπ . Note that for a point p and a line l of τ , the
transversals Tp and Tl correspond to dual affine planes πp and πl.

We finish this subsection with one more lemma, which will be useful later on. The proof is
once again an easy verification, and is hence omitted.

Lemma 3.7. Let q be a point and π be a dual affine plane of Y , with q ̸∈ π̄.
(1) There is exactly one point p of π linelike with q.
(2) q ̸≡ ∩ π̄ = T ∪ l, with T the transversal of π through p and l a line of π through p.
(3) Every line through q intersects π̄ in exactly one point.

Remark 3.9. By picking a coordinate system for τ , we obtain (projective) coordinates for the points and
lines of τ and hence coordinates for the points of A, which are incident point-line pairs of τ . As such, we
obtain a map σ from A to the projective space P(k8):

x1

x2

x3

 ,
(
a1 a2 a3

) 7−→

x1

x2

x3

 .
(
a1 a2 a3

)
=

x1a1 x1a2 x1a3
x2a1 x2a2 x2a3
x3a1 x3a2 x3a3

 .

Note that the image of this map consists exactly of the matrices of rank 1 and trace 0. The points of A are
hence all contained in a hyperplane of P(k8), and are even the intersection of the Segre variety (formed
by all matrices of rank 1) with this hyperplane.

We can consider the images under σ of transversals, lines and dual affine planes of Y .
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• Let T be a transversal of A, then σ(T ) is a line in P(k8).
• Let L be a line of A, then ⟨σ(L)⟩ is a plane of P(k8). We have that σ(L) = σ(A) ∩ ⟨σ(L)⟩ is a

conic in this plane.
• Let π be a dual affine plane of A, then ⟨σ(π)⟩ is a 4-dimensional subspace of P(k8). We have

that σ(A) ∩ ⟨σ(π)⟩ = σ(π̄).
Now let Q be a hyperplane of P(k8) and set Q := Q ∩ σ(A). Then we can consider the intersection of
Q with the objects above:

• Let T be a transversal of A, then σ(T ) ∩ Q is either a point or the whole of σ(T ).
• Let L be a line of A, then σ(L) ∩ Q is either empty, exactly one point, exactly two points or is

the whole of σ(L).
• Let π be a dual affine plane of A, then σ(π) ∩ Q is either the whole of σ(π) or it is of the form
σ(C ) with C some conic of π through the missing point of π.

Remark 3.10. The representation of X and Y using a Segre variety as in Remark 3.9 is precisely the
polarized embedding arising from the adjoint module of the Lie algebra sl2(k) as described in [2], as is
readily verified.

4. PROPERTIES OF HEXAGONAL IMAGINARY GEOMETRIES

We discuss some properties of hexagonal imaginary geometries, where we focus on the
properties occurring in the Main Theorem. In particular, we will prove the following proposi-
tion.

Proposition 4.6. Let Y be an imaginary geometry where lines contain at least four points. Then Y is
a connected partial linear space that satisfies (Im1), (Im2) and (Im3). Moreover, there exists a unique
long root geometry X such that Y is the imaginary geometry of X .

Notation 7. In this section, the point-line geometry Y = (E ,I ) is a hexagonal imaginary geometry
related to some hexagonal long root geometry X = (E ,L ), where X is possibly of infinite rank. We
denote with {Zx | x ∈ E } the canonical class of root subgroups of X , as defined in Remark 2.4.

The point-line geometries X and Y have the same point set, but a different line set. As in Notation
5, we refer to the lines of X as transversals, and lines of Y as lines. If two distinct points are contained
in a common line, we say that they are collinear and if they are not contained in a common line, we
say that they are noncollinear. We use the notations ≡ and ̸≡ introduced in Notation 3. When points
are noncollinear, it follows from Theorem 2.1 that there are three options: they can be linelike in X ,
symplectic in X or special in X , in the latter case, there is a unique point that is linelike in X to both p
and q, we denote this point with [p, q].

Throughout the subsection, we assume that transversals (and hence also lines) contain at least four
points.

Lemma 4.8. The imaginary geometry Y is a partial linear space.

Proof. Suppose that x and y are collinear points in Y , and that l is any line that contains x and y.
We aim to prove that l = x⟨Zx,Zy⟩. The imaginary line l is of the form p⟨Zp,Zq⟩ with p and q points
of E that are collinear in X , which implies that x = pu1 and y = pu2 , for u1, u2 ∈ ⟨Zp, Zq⟩. It then
follows from [25, II.2.1] that ⟨Zx, Zy⟩ = ⟨Zp, Zq⟩, which indeed implies that l = x⟨Zx,Zy⟩. □

4.1. The A2-planes contained in hexagonal imaginary geometries. By Proposition 2.4, the
long root geometry X contains subspaces that are long root geometries of type A2. In this sub-
section, we investigate corresponding subspaces of the imaginary geometry Y that are imagi-
nary geometries of type A2 (which are the A2-planes of Definition 4.21).
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Definition 4.21. A subspace of Y that is isomorphic to an imaginary geometry of type A2 (defined over
a skew field k) is called an A2-plane (defined over k).

Remark 4.11. Suppose that A is an A2-plane of Y . Then two points p, q of Y contained in A are
collinear in A if and only if they are collinear in Y . If these two points are noncollinear in A, it follows
by Remark 3.7 that they are linelike in A (in which case there is a transversal of A containing them) or
special in A. A priori, it is not clear that the two points are linelike (special) in A if and only if they are
linelike (special) in X . In the next lemma, we construct A2-planes of Y where this is the case.

Lemma 4.9. Let y, p, q be points of Y such that p and q are special in X , and y is collinear to p, q and
x := [p, q]. The plane A in Y generated by p, q and r is an A2-plane. For each pair of points p′ and q′ of
A, the following hold:

(1) The points p′ and q′ are linelike (special, opposite) in X if and only if they are linelike (special,
opposite) in A.

(2) If p′ and q′ are linelike, the transversal in X that contains p′ and q′ coincides with the transversal
in A that contains p′ and q′.

(3) The points p′ and q′ are not symplectic in X .
If X is not of type A2,{1,2}, the A2-plane A is defined over a skew field k. If X is not of type E (P,H), k
is a field.

Proof. Let A be the subspace of X that contains p, q, x and y, and is closed under taking special
paths, obtained in Proposition 2.4. Denote with LA the set of transversals of X contained in
A. Then XA = (PA,LA) is a long root geometry of type A2,{1,2}. Moreover, two points are
linelike (special, opposite) in XA if and only if they are linelike (special, opposite) in X .

Let p and q be two points of PA that are collinear in Y . Then these points must be opposite
in XA, so we can construct the imaginary line in XA through p and q using Construction 2.
Since lines of XA are transversals of X , this is of course the imaginary line of X through p and
q, which is by definition the line pq of Y . Let IA be the set of lines of Y that contain two points
of PA. Then every element of IA is hence completely contained in PA, and coincides with
an imaginary line of XA. This translates to the fact that PA is a subspace of Y . The point-line
geometry A = (PA,IA) is isomorphic to the imaginary geometry of XA, meaning that it is an
A2-plane. It is clear that A is defined over a (skew) field if and only if XA is. This completes the
proof. □

Lemma 4.10. Let l and m be two lines of Y intersecting in some point q. If some point of l \ {q} is
noncollinear to exactly i points of m (i ∈ N), then any point of l \ {q} is noncollinear to exactly i points
of m.

Proof. Denote q = l ∩ m. Let p̂ be any point of l \ {q}. The group Zq acts transitively on the
points of l \ {q}, so there exists some u ∈ Zq with p̂ = pu. The group Zq stabilizes the line m, so

i = |{p̸≡ ∩m}| = |{p̸≡ ∩m}u| = |{p̂ ̸≡ ∩m}|.

□

Remark 4.12. In the statement (and proof) of Lemma 4.10, we can of course replace noncollinear with
linelike, symplectic or special in X .

Lemma 4.11. Let l and m be two intersecting lines of Y . Exactly one of the following occurs:
(1) Every point of l is collinear to every point of m.
(2) Every point of l\{l∩m} is linelike (symplectic, special) in X to exactly one point of m\{l∩m},

and collinear to all other points of m, and vice versa.
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(3) Every point of l \ {l ∩m} is special in X to exactly two points of m \ {l ∩m} and collinear to
all other points of m, and vice versa. The subspace in Y generated by l and m is an A2-plane
that has the properties listed in Lemma 4.9.

Proof. Denote q = l ∩m, and let p be any point of l \ {q}. If p is collinear to all points of m, the
claim follows from Lemma 4.10. Suppose that p is noncollinear to some point r of m. In X , the
points p and r are either linelike, symplectic or special. If they are special, there exists a unique
point [p, r] linelike to both. We make a case distinction.

(1) Suppose that p is linelike or symplectic to r. The group Zr fixes p and it acts transitively
on the points of m \ {r}. The point p is collinear to q ∈ m, and is hence collinear to all
points in qZr = m \ {r}. This implies that p is linelike (or symplectic) to a unique point
of m (namely r), and that it is collinear to all other points of m. Using Lemma 4.10, we
find that this is the case for every point of l \ {q}. By reversing the roles of r and p, we
also find that every point of m\{q} is linelike (or symplectic) to a unique point of l, and
collinear to all other points of l.

(2) Suppose that p is special to r and that q is noncollinear to s := [p, r]. The point q is
special to s and collinear to all other points of the transversal sp. The group Zr fixes s,
stabilizes the transversal sp, and acts transitively on m \ {r}. This implies that every
point of qZr = m \ {r} is special to s and collinear to all other points of the transversal
sp, in particular to p. The point p is hence noncollinear to a unique point of l, namely
r. Using Lemma 4.10, we find that every point of l \ {q} is noncollinear to a unique
point of m. By reversing the roles of r and p, we also find that every point of m \ {q} is
noncollinear to a unique point of l.

(3) Suppose that p is special to r and that q is collinear to s := [p, r]. We can apply
Lemma 4.9 to obtain that q, p and r (and hence also l and m) generate an A2-plane
in Y . It follows from Lemma 3.5 that every point of l \ {q} is special to exactly two
points of m \ {q} and vice versa.

□

Lemma 4.12. Every A2-plane of Y has the properties listed in Lemma 4.9.

Proof. Let A is an A2-plane of Y . It follows from Lemma 3.5 that A is generated by two lines
l and m where every point of l \ {l ∩m} is noncollinear to two points of m \ {l ∩m} and vice
versa. It then follows from Lemma 4.11 that A indeed has the properties of Lemma 4.9. □

The next corollary should be compared to Lemma 3.6.

Corollary 4.1. Let p and q be distinct noncollinear points. The following hold:
(1) The points p and q are linelike in X if and only if there is an A2-plane A of Y that contains p

and q such that p and q are linelike in A. In this case, the transversal in X that contains p and
q coincides with the transversal in A that contains p and q.

(2) The points p and q are symplectic in X if and only if there does not exist any A2-plane of Y that
contains both p and q.

(3) The points p and q are special in X if and only if there is an A2-plane A of Y such that p and q
are special in A.

Proof. This follows directly from Lemmas 4.9 and 4.11. □

Remark 4.13. Corollary 4.1 implies that the hexagonal imaginary geometry Y determines whether two
distinct noncollinear points are linelike, symplectic, or special in X . Moreover, the transversals in X are
determined by the lines of Y . We can hence say that two points are linkelike (symplectic or special) (in
Y ) and speak of transversals (of Y ).
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4.2. Conclusion. By now, we have gathered enough information to conclude the proof of
Proposition 4.6

Proof of Proposition 4.6. It follows from Lemma 4.8 that Y is a partial linear space and from [3,
Lemma 5] that Y is connected. Moreover, it follows from Corollary 4.1 that X is the unique
long root geometry for which Y is the imaginary geometry of X . Then Axiom (Im1) follows
from Lemma 4.11.

We now show Axiom (Im2). By letting the Lie algebra sl2(k) corresponding to a rank one
group generated by two opposite long root groups act in its adjoint representation on the Lie
algebra corresponding to X , we deduce, using Remark 3.10, that, in the embedding of X cor-
responding to the adjoint module (as in [2]), an A2-plane is embedded as in Remark 3.9. Then
Axiom (Im2) follows from (Rf6) and Remark 3.9.

Finally, we prove Axiom (Im3). To that end, let p and q be two distinct points. We prove
that p≡ ̸= q≡. If p and q are symplectic, this follows from [4, Lemma 8]. If p and q are linelike,
special or opposite, then p and q are contained in some A2-plane A, and it is clear that p≡ ∩A ̸=
q≡ ∩A. □

5. CONICAL SUBSPACES OF IMAGINARY GEOMETRIES OF TYPE A2

5.1. Definitions and notations. As the title of this section suggests, we will discuss conical
subspaces of hexagonal imaginary geometries of type A2.

Notation 8. In this section, k is a skew field, with |k| ≥ 4. We denote with A the hexagonal imaginary
geometry related to the building A2(k), and with τ = (Pτ ,Lτ ) the projective plane P(k3). Note that τ
is the Lie incidence geometry of type A2,1 of A2(k).

Definition 5.22.

(1) A conical subset of A is a subset of A which intersects every dual affine plane of A in a (possibly
empty) conic, as defined in Definition 2.6. It is called fully degenerate when all these conics are
degenerate.

(2) A conical subspace of A is a conical subset C for which every transversal of A that contains
two points of C , is automatically contained in C . If moreover every transversal of A contains a
point of C , the subset C is called a conical hyperplane of A.

In general, a conical subspace is not a subspace of A, we use this terminology because it is a
subspace of the long root geometry of A.

Remark 5.14. It is clear that every conical hyperplane of an imaginary geometry of type A2 is auto-
matically a conical subspace, and it is easy to check that it indeed contains three mutually collinear
points.

Lemma 5.13. A conical subset of A intersects any line or transversal of A in all or at most two of its
points.

Proof. Every line of A is contained in a dual affine plane of A. Moreover, for any transversal T ,
and any point p ∈ T , there is a dual affine plane of A that contains T \ {p}. □

Notation 9. Let Q be a conical subset of A, let π be a dual affine plane of A and let T be a transversal
of π. If Q ∩ π = T \ {T ∩ Tπ}, we simplify notation by writing Q ∩ π = T .
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5.2. Fully degenerate conical subsets. In this subsection, we discuss fully degenerate conical
subsets of A. We first describe a class of examples.

Lemma 5.14. Let π1 and π2 be two (possibly coinciding) dual affine planes of A. Then π̄1∪ π̄2 is a fully
degenerate conical subset of A.

Proof. Set Q := π̄1∪ π̄2. Let π be any dual affine plane of A. If π = π1 or π = π2, then π∩Q = π,
which is indeed a degenerate conic of π. We can hence assume that π ̸= π1, π2. Then

π ∩ Q = (π ∩ π̄1) ∪ (π ∩ π̄2).

The intersection π ∩ πi is either a line or a transversal (i = 1, 2). The intersection π ∩Q is hence
either a line, a transversal, the union of two lines, the union of two transversals or the union of
a line and a transversal. All these structures are degenerate conics of π. □

Some choices of π1 and π2 yield conical hyperplanes, others do not even yield a conical
subspace. Below, we list all different possibilities.

Example 5.14.
(1) Let p be a point of τ and l a line of τ . Then Q := π̄p ∪ π̄l forms a conical hyperplane. If p ∈ l,

then this set Q is exactly the set of points in A which are noncollinear with the point (p, l) of A.
(2) Let p be a point of τ , then Q := π̄p forms a conical subspace of A. For any line l of τ that

does not contain p, the transversal Tl intersects Q trivially, the set Q is hence not a conical
hyperplane of A. Dually, for a line l of τ , the set π̄l also forms a conical subspace of A which is
not a conical hyperplane of A.

(3) Let p and q be two points of τ , then Q := π̄p ∪ π̄q forms a conical subset. Let r be a point of τ
not on pq, then the transversal Tr intersects Q in exactly two points, namely (r, rp) and (r, rq).
The set Q hence does not form a conical subspace.

It turns out that, as soon as a fully degenerate conical subset contains enough points, it is
either the whole of A or it is as in Lemma 5.14. In order to prove this, we first gather some easy
lemmas, which we mention here without proof.

Lemma 5.15. Let Q be a fully degenerate conical subset which is not a conical subspace. Then either Q
is a conical subspace of A, or there is a dual affine plane π of A which intersects Q in the union of two
lines.

Lemma 5.16. Let π1 and π2 be two distinct dual affine planes in A. Any conical subset that contains
π1 and π2 either equals π̄1 ∪ π̄2 or A itself.

We are now ready to prove the previously mentioned result.

Proposition 5.7. A fully degenerate conical subset of A that contains three mutually collinear points,
not on common line, is either the whole of A, or it is of the form π̄1 ∪ π̄2 with π1 and π2 two (possibly
coinciding) dual affine planes of A.

Proof. Let Q be a conical subset of A which contains at least three mutually collinear points,
not on a common line. For any dual affine plane π of A, the intersection π∩Q is empty, a point,
a line, a transversal, the union of two lines, the union of two transversals, the union of a line
and a transversal or the whole of π. We will make a case distinction.
Case 1: The set Q does not form a conical subspace.
By Lemma 5.15, there exists a dual affine plane π of A which intersects Q in the union of two
lines. Without loss of generality, we may assume that π is of the form πp, with p some point
of τ . The intersection Q ∩ πp is then the union [p, l] ∪ [p,m] with l and m some lines of τ not
through p. Let q be the intersection in τ of l and m.
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We first prove that we find a point r on pq \ {p, q} for which Tr ∩ Q = ∅. To that end, let n
be any line through p in τ . Since πp ∩ Q is the union of two lines, we have that Tn ̸⊆ Q. By
Lemma 5.13, Tn ∩ Q contains at most two points. If n does not contain q, this line n intersects
l and m in distinct points ql and qm, implying that Tn ∩ Q = {(ql, n), (qm, n)} and hence that
(p, n) ̸∈ Q. As a result, the only point of Tp that can be contained in Q, is (p, pq), and hence
πpq ∩Q does not contain any line. We can use this to determine πpq ∩Q: it is either at most one
point (s, k) with s ∈ pq and s ∈ k ̸= pq, or is the transversal Tq . Taking r on pq \ {p, q, s}, we
find that Tr ∩ Q = ∅.

Next, we prove that πl, πm ⊆ Q. To that end, take xl on l \{q} and set xm := rxl∩m. The set
Q contains (xl, pxl) and (xm, pxm) and moreover has empty intersection with Tr. Considering
πxlxm

∩Q we hence find that Txl
and Txm

are contained in Q. Since xl is any point on l different
from q, we find that πl \ Tq ⊆ Q, which indeed implies that πl ⊆ Q. Similarly, we find that
πm ⊆ Q. It now follows from Lemma 5.16 that Q = π̄l ∪ π̄m. This concludes Case 1. From
now on, we assume that Q forms a conical subspace, that is, each transversal of A that is not
contained in Q intersects Q in at most one point.
Case 2: There is a dual affine plane that intersects Q in the union of a transversal and a line.
Without loss of generality, we may assume that this plane is of the form πp with p some point
of τ . Then πp ∩ Q = Tl ∪ [p,m] for lines l and m in τ with p ∈ l and p ̸∈ m. Set q := l ∩m.

First suppose that there exists some point rl of l \ {q, p} for which Trl ̸⊆ Q. Let rm be any
point of m different from q. The line [p, rlrm] intersects Q in exactly two points, namely (rl, prl)
and (rm, prm). As a result, the plane πrlrm intersects Q in either the union of two lines or the
union of a line and a transversal. Since we assume that Q is a conical subspace, the former
cannot happen. Moreover, we assumed that Trl ̸⊆ Q. We hence find that πrlrm ∩ Q is the
union of a line through (rl, prl), (which equals [s, rlrm], for some point s of τ ) and a transversal
through (rm, prm) (which equals Trm ). The point rm was an arbitrary point of m \ q, so we
find that πm \ Tq ⊆ Q, which implies that πm ∩ Q = πm. Moreover, the plane πrlrm plays the
same role as πp, where Tprm plays the role of Trl , and [s, rlrm] that of [p,m]. So with the same
reasoning as above, we find that πs ⊆ Q. By Lemma 5.16, we can conclude that Q = π̄m ∪ π̄s.

Next, suppose that Trl ⊆ Q for every point rl of l \ {q, p}. Then πl \ {Tp, Tq} ⊆ Q, which,
given that |k| ≥ 4, implies that πl ∩ Q = πl. Moreover, Tq ∪ [p,m] ⊆ πm ∩ Q, so either πm ⊆ Q,
or πm ∩ Q = Tq ∪ [p,m]. In the latter case, πm plays the same role as πp, so we can apply the
same arguments on πm instead of πp. We find that either πp ⊆ Q (which cannot happen by the
assumption on πp) or πq ⊆ Q. By Lemma 5.16, we hence find that either Q = π̄l ∪ π̄m (which
actually cannot happen since we assumed Q to be a conical subspace) or Q = π̄l ∪ π̄p. This
concludes Case 2.
Case 3: There is a dual affine plane that intersects Q in the union of two transversals.
Without loss of generality, we may assume that this plane is of the form πp with p some point
of τ . We have that Q ∩ πp = Tl ∪ Tm for l and m some lines of τ through p. We may assume
that Case 2 does not occur and show that this leads to a contradiction. Let n be any line of τ not
through p. Then [p, n] is contained in πp and hence contains exactly two points of Q. Keeping
in mind that πn ∩ Q cannot be the union of two lines or the union of a line and a transversal,
the intersection πn∩Q is the union of two transversals (namely Tn∩m and Tn∩l). Varying n, we
see that πl ∪ πm ⊆ Q, a contradiction as before.
Case 4: Every line of A that contains two points of Q, is contained in Q.
By assumption, we find three pairwise collinear points x1, x2, x3 in Q not on a line. As pointed
out in Lemma 3.5, every plane of A is either the whole of A or is a dual affine plane. Suppose
that Q is not A, then x1, x2 and x3 must lie in some dual affine plane π of A. Since every line
of A that contains two points of Q is contained in Q, the plane π, which is generated by the
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points x1, x2 and x3, is contained in Q. By Lemma 5.13, the transversal Tπ is also contained in
Q. If Q contains another point q of A, it will follow from Lemma 3.7 that Q = A. □

We use Proposition 5.7 to obtain another classification, which will be very useful in the proof
of the Main Theorem.

Definition 5.23. We say that Q is a conical subset with vertex q when Q is a conical subset containing
the point q for which every line through q in A is either contained in Q or intersects Q in a unique
point, namely q.

Lemma 5.17. Let Q be a fully degenerate conical subset with vertex q that contains three mutually
collinear points, not on a line. Then the set Q is one of the following:

(1) the whole set A.
(2) a set of the form π̄1 ∪ π̄2 with π1 and π2 dual affine planes in A such that q ∈ π̄1 ∩ π̄2.

Proof. By Proposition 5.7, the set Q either equals A, or is of the form π̄1 ∪ π̄2 with π1 and π2

two dual affine planes of A. In the former case, there is nothing more to prove, we may hence
assume that we are in the latter case. There is some line l through q for which l ̸⊆ Q. Suppose
that q ̸∈ π̄1, then the line l intersects π̄1 in some point different from q, which is contained in Q.
This implies that l ⊆ Q, a contradiction. □

We finish this section by giving a condition that ensures that a conical subset is fully degen-
erate, and by gathering an easy observation on these fully degenerate conical subsets.

Lemma 5.18. A conical subset of A that contains a dual affine plane of A is a fully degenerate conical
subset of A.

Proof. Let Q be a conical subset of A that contains some dual affine plane π. Any transversal of
π intersects π in all but one of its points, and is, by Lemma 5.13, contained in Q. This implies
that π̄ ⊆ Q. Let π′ be any other dual affine plane of A, then the intersection π′ ∩ Q contains
π′∩π̄, which is either a line or a transversal of π′. This implies that Q∩π′ is indeed a degenerate
conic of π′, and concludes the proof. □

Lemma 5.19. Let π1 and π2 be two (possibly coinciding) dual affine planes of A. Then for any point
q ∈ Q := π̄1 ∪ π̄2, there is at least one transversal of A through q that is contained in Q.

5.3. Conical subspaces are often conical hyperplanes. This subsection is devoted to proving
the following Proposition.

Proposition 5.8. Let k be a field with char(k) ̸= 2 and |k| ≥ 5. A conical subspace of A which contains
three mutually collinear points, not on a common line, is either the transversal closure of a dual affine
plane or is a conical hyperplane of A.

Notation 10. From now on, let k be a field with char(k) ̸= 2 and |k| ≥ 5. Let Q be a conical subspace
of A which contains at least three mutually collinear points, not on a common line.

We first gather information regarding the possible intersections of Q with dual affine planes
of A.

Lemma 5.20. Let π be a dual affine plane of A. Then one of the following occurs:
(1) The set π ∩ Q is empty, in this case, Tπ ∩ Q is either empty, one point, or Tπ .
(2) The set π ∩Q is a point p. In this case, Tπ ∩Q is either empty or a point q. In the latter case, p

and q are not linelike.
(3) The set π ∩ Q is a line. In this case, Tπ ∩ Q is empty.
(4) The set π ∩ Q is a transversal T of π. In this case, Tπ ∩ Q is either Tπ ∩ T or Tπ .
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(5) The set π ∩ Q is the union of a line and a transversal T . In this case, Tπ ∩ Q = T ∩ Q.
(6) The set π ∩ Q is the union of two transversals of π. In this case, Tπ ∩ Q = Tπ .
(7) The set π ∩ Q = π. In this case, Tπ ∩ Q = Tπ .
(8) The set π ∩ Q is a nondegenerate conic C of π through the missing point of π. In this case,

Tπ ∩ Q is either empty or equals Tπ ∩ T , with T the transversal of π that corresponds to the
tangent line of C through the missing point.

Proof. This follows immediately when combining the condition that π ∩ Q is a conic and that
Q contains 0, 1 or all points of any transversal of π̄. □

Remark 5.15. If char(k) were equal to 2 (which we do not allow here), there would be one extra possi-
bility in Lemma 5.20, namely where π ∩ Q is a nondegenerate conic, while the nucleus of this conic is
the missing point of π.

Lemma 5.21. Let π be a dual affine plane of A such that Tπ contains a point of Q, but some transversal
T of π does not contains any point of Q. Then π ∩ Q is empty, a point or a transversal. In particular,
every line in π intersects Q in at most one point.

Proof. By assumption, the set Tπ ∩ Q is a unique point. Using Lemma 5.20, we can hence
see that it suffices to prove that π ∩ Q is neither the union of a line and a transversal, nor
a nondegenerate conic through the missing point of π. First suppose that π ∩ Q contains a
line l. Every transversal of π intersects l, contradicting the fact that there is a transversal of
π that contains no point of Q. Next, suppose that π ∩ Q is a nondegenerate conic C . Let
T be any transversal of π. Either T contains a point of C , in which case T ∩ Q ̸= ∅, or T
corresponds to the tangent line of C through the missing point, in which case Tπ ∩ T ∈ Q.
Again a contradiction. □

Lemma 5.22. If no line of A intersects Q in exactly two points, the set Q is the transversal closure of
one dual affine plane or equals A.

Proof. One easily checks that Q is a fully degenerate conical subspace of A. The claim then
follows from Proposition 5.7 and Example 5.14. □

We will need the following rather technical lemma.

Lemma 5.23. Suppose that there exists some line l of τ such that for each, but at most one, point q of τ
on l the following assertion holds:

“For all lines m of τ not through q, the line [q,m] of A intersects Q in at most one point.”
Then Q is the transversal closure of one dual affine plane.

Proof. Let l be as in the lemma, let s be a point of l and suppose that the assertion holds for
all points of l different from s. We claim that no line [p,m] of A intersects Q in exactly two
points. To that end, first let m be any line of τ different from l and set r := m ∩ l. Then for
any point p on l \ {s, r}, the line [p,m] of πm contains, by assumption, at most one point of Q.
If πm ∩ Q was a nondegenerate conic, then, since we assume |k| ≥ 5 and char(k) ̸= 2, there
would be at least two lines in πm through (r, l) which would intersect Q in exactly two points,
a contradiction. The set πm∩Q is a degenerate conic, and there is at most one line through (r, l)
in πm that intersects this conic in more than one point. We find that πm ∩ Q is either empty,
a point, a line, or a transversal. In particular, there is no line [p,m] that intersects Q in exactly
two points. Next, let p be a point of τ not on l. Using the fact that no line [p,m] with m ̸= l
and p ̸∈ m intersects Q in at most one point, we find that πp ∩ Q is empty, a point, a line, or
a transversal. In particular, we find that [p, l] does not intersect Q in exactly two points. This
proves the claim. The lemma now follows immediately from Lemma 5.22. □
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Lemma 5.24. Let π be a dual affine plane of A for which Tπ ∩Q = ∅ and |π ∩Q| ≥ 2. Then the set Q
is the transversal closure of one dual affine plane.

Proof. Without loss of generality, we may assume that π is of the form πl with l some line of τ .
Using Lemma 5.20, one sees that π ∩ Q is either a line or a nondegenerate conic of πl. In any
case, there exists at most one transversal T of τ for which T ∩ Q = ∅. Let p ∈ l be the point
of τ for which T = Tp, and let q be any other point of l. Then |Tq ∩ Q| = 1. Moreover, Tl is a
transversal of πq disjoint from Q. Applying Lemma 5.21 to πq , we find that every line of A of
the from [q, n], with n a line of τ not through q, intersects Q in at most one point. The assertion
now follows from Lemma 5.23. □

We have now gathered all ingredients needed to finish the proof of Proposition 5.8.

Proof of Proposition 5.8. Assume for a contradiction that Q is neither a conical hyperplane, nor
the transversal closure of one dual affine plane. By assumption, there exists some transversal T
of A that intersects Q trivially. Without loss of generality, we may assume that T is of the form
Tl for some line l of τ . It follows from Lemma 5.24 that πl∩Q contains at most one point, which
in particular implies that Tq∩Q = ∅ for each, but at most one, point q of l. Let q be such a point,
then we can apply Lemma 5.24 to πq , and obtain that πq ∩ Q is at most one point, and hence
that every line in A of the form [q,m] (with m a line of τ not through q) intersects Q in at most
one point. We can now apply Lemma 5.23 to the line l of τ , and obtain a contradiction. □

All examples of conical subsets that we have seen so far are fully degenerate. It is however
good to keep in mind that there are other examples.

Example 5.15. Let p be a point and l a line of τ , and consider a projectivity

ϕ : {Points on l} → {Lines through p}.
Then the following set forms a conical hyperplane of A:

Q(p, l, ϕ) := {[q, ϕ(q)] | q ∈ l and q ̸∈ ϕ(q)} ∪ {Tq ∪ Tϕ(q) | q ∈ l and q ∈ ϕ(q)}.

6. DEFINING FIVE DISTINCT POINT RELATIONS

Notation 11. In this section, Y denotes a connected partial linear space that satisfies Axioms(Im1) and
(Im2). We assume that no A2-plane of Y is defined over F3 or over a field of characteristic 2. We make
use of Notation 3.

In this section, we will define five point relations on Y , and prove that these relations are
disjoint. Along the way, we prove that every point p of Y is noncollinear to a conical hyperplane
of any A2-plane of Y , which is a stronger version of Axiom (Im2).

6.1. Some initial observations. We start by gathering some initial observations on Y .

Lemma 6.25. Let l and m be two intersecting lines such that some point of l is noncollinear to exactly
one point of m. Then noncollinearity induces a bijection between l \ {l ∩m} and m \ {l ∩m}.

Proof. Let p be the intersection point of l and m. By Axiom (Im1)(i), any point of m \ {p}
is noncollinear to a unique point of l \ {p}. We can however apply this same axiom again
while interchanging the roles of l and m. We then indeed obtain that noncollinearity induces a
bijection between l \ {p} and m \ {p}. □

Lemma 6.26. Let l and m be two intersecting lines such that some point of l is noncollinear to exactly
two points of m. Then each point of l \ {l ∩m} is noncollinear to exactly two points of m \ {l ∩m} and
vice versa.
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Proof. If this is the case, then, by (Im1)(ii), the lines l and m generate an A2-plane defined over
a field. By Lemma 3.5, the claim is true in every A2-plane. □

Lemma 6.27. Let p be a point and l a line. If l is contained in some A2-plane, then p is collinear to no
or all but at most 2 points of l.

Proof. Let A be an A2-plane that contains l. By Axiom (Im2), the point p is noncollinear to a
conical subspace of A. The claim now follows from Lemma 5.13. □

Remark 6.16. Axiom (Im1) stipulates that Y contains an A2-plane. A priori however, we do not know
whether every line is contained in an A2-plane.

Lemma 6.28. The space Y contains dual affine planes.

Proof. By Axiom (Im1), the space Y contains an A2-plane A. As explained in Lemma 3.4, this
plane A contains several dual affine planes. □

Next, we introduce some definitions and notations, which are of course inspired on the
observations we made in Section 4.

Definition 6.24.

(1) A dual affine plane π of Y that is contained in some A2-plane A of Y , is called a linelike plane.
In general, not every dual affine plane of Y is a linelike plane.

(2) Let A be an A2-plane of Y . Using Remark 3.8, we define the following.
(a) For a transversal T of A, we denote with πA

T the dual affine plane π of A that corresponds
to T .

(b) For a dual affine plane π of A, we denote with TA
π the transversal in A corresponding to π.

We define π̄A := π ∪ TA
π , and call this the transversal closure of π in A.

(3) A transversal of Y is defined to be any subset T ⊂ X for which there exists an A2-plane A ⊃ T
such that T is a transversal of A.

(4) Let π be a linelike plane and T be a transversal of Y . We say that that T is a transversal of π
when there exists an A2-plane A that contains both π and T in which T is a transversal of π.

Remark 6.17. A priori, two transversals of Y can intersect in an arbitrary number of points. If the
linelike plane π is contained in two distinct A2-planes A0 and A1 of Y , and q is a point of π, it could, in
principle, even happen that the transversal T1 of π in A1 does not fully coincide with the transversal T2

of π in A2. Of course, we do have that T1 ∩π = T2 ∩π = q ̸≡ ∩π. This implies that it could for example
happen that TA0

π ̸= TA1
π .

Remark 6.18. We repeat Notation 9. Let p be a point and π be a linelike plane. If p̸≡ ∩ π = T ∩ π for
some transversal T of π, we simply write p̸≡ ∩ π = T , and say that p̸≡ ∩ π is a transversal T of π.

Lemma 6.29. Let p be a point and let A be an A2-plane. The set p ̸≡ ∩ A is either a conical hyperplane
of A, or is of the form π̄A for some dual affine plane π of A.

Proof. By Axiom (Im2) the set p ̸≡ ∩ A is a conical subspace of A which contains at least three
mutually collinear points, not on a common line. By Proposition 5.8, such a subset is either a
conical hyperplane or the transversal closure of a dual affine plane of A. □

Corollary 6.2. Let p be a point and T a transversal. If |p ̸≡ ∩ T | ≥ 2, then p ̸≡ T .

Proof. Let A be an A2-plane that contains T . By Lemma 6.29, the point p is noncollinear to a
conical subspace of A. By definition, a conical subspace of A intersects a transversal of A in
zero, one or all of its points. □
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6.2. Relations between a point and a linelike plane. In this subsection, we will investigate
sets p̸≡∩π with p a point and π a linelike plane. We start with a very elementary lemma, which
is based on Lemma 5.20.

Lemma 6.30. Let p be a point and π be a linelike plane. For any A2-plane A containing π, exactly one
of the following holds:

(1) The set p ̸≡ ∩ π is empty. In this case, TA
π ⊆ p̸≡.

(2) The set p ̸≡ ∩ π is a line. In this case, TA
π ∩ p̸≡ is empty.

(3) The set p ̸≡ ∩ π is a transversal T of π in A and TA
π ∩ p ̸≡ = T ∩ TA

π .
(4) The set p ̸≡ ∩ π is a transversal T of π in A and TA

π ⊆ p ̸≡.
(5) The set p ̸≡ ∩ π is the union of two disjoint transversals of π in A. In this case, TA

π ⊆ p̸≡.
(6) The set p̸≡∩π is the union of a line and a transversal T of π in A. In this case, p̸≡∩TA

π = T∩TA
π .

(7) The set p ̸≡ ∩ π is a nondegenerate conic of π through the missing point of π.
(8) The plane π is contained in p̸≡. In this case, also TA

π is contained in p̸≡.
If we are in case (1), (5) (6) or (7), the set p̸≡ ∩ A is automatically a conical hyperplane of A. If we are
in case (2) or (3), the set p̸≡ ∩A is of the form π̄A

1 for some dual affine plane π1 of A.

Proof. By Lemma 6.29, we find that Q := p̸≡ ∩ A is either of the form π̄A
1 for some dual affine

plane π1 of A, or is a conical hyperplane of A. In the former case, we can easily deduce that
Q intersects π̄ as described in (2), (3), (4) or (8). In the latter case, the set Q ∩ π is a conic of
π, which intersects every transversal of π (and the transversal TA

π ) in one or all of its points,
which implies that Q intersects π̄ as described in (1), (4), (5), (6), (7) or (8). □

Lemma 6.31. Let l be a line containing distinct points p, q, r, and let π be a linelike plane through q
but not through l. Suppose that p is collinear to all points of π. Then r is as well. For any A2-plane A
that contains π, we have that l ̸≡ TA

π .

Proof. Assume for a contradiction that r is noncollinear to at least one point of π. Suppose first
that there is a point s in π collinear to q but noncollinear to r. Then we can consider the line
m := sq. Since m is contained in the plane π which is contained in some A2-plane, Lemma 6.27
implies that the point r is noncollinear to one or two points of m (one of which is s). Then
Lemma 6.25 or Lemma 6.26, respectively, implies that p is also noncollinear with one or two
points, respectively, of m ⊂ τ , a contradiction. We hence conclude that r is collinear to all
points of π which are collinear to q, i.e. r ̸≡ ∩ π ⊆ T , with T the transversal of π containing q.
Lemma 6.30 then implies that r ̸≡ ∩ π either equals T or is empty. The point r is collinear with
q ∈ T , so r is indeed collinear to all points of π.

The point q is contained in π, so q ̸≡ TA
π . Moreover, it follows from (1) of Lemma 6.30 that r

and p are noncollinear to TA
π . The point r however can be chosen arbitrarily on l \ {p, q}, so we

indeed obtain that l ̸≡ TA
π .

□

Lemma 6.32. Let p and q be collinear points, and let π be a linelike plane through q. The following
statements are equivalent:

(1) The set p ̸≡ ∩ π is either a line or a transversal of π.
(2) The point p is noncollinear to a unique point of every line in π through q.

Proof. Let p, q and π be as stated. Every line of π intersects every other line of π and every
transversal of π in a unique point. So if the first claim holds, the second one holds, too. On
the other hand, we know that the set p ̸≡ ∩ π is one of the possibilities in Lemma 6.30. The only
possibilities where p is noncollinear to a unique point of every line in π through a certain point
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q collinear with p, are those where p ̸≡∩π is either a line, or a transversal of π. We conclude that
the two claims are equivalent. □

Lemma 6.33. Let l be a line containing distinct points p, q, r, and let π be a linelike plane through q
but not through l. Suppose that p̸≡ ∩ π is a line. Then r ̸≡ ∩ π is a line as well, which moreover contains
the point p ̸≡ ∩ q ̸≡ ∩ π.

Proof. Let π, p, q and r be as stated. By assumption, the set k := p̸≡ ∩ π is a line. Let m be any
line in π through q. Then Lemma 6.32 implies that p is noncollinear to a exactly one point of m.
By Lemma 6.25, the point r is also noncollinear to exactly one point of m. The line m through q
in π was arbitrary, so r ̸≡∩π contains exactly one point of every line in π through q. Lemma 6.32
then implies that r ̸≡ ∩ π is either a line of π or a transversal of π. In either case, the set r ̸≡ ∩ π
intersects the line k in a point s. Suppose that s is collinear to q. As above, we find that p is
noncollinear to a unique point of the line qs, so by Axiom (Im1), the point s is noncollinear to
a unique point of l, a contradiction to the fact that it is noncollinear to both p and r. We hence
conclude that s is noncollinear to q. Any transversal of π through s contains q, and r is collinear
to q, so we conclude that r ̸≡ ∩ π is indeed a line through s. □

Lemma 6.34. Let l be a line containing distinct points p, q, r, and let π be a linelike plane through q
but not through l. Suppose that p ̸≡ ∩ π is a transversal of π. Then r ̸≡ ∩ π is a transversal of π as well.

Proof. The proof is very similar to that of Lemma 6.33. We start by using Lemma 6.32 to ob-
tain that p is noncollinear to exactly one point of every line through q. Secondly, we invoke
Lemma 6.25 to see that the same holds for the point r. Next, we use Lemma 6.32 again to ob-
tain that r ̸≡ ∩ π is either a line or a transversal. If it were a line however, then we could apply
Lemma 6.33 with the roles of p and r interchanged to obtain that p ̸≡ ∩ π would be a line, a
contradiction. We can hence indeed conclude that r ̸≡ ∩ π is a transversal of π. □

Lemma 6.35. Let l be a line containing distinct points p, q, r, and let π be a linelike plane through q
but not through l. Suppose that p̸≡ ∩π is the union of two disjoint transversals of π. Then r ̸≡ ∩π is the
union of two disjoint transversals of π as well.

Proof. Let π, p, q and r be as stated. We prove that l is contained in some A2-plane and that r
is noncollinear to exactly two points of every line in π through q. Let m be any such line. The
point p is noncollinear to two disjoint transversals of π and hence to exactly two points of m.
Lemma 6.26 implies that the point r is noncollinear to exactly two points of m. Moreover, using
Axiom (Im1), we find that l is indeed contained in the A2-plane ⟨l,m⟩.

Considering the possibilities in Lemma 6.30, we see that exactly one of the following state-
ments holds for r ̸≡ ∩ π:

(1) a union of two disjoint transversals of π.
(2) a nondegenerate conic C of π through the missing point of π such that every line of π

through q intersects C in exactly two points.
Suppose for a contradiction that the second statement holds. Let A be an A2-plane that contains
π. By Lemma 6.30, the set r ̸≡ ∩ A is a conical hyperplane of A, implying that r is noncollinear
to some point s of TA

π . By Lemma 6.30, both points p and q are noncollinear to TA
π , so s ∈ TA

π

is noncollinear to the points p, q, r of l. We argued in the first paragraph of this proof that l is
contained in some A2-plane. As a result, we can apply Lemma 6.27 and obtain that s ̸≡ l.

Denote with Ts the transversal of π in A that contains s. We claim that q ̸∈ Ts. Suppose that
this would be the case. Denote with π∞ the projective plane obtained by adding one point to π,
and denote this point with ∞. Define C = r ̸≡∩π. By assumption, the set C∞ := C ∪{∞} forms
a nondegenerate conic of π∞. It follows from Corollary 6.2 that Ts ∩ r ̸≡ = {s}. Hence the point
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q is contained in a tangent line to C∞ in π∞, namely q∞. The projective plane π∞, however, is,
by Axiom (Im1) (ii), defined over a field of characteristic different from two. This implies that
q lies on exactly two tangent lines to C∞ in π∞. Translating this back to π, we find that there
is a line through q in π which intersects C = r ̸≡ ∩ π in exactly one point, a contradiction. We
conclude that q ̸∈ Ts.

Take t ∈ Ts ∩ π. The point q is not contained in Ts, and is hence collinear to t. Consider
the line m := tq. By Lemma 6.26, applied to l and m, the point t is noncollinear to exactly two
points of l, at least one of which is different from p; call this r′. The point r′ is noncollinear to
both t and s of Ts, implying that r′ ̸≡ Ts. Since r′ plays the same role as r, we see that r′̸≡ ∩ π
is the union of two distinct transversals, one of which is Ts. Lemma 6.30 moreover implies that
r′ ̸≡ TA

π . But then every point of TA
π is noncollinear to p, r′ and q. So, by Lemma 6.27, we have

that TA
π ̸≡ l. The point r ∈ l, however, is collinear to all points of TA

π \{s}, a contradiction. This
proves that r ̸≡ ∩ π is indeed the union of two disjoint transversals. □

Lemma 6.36. Let l be a line containing distinct points p, q, r, and let π be a linelike plane through q
but not through l. Suppose that p̸≡ ∩ π is the union of a line and a transversal of π. Then r ̸≡ ∩ π is the
union of a line and a transversal of π too, where the line contains the point p̸≡ ∩ q ̸≡ ∩ π.

Proof. Let π, p, q and r be as stated. Let A be an A2-plane that contains π. By assumption, we
have that p̸≡ ∩ π = m ∪ T , for some line m and some transversal T of π, define x := m ∩ T . Let
Tq be the transversal of π in A that contains q, and set y := Tq ∩TA

π . Note that y ∈ T \{T ∩TA
π }.

Lemma 6.30 implies that p is collinear to y.
Let s be any point of l \ {p, q}. We determine the possibilities for s̸≡ ∩ π. For every line n

in π through q different from qx, the point p is noncollinear to exactly two points of n. Axiom
(Im1)(ii) implies that ⟨l, n⟩ is an A2-plane, which we assumed to be defined over a field of at
least five elements, implying that l contains at least six points. Moreover, Lemma 6.26 implies
that the point s is noncollinear to exactly two points of n. The point p is noncollinear to exactly
one point of the line qx. By Lemma 6.25, the point s is noncollinear to a unique point of qx,
which we denote with xs. Taking into account the different possibilities in Lemma 6.30, we see
that s̸≡ ∩ π is one of the following:

(1) The union of a line ms and a transversal Ts of π in A, which intersect in the point xs. In
this case, s is collinear to y.

(2) A nondegenerate conic C through the missing point of π. The line qx intersects C in
exactly one point, namely xs. Every other line in π through q intersects C in exactly
two points. Since A, and hence π, is defined over a field of characteristic not two, the
point s is in this case noncollinear to y.

We have to prove that the first statement holds for the point r ∈ l \ {p, q}. Assume, for a
contradiction, that this is not the case. First suppose that the second statement holds for some
s of l \ {r, p, q}. Then the point y is noncollinear to three distinct points of l, namely q, r and
s. We already noted before that l is contained in some A2-plane, so by Lemma 6.27, the point
y would be noncollinear to the whole of l, and in particular to p, a contradiction. This implies
that the first statement holds for all points s of l \ {q, r}. Denote with Tr the transversal of π in
A that contains xr (which was defined to be the unique point on qx not collinear to r).

We claim that for any two points s1 and s2 of l\{q, r}, the intersection ms1 ∩ms2 is contained
in Tr or Tq . Assume this was not the case. Let ys be the unique point on qx which is noncollinear
to ms1 ∩ms2 . By assumption, ys is different from q and xr. Lemma 6.25 implies that there is a
unique point s on l noncollinear to ys. This point s is different from q and r, which implies that
s̸≡∩π is the union of a line and a transversal of π, which intersect in ys ∈ qx. The point s is hence
noncollinear to the transversal of A in π that contains ys, and in particular to ms1 ∩ ms2 . But
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then the point ms1∩ms2 is noncollinear to three points of l, namely s1, s2 and s. By Lemma 6.27,
it is noncollinear to all points of l, in particular to q, a contradiction. This proves the claim.

We argued before that l contains at least 6 points, so in particular, we find two distinct points
s1 and s2 of l \ {q, r, p}. Using the previous paragraph, one sees that the lines ms1 , ms2 and m
intersect in one point z of π, which lies either on Tr or on Tq . In either case, the point z is
noncollinear to these three points of l. By Lemma 6.27, it is noncollinear to the whole of l, in
particular, to q. We conclude that z is contained in Tq . The point r however, is then noncollinear
to both y and z of Tq , and by Corollary 6.2, also to q ∈ Tq , a contradiction. This concludes the
proof. □

6.3. Relations between points. In Lemma 3.3, we distinguished four different relations be-
tween two points in an A2-plane. We will use this to define five relations between two points
of Y . These definitions are of course inspired on the observations made in Corollary 4.1.

Definition 6.25. Let p and q be two points of Y . One (or more) of the following occurs:
(1) The points p and q are equal.
(2) There is an A2-plane A of Y containing p and q such that p and q are linelike in A. In this case,

we say that p and q are linelike.
(3) There is no A2-plane of Y that contains both p and q. In this case, we say that p and q are

symplectic.
(4) There is an A2-plane A of Y containing p and q such that p and q are special in A, i.e. there

exists a unique point in A, which we denote with [p, q]A, which is linelike in A to both p and q.
In this case, we say that p and q are special.

(5) The points p and q are collinear.

Our first goal is to prove that the five relations defined above are disjoint. A priori, this
might not be the case. We have for example not yet proven that every line is contained in
some A2-plane, so two points could at the same time be symplectic and collinear. Some of the
relations are of course automatically disjoint, so we start with these.

Lemma 6.37. Let p and q be two points which are either collinear or symplectic. Then p and q are not
linelike nor special.

Proof. If p and q are collinear, they are collinear in every plane (and hence every A2-plane)
that contains them both. This implies that they are neither linelike nor special. If p and q are
symplectic, then, by definition, they are not contained in any common A2-plane, and are hence
neither linelike nor special. □

If two points p and q are noncollinear but contained in different A2-planes, it could be that
they are linelike in one of these planes, but special in the other one. In Proposition 6.9, we
will prove that this cannot occur, that is, two points that are linelike cannot be special. In
preparation of the proof of this proposition, we first gather a few Lemmas.

Lemma 6.38. Let l be a line containing distinct points p, q, r and let A be an A2-plane through q but not
through l. Suppose that p̸≡ ∩A = π̄A for some dual affine plane π of A. Denote with T the transversal
of π in A noncollinear to q. Then r ̸≡ ∩ A = π̄′A, where π′ is some dual affine plane of A different from
π in which T is a transversal.

Proof. Denote with τ the projective plane related to A. Without loss of generality, the plane π
is of the form πx for some point x of τ . The point q ∈ A is collinear with p, and is hence not
contained in π̄x. As a result, it is of the form (y,m) with y some point of τ and m a line of τ not
through x. Note that the transversal T is the transversal Txy .
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Let m′ be a line of τ through y, different from m and xy, then the plane πm′ contains q =
(y,m), while the intersection πm′ ∩ π̄x is a line, namely [x,m′]. The point p is hence noncollinear
to exactly a line of the linelike plane πm′ , which contains q. By Lemma 6.33, the set r ̸≡ ∩ πm′

is also a line of πm′ , which contains p ̸≡ ∩ q ̸≡ ∩ πm = (y, yx), and is hence of the from [z,m′]
with z some point of τ on yx \ {y, x}. With Lemma 6.30, we obtain that the set r ̸≡ ∩ A has
the form π̄′ with π′ some dual affine plane of A. This plane π′ must of course contain the line
[z,m′] and hence equals either πz or πm′ . It cannot be the latter, since we showed before that r
is noncollinear to exactly a line of that plane. The transversal T = Txy is indeed a transversal
of the plane πz . □

Corollary 6.3. Let l be a line containing distinct points p, q, r, and let A be an A2-plane through q. If
p̸≡ ∩A is a conical hyperplane of A, then so is r ̸≡ ∩A.

Proof. Each point of A is noncollinear to a conical hyperplane of A. If p ∈ A, then also r ∈ A,
implying that r ̸≡∩A is a conical hyperplane. If p ̸∈ A, then the claim follows from Lemma 6.38.

□

Lemma 6.39. Let l be a line containing distinct points p, q, let π be a linelike plane through q, and let
A be any A2-plane through π. If p ̸≡ TA

π , then l ̸≡ TA
π .

Proof. Let p, q, l, π and A be as in the statement of the lemma. Let r be any point of l \ {p, q}, we
have to prove that r ̸≡ TA

π .
First assume that p is noncollinear to a conical hyperplane of A. By Corollary 6.3, the point

r is also noncollinear to a conical hyperplane of A. Using Lemma 6.30, we see that exactly one
of the following three cases occurs:

(1) The point p is collinear to all points of π. By Lemma 6.31, the point r is also collinear to all
points of π, and is hence noncollinear to TA

π .
(2) The point p is noncollinear to exactly one transversal of π in A. By Lemma 6.34, the point r is

also noncollinear to exactly one transversal of π in A. As r ̸≡∩A is a conical hyperplane,
we find that r is noncollinear to TA

π .
(3) The point p is noncollinear to exactly two disjoint transversals of π in A. By Lemma 6.35, the

point r is also noncollinear to exactly two transversals of π in A. The set r ̸≡ ∩A is again
a conical hyperplane of A, so also in this case r is noncollinear to all points of TA

π .
Next, assume that p̸≡∩A is not a conical hyperplane of A. By Lemma 6.29, the set p ̸≡∩A = π̄′

for some dual affine plane π′ of A. The point p is collinear to q ∈ π and noncollinear to TA
π . This

transversal is also noncollinear to q, so Lemma 6.38 implies that r ̸≡ ∩ A indeed also contains
TA
π . This concludes the proof. □

We are now ready to prove the crucial lemma in the run up to Proposition 6.9.

Lemma 6.40. Let p and q be linelike points. Then for every line l through q, the point p is noncollinear
to either exactly one point of l, namely q, or to all points of l.

Proof. Let l be a line through q, and suppose that p is noncollinear to some point x ∈ l \{q}. We
have to prove that p is noncollinear to l, or equivalently, that every point of l is noncollinear to
p. The points p and q are linelike, so by definition, there is some A2-plane A containing p and q
such that p and q are linelike in A. Denote with T the transversal in A that contains both p and
q. Let T ′ be the unique transversal in A that contains p but not q, and set π := πA

T ′ .
If x is noncollinear to T ′ = TA

π , we can use Lemma 6.39, with x in the role of p, to obtain
that every point of l is noncollinear to T ′, and in particular to p. Assume that this is not the
case, then x ̸≡ ∩ T ′ contains at most one point, and hence equals {p}. By Lemma 6.30, the set



Imaginary geometries 73

x ̸≡ ∩ π has to be a nondegenerate conic C through the missing point of π. Denote with π∞
the projective plane obtained by adding one point, denoted ∞, to π. The set C∞ := C ∪ {∞}
is a conic in π∞. Since x ̸≡ ∩ T = {p}, we find that the line q∞ is the tangent line to C∞ at
∞. The plane π∞ is defined over a field of characteristic not two, so there is exactly one other
tangent line m to C∞ through q. In π, this means that there is exactly one line m through q
which contains one point of C , while all other lines of π through C contain zero or two points
of C . Let r be any point of l \ {x, q}. Using Lemma 6.25 and Lemma 6.26, we find that the
line m contains exactly one point noncollinear to r, while all other lines through q in π contain
exactly zero or two points noncollinear to r. Considering the possibilities in Lemma 6.30, we
can hence conclude that r ̸≡ ∩ π is one of the following:

(1) The union of a line and a transversal of π. Lemma 6.36 would then imply that x ̸≡ ∩ π is
also the union of a line and a transversal of π, a contradiction.

(2) A nondegenerate conic Cr through the missing point of π such that there is exactly one
line through q in π which contains exactly one point noncollinear to r. The set Cr∪{∞}
then forms a conic in π∞, with q∞ the tangent line at ∞. This implies in particular that
r ̸≡ ∩ T ′ = p, and hence that r is noncollinear to p.

This concludes the proof of the lemma. □

Proposition 6.9. Let p and q be two linelike points. Then they are not special.

Proof. Let p and q be two linelike points, and let A be an A2-plane that contains p and q such
that p and q are special in A. In A, there exists some point x which is collinear to both p and q.
By Lemma 3.5, the point p is noncollinear to exactly two points of m = qx, a contradiction to
Lemma 6.40. □

6.4. A point is noncollinear to a conical hyperplane of any A2-plane. As the title of this sub-
section suggests, the next goal is to prove that a point p is noncollinear to a conical hyperplane
of any A2-plane. Afterwards, we use this to prove that two collinear points cannot be symplec-
tic. We first gather a natural in-between result.

Lemma 6.41. Let A and A′ be two A2-planes that contain special points q1 and q2. Every point of A′

that is collinear to both q1 and q2 is noncollinear to a conical hyperplane of A.

Proof. Let p′ be a point of A′ that is collinear to both q1 and q2. By Lemma 6.29, it suffices to
prove that p′̸≡ ∩ A is not of the form π̄A with π a certain dual affine plane of A. Suppose for a
contradiction that this is the case. For i = 1, 2, denote with Ti the transversal in A that contains
qi and [q1, q2]A. If the point p′ were noncollinear to [q1, q2]A, it would follow from Lemma 5.19
that it would be noncollinear to Ti ∋ qi for some i, a contradiction. So p′ is collinear with
[q1, q2]A.

By Lemma 3.7, there is a unique point x of π that is linelike to [q1, q2]A. Without loss of
generality, we may assume that x ∈ T1. Let Tx be the transversal in A through x different from
T1. By Lemma 5.19, the set π̄A contains Tx, implying that p′ is noncollinear to Tx. Next, consider
the line p′q1. By Lemma 3.5, there is a point r on p′q1\{q1} which is noncollinear to q2. Applying
Lemma 6.38, with p′ taking the role of p, q1 that of q and Tx that of T , we find that r ̸≡ ∩A is the
transversal closure in A of a dual affine plane of A that has Tx as a transversal. Together with
the fact that r is noncollinear to q2, this implies that r ̸≡ ∩ A = π̄A

T1
∋ q1, a contradiction to the

fact that r is collinear to q1. □

We can now use the previous lemma to reach the goal of this section.

Proposition 6.10. Let p be a point and let A be any A2-plane. Then p is noncollinear to a conical
hyperplane of A.
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Proof. By Lemma 6.29, it suffices to prove that p̸≡ ∩A is not of the from π̄A for some dual affine
plane π of A. Suppose for a contradiction that this is the case. Let q1 be a point of A collinear to
p. By Lemma 3.7, the set q ̸≡1 ∩ π is the union of a transversal T and a line m. Let q2 be a point of
m not on T . We claim that q ̸≡2 ∩ pq1 = {p, q1}. Indeed, let p′ be any point of pq1 \ {p, q1}. Then,
using Lemma 6.38 with p′ in the role of r, we see that p′̸≡ ∩ A is the transversal closure in A of
a dual affine plane π′ of A, where π′ contains T , but is different from π. We hence indeed find
that p′ is collinear q2, which proves the claim. By Axiom (Im1) (ii), the point q2 and the line pq1
then generate an A2-plane A′. Both the A2-planes A and A′ contain the special points q1 and q2,
while A′ contains points (namely any point of pq1 \{p, q1}) that are collinear to q1 and q2 but are
not collinear to a conical hyperplane of A. This contradicts Lemma 6.41 and hence concludes
the proof. □

Corollary 6.4. Let p be a point and T a transversal, then p is noncollinear to at least one point of T .

Proof. This is an immediate consequence of Proposition 6.10. □

We can use this proposition to obtain the following useful lemma.

Lemma 6.42. Every line is contained in some A2-plane.

Proof. The space Y is connected, and contains at least one A2-plane. It hence suffices to prove
that every line l of Y that intersects an A2-plane, is itself contained in an A2-plane. So let l
be a line, and A an A2-plane that intersects l. If l is contained in A, there is nothing to prove.
Suppose that l intersects A in some point p. Let q be a point of l different from p. Suppose that
there is some line m through p in A for which q is noncollinear to exactly two points of m. Then
Axiom (Im1)(ii) implies that ⟨l,m⟩ is an A2-plane, which contains l. Suppose for a contradiction
that this is not the case. By Lemma 6.27, and the fact that q is collinear to p, we find that q is
noncollinear to at most one point of every line m through p in A. Let T be a transversal through
p in A, let r be a point of T \ {p} and let Tr be the transversal in A through r but not through p.
The dual affine plane πA

Tr
contains p. Considering the possibilities in Lemma 6.30, and keeping

in mind that no line through p in π intersects q ̸≡ in more than one point, we find that q ̸≡ ∩ π is
either empty or is a transversal. By Proposition 6.10, the set q ̸≡ ∩ A is a conical hyperplane of
A, so in each of these two cases, the transversal Tr, and in particular r is contained in q ̸≡. We
hence find that T \ {p} ⊆ q ̸≡. Corollary 6.2 then, however, implies that q is also noncollinear to
p, a contradiction to the fact that they both belong to the line l. □

Corollary 6.5. Two collinear points cannot be symplectic.

Proof. Two points are symplectic when they are not contained in a common A2-plane. By
Lemma 6.42, every pair of collinear points is contained in a common A2-plane. □

7. SPECIAL POINTS

Notation 12. In this section, Y denotes a connected partial linear space that satisfies Axioms (Im1),
(Im2) and (Im3). We assume that no A2-plane of Y is defined over F3 or over a field of characteristic
two. We make use of Notation 3.

In this section, we prove that the behaviour of two special points completely determines the
behaviour of any point that is linelike to both of them. This will allow us to invoke Axiom
(Im3), and obtain that this point is uniquely determined.
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7.1. When a point is linelike or symplectic to some point of an A2-plane. We start by dis-
cussing what happens when a point is linelike or symplectic to some point of an A2-plane.

Lemma 7.43. Let p and q be linelike or symplectic points. For every line l through q, the point p is
noncollinear to exactly one point of l, namely q, or to all points of l.

Proof. Suppose that q is collinear to some point of l. It follows from Lemma 6.42 that the line l
is contained in some A2-plane. We can hence apply Lemma 6.27 and obtain that |p ̸≡ ∩ l| ≤ 2.
However, if p is noncollinear to exactly two points of l, it follows from Axiom (Im2) that ⟨p, l⟩
is an A2-plane. Using Lemma 3.5, we find that p and q are special in A, a contradiction to the
assumption that they are linelike or symplectic. □

Lemma 7.44. Let p be a point and T a transversal. If p is linelike or symplectic with some point q of T ,
then p is noncollinear to every point of T .

Proof. There exists some dual affine plane π that contains q such that T is a transversal of π.
The point p is noncollinear to q and, by Lemma 7.43, to one or all points of every line through
q in π. Using Lemma 6.30, one then easily concludes that p ̸≡ T . □

Lemma 7.45. Suppose that p is linelike to a point of a line l, then p is neither linelike, nor symplectic to
any other point of l.

Proof. Let q be a point of l that is linelike to p. Then there exists some A2-plane A in which p
and q are contained on some common transversal T . Let r be a point of l \ {q}. If r was linelike
or symplectic to p, Lemma 7.44 would imply that r is noncollinear to the whole transversal T ,
and in particular to q, a contradiction. □

Lemma 7.46. Let p be a point and A be an A2-plane. If p̸≡∩π is a degenerate conic for every dual affine
plane π of A, and p is moreover linelike or symplectic with some point q ∈ A, then p̸≡ ∩ A is one of the
following:

(1) The whole set A.
(2) A set of the form π̄A

1 ∪ π̄A
2 with π1 and π2 dual affine planes in A such that π1 ∩ π2 is a line

through q.
(3) A set of the form z ̸≡ ∩A with z some point in A linelike with q. This equals π̄A

T1
∪ π̄A

T2
, with T1

and T2 the two transversals in A through z.

Proof. Using the terminology of Definition 5.23, we find that p̸≡∩A is a fully degenerate conical
subset with vertex q. Using Lemma 5.17, we hence find that p̸≡∩A is either A or a subset π̄A

1 ∪π̄A
2

with π1 and π2 dual affine planes in A for which q ∈ π̄A
1 ∩ π̄A

2 . At the same time, the set p ̸≡ ∩A
is a conical hyperplane of A. Using Example 5.14, one easily sees that this indeed implies the
claim. □

7.2. When a point is linelike or symplectic to several points of an A2-plane. A point can of
course also be linelike or symplectic to several points of an A2-plane. We investigate some
particular cases that will be useful later on.

Lemma 7.47. Let p be a point and let A be an A2-plane containing linelike points q1 and q2. If p is
linelike or symplectic to both q1 and q2, the set p̸≡∩A is either the whole of A, or equals q ̸≡∩A for some
point q on the transversal in A that contains q1 and q2.

Proof. Let T be the transversal in A that contains both q1 and q2. We first prove that p ̸≡ πA
T ,

or equivalently, that p ̸≡ T ′ for every transversal T ′ of A that intersects T . Let T ′ be such a
transversal, and set q′ := T ′ ∩ T . First suppose that q′ = q1 or q2. Then the point p is linelike
or symplectic to q′, so it follows from Lemma 7.44, that p ̸≡ T ′. Next, suppose that q′ ̸∈
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{q1, q2}. The plane π′ := πA
T ′ contains q1 and q2. One can easily argue, using Lemma 6.30 and

Lemma 7.43, that p̸≡ ∩ π′ is either T ′ or π′. Since p ̸≡ ∩A is a conical hyperplane, it follows that
p ̸≡ T ′. This proves the claim. One can now use Lemma 5.18 to obtain that p̸≡∩π is a degenerate
conic for every dual affine plane π of A. The result now follows from Lemma 7.46. □

Lemma 7.48. Let p be a point and let A be an A2-plane containing special points q1 and q2. If p is
linelike or symplectic to both q1 and q2, the set p̸≡ ∩A is either the whole set A or equals [q1, q2]

̸≡
A ∩A.

Proof. For i = 1, 2, let Ti be the transversal in A that contains qi and [q1, q2]A, and let Qi be the
transversal in A through qi different from Ti. By Lemma 7.44, the set p̸≡ ∩ πA

T1
contains T2 and

Q1. The point p is moreover linelike or symplectic to q2 ∈ πA
T1

, so using Lemma 7.43, one easily
argues that p ̸≡ πA

T1
. Similarly, one finds that p ̸≡ πA

T2
. Lemma 5.16 then implies that p ̸≡ ∩ A is

either the whole of A or the set π̄A
T1

∪ π̄A
T2

= [q1, q2]
̸≡
A ∩A. This concludes the Lemma. □

Lemma 7.49. Let p′ be a point and let A be an A2-plane containing special points q1 and q2. Suppose
that p′ is linelike to q1 and linelike or symplectic to q2. Let T be a transversal that contains both p′ and
q1 and let T1 be the transversal in A that contains q1 and [q1, q2]A. For any point p ∈ T \ {p′, q1}, the
set p̸≡ ∩A is of the form x ̸≡

p ∩A with xp some point in T1 \ {[q1, q2]A}.

Proof. By Lemma 7.48, the set p′ ̸≡ ∩ A is either A or [q1, q2]
̸≡
A ∩ A. Suppose that we are in the

former case, then Corollary 6.2 implies that p is noncollinear to all points that are noncollinear
to both p′ and q1, and in particular to q ̸≡1 ∩ A. If p were noncollinear to any other point y of A,
this same corollary would imply that y would also be noncollinear to q1, a contradiction. This
implies that p̸≡ ∩ A = q ̸≡1 ∩ A. Next, assume that p′̸≡ ∩ A = [q1, q2]

̸≡
A ∩ A. Denote with T2 the

transversal in A that contains both q2 and [q1, q2]A. The set p′ ̸≡ ∩A equals π̄A
T1

∪ π̄A
T2

. The point
q1 on the other hand, is noncollinear to π̄A

T1
and collinear to some points of π̄A

T2
. Again using

Corollary 6.2, we find that p is collinear to some point of π̄A
T2

and noncollinear to π̄A
T1

. Moreover,
the point p is linelike to q1 ∈ T1. Considering the possibilities in Lemma 7.46, we can hence
indeed conclude that also in this case, p ̸≡ ∩A = x ̸≡

p ∩A for some point xp of T1 \ {[q1, q2]A}. □

7.3. Special points p and q determine behaviour of the point [p, q]A. The goal of this section
is to prove the following proposition.

Proposition 7.11. Let p and q be special points, let A be an A2-plane that contains p and q, and let l be
a line through q. The following claims hold:

(1) The point [p, q]A is collinear to l \ {q} if and only if |p̸≡ ∩ l| = 2.
(2) The point [p, q]A is noncollinear to the line l if and only if |p ̸≡ ∩ l| ̸= 2. This is the case if and

only if p̸≡ ∩ l is either l or {q}.

We divide the proof into three parts, namely Lemma 7.50, Lemma 7.51 and Lemma 7.52.

Lemma 7.50. Let p and q be special points, let A be an A2-plane that contains p and q, and let l be a
line through q. If the point p ̸≡ l, then [p, q]A ̸≡ l.

Proof. It is clear that [p, q]A is noncollinear to q ∈ l. Suppose for a contradiction that [p, q]A
is collinear to some point of l \ {q}. By Lemma 6.40, the point [p, q]A is collinear to all points
of l \ {q}. Every such point r ∈ l \ {q} is then noncollinear to p but collinear to [p, q]A, so
Corollary 6.2 implies that r ̸≡ ∩ T = {p}, with T the transversal in A through p and [p, q]A. The
set r ̸≡ ∩ A is however a conical hyperplane, so there is a line m in πA

T through q that contains
one or two points noncollinear to r. Let Tp be the transversal in A through p different from T ,
and set x := Tp ∩m. By Lemma 6.25 or Lemma 6.26, applied to l and m, we can re-choose r ∈ l
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so that r is noncollinear to x. This point r is then noncollinear to both x and p of Tp, and hence
by Corollary 6.2, noncollinear to the whole of Tp. Checking the possibilities in Lemma 6.30, and
keeping in mind that r ̸≡ ∩A is a conical hyperplane, we find that r ̸≡ ∩ πA

T is the union of a line
with the transversal Tp. Applying Lemma 6.36 applied to r, l and πA

T , we see that every point
of l \ {q} is noncollinear to the union of a line and a transversal of πA

T , which must intersect T
in p by assumption, and hence equals Tp. This however implies that Tp is noncollinear to all
points of l \ {q}, and by Lemma 6.27, also to q, a contradiction. □

Lemma 7.51. Let p and q be special points, let A be an A2-plane that contains p and q and let l be a line
through q. If |p̸≡ ∩ l| = 2, then [p, q] ̸≡A ∩ l = {q}.

Proof. Suppose for a contradiction that there exists some point of l \ {q} noncollinear to [p, q]A.
The point [p, q]A is linelike to q, so by Lemma 6.40, the point [p, q]A is noncollinear to all points
of l. Let r be the point of l \ {q} that is noncollinear to p. Then r is noncollinear to both p and
[p, q]A. Denote with T the transversal in A that contains both p and [p, q]A. Using Corollary 6.2,
we find that r ̸≡ T . Lemma 6.39, with π = πA

T , implies that l ̸≡ T , and in particular that the
point p is noncollinear to all points of l, a contradiction. □

Lemma 7.52. Let p and q be special points, let A be an A2-plane that contains p and q, and let l be a
line through q. If p̸≡ ∩ l = {q}, then [p, q]A ̸≡ l.

Proof. Suppose for a contradiction that there exists some point r of l \ {q} collinear to [p, q]A.
Let T denote the transversal in A that contains p and [p, q]A. By Proposition 6.10, the point r is
noncollinear to some point p′ of T , which, by assumption, has to be different from [p, q]A. This
point p′ is noncollinear to both q and r of l, and moreover, it is clear that [p, q]A = [p′, q]A.

First suppose that |p′̸≡ ∩ l| > 2. Lemma 6.27 implies that p′ ̸≡ l. We can apply Lemma 7.50
to p′, q, A and l and obtain that [p′, q]A ̸≡ l. This is a contradiction to the fact that r is collinear
to [p, q]A = [p′, q]A.

Next, suppose that |p′̸≡ ∩ l| = 2, that is, p′̸≡ ∩ l = {q, r}. By Axiom (Im1)(ii), the point p′ and
the line l generate an A2-plane, which we denote here with A′. The point [p, q]A is linelike to
both p′ and q, which are both contained in A′, and the point p lies on the transversal T through
[p, q]A and p′. We can hence apply Lemma 7.49 to obtain that p ̸≡ ∩A′ = x ̸≡

p ∩A′ for some point
xp on T ′ \ {[p′, q]A′} with T ′ the transversal in A′ that contains p′ and [p′, q]A′ . However, by
applying Lemma 3.5 to A′, we find that such a point xp is noncollinear to exactly two points of
l ∈ A′, a contradiction to the assumption that p̸≡ ∩ {l} = {q}. □

Taking together the results of Lemma 7.50, Lemma 7.51 and Lemma 7.52, we indeed obtain
Proposition 7.11.

7.4. When a point is linelike to some points of an A2-plane. In this subsection, we use Propo-
sition 7.11 to obtain more information on what happens when a point is linelike so some point
of an A2-plane.

Lemma 7.53. Let p be a point and A be an A2-plane. If p is linelike to some point of A, the set p̸≡ ∩ A
is not of the form π̄A

1 ∪ π̄A
2 with π1 and π2 dual affine planes in A that intersect in a line.

Proof. Suppose that p is linelike to some point q ∈ A, and suppose for a contradiction that
p̸≡ ∩ A = π̄A

1 ∪ π̄A
2 with π1 and π2 dual affine planes in A that intersect in a line l. Using

Lemma 7.46, we see that q ∈ l. For i = 1, 2, denote with Qi the transversal of πi in A through
q. The points p and q are linelike, so there exists an A2-plane A′ that contains both p and q in
which p and q are linelike. In this A2-plane A′, there is a unique transversal through p that does
not contain q. Fix some point r ̸= p on that transversal. Observe that [r, q]A′ = p.
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We first discuss the possibilities for r ̸≡ ∩ π1. The point p is, by assumption, noncollinear to
each line m in π1 through q. We can apply Proposition 7.11, with A′, r,m, p = [r, q]A′ in the
role of A, p, l, [p, q]A, respectively, and obtain that r ̸≡ ∩ m is either m or {q}. Considering the
possibilities in Lemma 6.30, and taking into account Proposition 6.10 that says that r ̸≡ ∩ A is a
conical hyperplane and hence that r ̸≡ ∩ π1 is not a line, we find that r ̸≡ ∩ π1 is either π1, Q1 or
Q1 ∪ m1 with m1 some line in π1 through q. In all three cases, Q1 is contained in r ̸≡. We can
apply this same reasoning to π2 instead of π1, and obtain that Q2 ⊆ r ̸≡.

Now let m ̸= l again be a line in π1 through q, and let πm be the unique dual affine plane in
A through m different from π1. Then Q2 is a transversal of πm. The point r is noncollinear to
Q2 and noncollinear to one or all points of m. Using the possibilities in Lemma 6.30, we find
that r ̸≡ ∩ πm is either πm, Q2, or the union Q2 ∪ m′ with m′ some line in πm through q. Let
n ̸= m be a line through q in πm, then the previous argument shows that r ̸≡ ∩ n = n or {q}. We
can again apply Proposition 7.11, and find that p = [q, r]A′ is noncollinear to n. This line n is
however not contained in p ̸≡ ∩A = π̄A

1 ∪ π̄A
2 , a contradiction. This concludes the proof. □

Lemma 7.54. Let p be a point and let A be an A2 plane. If p is linelike to some point q of A and
noncollinear to a dual affine plane π of A that contains q, it is also noncollinear to π̄A

T with T the
transversal of π in A through q.

Proof. We have that p ̸≡ π, so it follows form Lemma 5.18 that p̸≡ ∩ A intersects every dual
affine plane of A in a degenerate conic. The point p is moreover linelike to q. We can apply
Lemma 7.46 and obtain that the set p ̸≡ ∩ A is one of the possibilities described in Lemma 7.46.
Using Lemma 7.53 and the fact that p is noncollinear to the dual affine plane π of A, one finds
that p ̸≡ ∩ A is either A or is of the form z ̸≡ ∩ A with z some point in A linelike to q. There is
only one such point z for which z ̸≡ contains π, namely T ∩ TA

π with T the transversal of π in A
through q. We hence find that π̄A

T is contained in z ̸≡ ∩A ⊆ p ̸≡. □

Lemma 7.55. Let p be a point, let A be an A2-plane containing special points q1 and q2. If p is linelike
to q1 and noncollinear to q2, then p is noncollinear to π̄A

T1
with T1 the transversal of A that contains q1

and [q1, q2]A.

Proof. Let p,A, q1, q2 and T1 be as stated. Let T2 be the transversal in A that contains q2 and
[q1, q2]A. By assumption, the points p and q1 are linelike, so there exists some transversal T that
contains both p and q1.

First, we aim to find a point p1 ∈ T which is noncollinear to π̄A
T2

. To that end, let r be a
point of πA

T2
that is not contained in T1. Then r is collinear to q1, so by Corollary 6.4, there

is a point p1 on T \ {q1} which is noncollinear to r. This point p1 is of course also linelike to
q1, so by Lemma 7.44 and Lemma 6.40, we have that q1r and T1 are contained in p̸≡1 . We can
hence conclude that p̸≡1 ∩ π̄A

T2
is equal to either q1r ∪ T1, or π̄A

T2
. The point q2 ∈ T2, however, is

noncollinear to both p and q1, and is by Corollary 6.2 hence also noncollinear to p1. This implies
that p1 is noncollinear to π̄A

T2
.

The point p1 is linelike to q1 and is noncollinear to the plane πA
T2

which contains q1. Con-
sequently, we can apply Lemma 7.54 to the point p1 and obtain that p1 is noncollinear to the
set π̄A

T1
. Every point in this set is of course also noncollinear to q1, and is hence noncollinear to

two points of T . Using Corollary 6.2, we can conclude that every point of π̄A
T1

is noncollinear to
p ∈ T . This concludes the proof. □

7.5. Special points p and q uniquely determine a point [p, q]. For special points p and q, we
can always construct a point that is linelike to both of them: take any A2-plane A that contains
p and q, and consider the point [p, q]A. In this subsection, we will prove that this construction
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is independent of the chosen A2-plane. Up to this point, we have not used the Axiom (Im3).
This axiom will, however, be crucial in all arguments that follow. We recall:
(Im3) For points p and q, if p̸≡ = q ̸≡, then p = q.

The main result of this subsection is Proposition 7.12. We first gather two preliminary results.

Lemma 7.56. Let T be a transversal containing a point p and let x, y be two points for which

x ̸≡ ∩ T \ {p} = y ̸≡ ∩ T \ {p}.
Then x ̸≡ ∩ T = y ̸≡ ∩ T .

Proof. Both points x and y are, by Corollary 6.2 and Corollary 6.4, noncollinear to either a
unique point of T or to every point of T . From this, we immediately obtain that

x ̸≡ p ⇐⇒ |x ̸≡ ∩ T \ {p}| ≠ 1 ⇐⇒ |y ̸≡ ∩ T \ {p}| ≠ 1 ⇐⇒ y ̸≡ p,

which proves the assertion. □

Lemma 7.57. Let A be an A2-plane containing a point q, and let x, y be two points for which

x ̸≡ ∩A ∩ q≡ = y ̸≡ ∩A ∩ q≡.

Then x ̸≡ ∩A = y ̸≡ ∩A.

Proof. Let p be a point of A, we prove that p is collinear to x if, and only if, it is collinear to y. If
p is collinear to q, this follows immediately from the assumption. Suppose that p is special to q.
Let T be the transversal in A that contains p but not [p, q]A. The point q is collinear to all points
of T \ {p}, so x ̸≡ ∩ T \ {p} = y ̸≡ ∩ T \ {p}. Now the assertion follows from Lemma 7.56, in
combination with the previous case. Next, suppose that p is linelike to q, let T be the transversal
in A that contains p but not q. All points of T \{p} are special to q, so the assertion again follows
from Lemma 7.56. Finally, suppose that p equals q. Let T be any transversal through p in A.
Then all points of T \ {p} are linelike to q, so with the exact same argument, the assertion
holds. □

Proposition 7.12. Let p and q be special points, and let A and A′ be A2-planes containing p and q.
Then [p, q]A = [p, q]A′ .

Proof. First, we claim that [p, q] ̸≡A ∩ q≡ = [p, q]̸≡A′ ∩ q≡. Let x be a point collinear to q, and let lx
be the line that contains x and q. We can apply Proposition 7.11 first to A and then to A′ and
find that

[p, q]A ≡ x ⇐⇒ |p̸≡ ∩ lx| = 2 ⇐⇒ [p, q]A′ ≡ x.

This indeed proves the claim.
We proceed by proving that [p, q]̸≡A = [p, q] ̸≡A′ . To that end, let x be a point collinear to [p, q] ̸≡A.

We prove that it is also collinear to [p, q] ̸≡A′ . If x is collinear to q, the claim immediately follows
from the argument above, so we may assume that x is noncollinear to q. Denote with Tp, Tq the
transversals in A that contain [p, q]A and p, q, respectively. Set π := πA

Tp
and note that q ∈ π.

We claim that there is a line l in π through q for which |x ̸≡ ∩ l| = 2. Suppose this were not
the case, then, using the possibilities in Lemma 6.30, and taking into account that x̸≡ ∩ A is
a conical hyperplane, we would obtain that x is noncollinear to Tq , which contains [p, q]A, a
contradiction. So let l be a line through q in A for which |x ̸≡ ∩ l| = 2. By Axiom (Im1)(ii)
the plane ⟨x, l⟩ is an A2-plane, which we denote with Al. By the previous claim, we find that
[p, q] ̸≡A ∩ q≡ = [p, q]̸≡A′ , which immediately implies that

[p, q]̸≡A ∩Al ∩ q≡ = [p, q]̸≡A′ ∩Al ∩ q≡.
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Lemma 7.57, applied to [p, q]A, [p, q]A′ and Al, then implies that [p, q]A ∩Al = [p, q]A′ ∩Al. The
point x, being collinear to [p, q]A, is hence also collinear to [p, q]A′ . We can apply this very same
argument with A and A′ interchanged, and we conclude that [p, q]̸≡A = [p, q]̸≡A′ .

Together with Axiom (Im3), this last claim immediately implies that [p, q]A = [p, q]A′ . □

It is an immediate consequence of Proposition 7.12 that the following is well defined.

Definition 7.26. For special points p and q, define [p, q] := [p, q]A for A any A2-plane that contains p
and q.

An immediate, but useful, corollary of this is the following.

Corollary 7.6. If a point p is linelike to some point of a line l and collinear to another point of l, then
there exists an A2-plane that contains both p and l.

Proof. Let q be the point on l that is linelike with p, let A be any A2-plane containing p and q,
and let r be a point in A linelike with p but not with q. Proposition 7.11, with r, q, p in the role
of p, q, [p, q], respectively, implies that |r ̸≡ ∩ l| = 2. We can hence use Axiom (Im1) (ii) and find
an A2-plane A′ that contains r and l. This A2-plane A′ then of course contains q ∈ l and hence
also [r, q] = p. □

7.6. Special points p and q have a unique point linelike to both. Definition 7.26 associates a
point [p, q] to every pair of special points p and q. In this subsection, we prove that this point
[p, q] can be characterized as the unique point that is linelike to both p and q. As in Section 7.5,
the crucial ingredient will again be Axiom (Im3).

Lemma 7.58. Let p and q be special points. Let x be a point linelike or symplectic to p and noncollinear
to q. If x is special to q, assume moreover that for every A2-plane Aq through x and q, the point p is
noncollinear to π̄Aq

Tq
, with Tq the transversal in Aq through x and [x, q]. Then x is linelike or symplectic

to [p, q].

Proof. Let p, q, x be as stated. Assume for a contradiction that x is neither linelike nor symplectic
with r := [p, q]. Let A be an A2-plane that contains p and q. The point x is linelike or symplectic
to p ∈ A, so, by Lemma 7.44, x is noncollinear to both transversals in A through p, and hence
to r. Together with the assumption that x is not linelike nor symplectic to r, this implies that x
is special to r.

We first claim that, if x is special to q, the point [r, x] is noncollinear to any line lq through x
that is contained in an A2-plane with q. Indeed, assume that x is special to q, and let Aq be an
A2-plane that contains both x and q. Denote with Tq the transversal in Aq that contains x and
[x, q]. By assumption, we know that p is noncollinear to πq := π

Aq

Tq
, which contains q. The point

p is hence noncollinear to all points of any line through q in πq . Proposition 7.11 on its turn,
then implies that [p, q] = r is also noncollinear to all points of any line through q in πq , and is
hence noncollinear to πq . This point r is at the same time linelike to q, so with Lemma 7.54, we
find that r is noncollinear to [q, x] ̸≡ ∩Aq , which implies that r ̸≡ ∩Aq is either [q, x]̸≡ ∩Aq or Aq

itself. Let lq be any line in Aq through x. Then in any of the two cases, the point r is noncollinear
to exactly one or all points of that line. We can apply Proposition 7.11 with r, x, [r, x], lq taking
over the role of p, q, [p, q], l, respectively, and obtain that [r, x] is indeed noncollinear to lq . This
proves the claim.

Next, let Ar be an A2-plane that contains x and r. We claim that [r, x]̸≡ ∩ Ar is contained in
q ̸≡. First suppose that q is linelike or symplectic to x. Since q is also linelike to r, we can use
Lemma 7.48 to obtain that q ̸≡ ∩Ar = Ar or [x, r]̸≡ ∩Ar, and hence to conclude that [x, r]̸≡ ∩Ar

is contained in q ̸≡. Next, suppose that q is special to x. Let Tr be the transversal in Ar that
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contains r and [r, x]. The point q is linelike to r and noncollinear to x, so Lemma 7.55 implies
that q is noncollinear to the set π̄Ar

Tr
. Together with Lemma 7.46, this implies that q ̸≡∩Ar equals

either Ar or z ̸≡ ∩ Ar with z some point of Tr. In the former case, the set [r, x]̸≡ ∩ Ar is indeed
contained in q ̸≡. Suppose that we are in the latter case, and suppose for a contradiction that
z ̸= [r, x]. Let lq be a line through x in Ar, not in π̄Ar

Tr
. We have that [r, x] ≡ lq \ {x}, and that

|q ̸≡ ∩ lq| = |z ̸≡ ∩ lq| = 2. By Axiom (Im1) (ii), the plane ⟨q, lq⟩ is an A2-plane, which contains
both q and lq , but the claim above then implies that [r, x] ̸≡ lq , a contradiction. We hence indeed
obtain that [r, x]̸≡ ∩Ar is contained in y ̸≡.

We are now ready to finalize the proof. Let T be the transversal in A that contains r and q,
and take q′ ∈ T \ {r, q}. The point x is noncollinear to r and q of T , so, by Corollary 6.2, it is
also noncollinear to q′. We can hence repeat the reasoning in the previous paragraph with q′

instead of q, and obtain that [r, x]̸≡ ∩ A is contained in q′̸≡. Every point of [r, x] ̸≡ ∩ A is hence
noncollinear to both q and q′ of T , and is hence contained in q ̸≡ ∩ q′̸≡ ∩A = πA

T , a contradiction
to the fact that [r, x] ̸≡ ∩A is a conical hyperplane of A. □

Corollary 7.7. Let p and q be special points, and let x be a point linelike to p and noncollinear to q.
Then x is linelike or symplectic to [p, q].

Proof. It suffices to show that the conditions of Lemma 7.58 hold. To that end, suppose that x
is special to q, and let Aq be an A2-plane that contains x and q. Denote by Tq the transversal in
Aq that contains x and [x, q]. The point p is linelike to x and special to q, so, by Lemma 7.55,
we find that p is noncollinear to π̄

Aq

Tq
. The conditions of Lemma 7.58 hence indeed hold, and we

obtain that x is linelike or symplectic to [p, q]. □

Lemma 7.59. Let p and q be special points, and let x be a point that is linelike to both p and q. For any
A2-plane A that contains both p and q, the following holds:

x ̸≡ ∩A = [p, q] ̸≡ ∩A.

Proof. Let A be an A2-plane that contains p and q. By assumption, the point x is linelike to both
p and q of A, so by Lemma 7.48, the set x ̸≡ ∩ A either equals A or [p, q]̸≡ ∩ A. It hence suffices
to prove that x ̸≡ ∩ A ̸= A. Suppose for a contradiction that this is the case. Let r be a point
of A that is linelike to p but not to [p, q], and let s be a point of A that is linelike to r but not
to p. By construction, the point r equals [p, s] and is collinear to q. The point x is linelike to
p and noncollinear to s ∈ A. By Corollary 7.7, the point x is linelike or symplectic to r. Now
consider the line l := rq. The point x is linelike to q ∈ l and linelike or symplectic to r ∈ l,
which contradicts Lemma 7.45. □

Lemma 7.60. Let p and q be special points, and let x be a point linelike to both p and q, then

x ̸≡ ∩ q≡ = [p, q]̸≡ ∩ q≡.

Proof. It clearly suffices to prove that for every line l through q, we have that x ̸≡∩ l = [p, q] ̸≡∩ l.
So let l be a line through q. First suppose that [p, q] ̸≡∩ l = {q}. By Proposition 7.11, the point p is
noncollinear to exactly two points of l. Axiom (Im1)(ii) implies that Al := ⟨p, l⟩ is an A2-plane.
This plane Al of course contains p and q ∈ l, so Lemma 7.59 yields x ̸≡ ∩ Al = [p, q] ̸≡ ∩ Al. This
indeed proves that x̸≡ ∩ l = [p, q] ̸≡ ∩ l.

Next suppose that [p, q] ̸≡ ∩ l ̸= {q}. Proposition 7.11 implies that [p, q] ̸≡ l and that p ̸≡ ∩ l
is either {q} or l. We have to prove that x ̸≡ l. Suppose for a contradiction the opposite. Then
Corollary 7.6 yields an A2-plane Al that contains both x and l. Let π be the dual affine plane in
Al that contains both x and l.
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We claim that p is noncollinear to the transversal TAl
π . Indeed, first assume that p ̸≡ ∩ l = l.

Let z be any point of π collinear with x. The line xz contains at least two points noncollinear to
p, namely x and xz ∩ l. The point p is linelike to x, so Lemma 6.40 implies that x is noncollinear
to the line xz, and hence also to z. From this, we can conclude that p̸≡ ∩ π = π, and, by
Corollary 6.2, that p is also noncollinear to TAl

π . On the other hand, assume that p̸≡ ∩ l = {q}.
Then we can again take any point z in π collinear to x. The line xz then contains a point xz ∩ l
collinear to p, so Lemma 6.40 implies that p ̸≡ ∩ xz = {x}. This implies that p̸≡ ∩ π = Tq with Tq

the transversal in A through x and q. The set p ̸≡ ∩ A is however a conical hyperplane, so also
in this case, p ̸≡ TAl

π . This proves the claim.
The point p is linelike to x and noncollinear to the transversal TAl

π . By Lemma 7.55, we find
that p ̸≡ πAl

Tq
with Tq the transversal of Al that contains q and x. In particular, the point p is

noncollinear to T ′
q , with T ′

q the transversal in Al through q different from Tl. Let r be a point on
T ′
q \ {q}, then r is special to x, and [r, x] = q. The point p is linelike to x and noncollinear to r,

so, by Corollary 7.7, the point p must be linelike or symplectic to [r, x] = q, a contradiction to
the fact that p is special to q. □

Corollary 7.8. Let p and q be special points, and let x and y be points that are linelike to both p and q.
Then

x ̸≡ ∩ q≡ = y ̸≡ ∩ q≡.

Proof. Lemma 7.60 stipulates that both sets are equal to [p, q] ̸≡ ∩ q≡. □

Lemma 7.61. Let A be an A2-plane containing linelike points q1 and q2, let TA be the unique transversal
in A that contains q1 and q2, and let q be any point on any transversal through q1 and q2, but different
from q1 and q2. Then there exists some point qA on TA \ {q1, q2} for which q ̸≡ ∩A = q ̸≡A ∩A.

Proof. Let T be a transversal that contains q1 and q2, and take q ∈ T \ {q1, q2}. The points q1
and q2 on T are noncollinear to the set π̄A

TA
, so, by Corollary 6.2, the point q is also noncollinear

to π̄A
TA

. This point q is moreover linelike to both q1 and q2, so, by Lemma 7.46, the set q ̸≡ ∩ A

is either A or is of the form q ̸≡A ∩ A with qA some point of TA. Assume that q is noncollinear to
q ̸≡1 ∩A. Then every point of q ̸≡1 ∩A is noncollinear to two points of T , namely q and q1, and is,
by Corollary 6.2, hence noncollinear to all points of T , and in particular to q2, a contradiction.
With the same argument, but with q1 and q2 interchanged, we also find that qA is collinear to
some point of q ̸≡2 ∩A. Hence qA /∈ {q1, q2}, which concludes the proof. □

Lemma 7.62. Let p and q be special points, and let x and y be points that are linelike to both p and q,
then we have that x ̸≡ = y ̸≡.

Proof. The points x and y play exactly the same role, it hence suffices to prove that y ̸≡ ⊆ x ̸≡, or
equivalently, that x≡ ⊆ y≡. Let r be collinear to x. We prove that r is also collinear to y. If r is
collinear to q, this follows from Corollary 7.8. So we suppose that this is not the case.

Let T be a transversal that contains both x and q, and take q′ ∈ T \ {x, q}. The point r
is collinear to x and noncollinear to q, so, by Corollary 6.2, it is collinear to q′. We can now
use Corollary 7.6 to find an A2-plane A′ that contains both q′ and the line xr. Let T ′ be the
transversal in A′ that contains both x and q′. Then Lemma 7.61, with A′, T ′, x, q′, q in the roles
of A, TA, q1, q2, q, respectively, implies that q ̸≡ ∩A = q ̸≡A ∩A for some point qA of T ′ ⊂ A′.

By Corollary 7.8, we have that x ̸≡ ∩ q≡ = y ̸≡ ∩ q≡. In particular, this is true in A′, where,
q≡ ∩A′ = q≡A ∩A′. We hence obtain that

x ̸≡ ∩A′ ∩ q≡A = y ̸≡ ∩A′ ∩ q≡A .
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Applying Lemma 7.57, we can conclude that x ̸≡ ∩ A′ = y ̸≡ ∩ A′. The point r is hence also
collinear to y. □

Proposition 7.13. For special points p and q, there is exactly one point, namely [p, q], that is linelike to
both p and q.

Proof. It is clear than [p, q] is linelike to both p and q. So let x be any other point linelike to both
p and q. By Lemma 7.62, we have that x ̸≡ = [p, q] ̸≡. Axiom (Im3) then immediately implies
that x = [p, q]. □

8. TURNING Y INTO A ROOT FILTRATION SPACE

In this section, the partial linear space Y = (E ,I ) is a partial linear space satisfying Axioms
(Im1), (Im2) and (Im3). We moreover assume that no A2-plane of Y is defined over the field F3

or over a field of characteristic two.
Denote with L the set of transversals of Y . We will prove that X = (E ,L ) forms a nonde-

generate root filtration space. To that end, we will first gather some extra results in Section 8.1
that will help distinguish linelike, symplectic and special points. Next, in Section 8.2, we trans-
late these results to the language of root filtration spaces, and in particular prove that X satis-
fies axioms (Rf1) to (Rf8) of Definition 2.10. In Section 8.3, we proceed by proving that X also
forms a partial linear space, which then implies that it forms a nondegenerate root filtration
space.

8.1. Distinguishing linelike, symplectic and special points. In this subsection, we will gather
several results that will help distinguish linelike, symplectic and special points.

In a first step, we consider a point x that is linelike to at least two points of some A2-plane
A, and see if we can determine the set of points in A that are linelike or symplectic to x.

Lemma 8.63. If a point x is linelike or symplectic to two points of a transversal T , then x is linelike or
symplectic to all points of T .

Proof. Let x be linelike or symplectic to two distinct points q1 and q2 of T . Suppose for a
contradiction that there exists some point q of T such that x is neither linelike nor symplectic
to q. By Lemma 7.44, the point x is also noncollinear to q, implying that x is special to q. Let A
be an A2-plane that contains the special points x and q. The point q1 is linelike or symplectic to
both x and q of A, so we can apply Lemma 7.48 and obtain that q ̸≡1 ∩A is either A or [x, q] ̸≡ ∩A,
and in particular, that [x, q]̸≡ ∩ A ⊆ q ̸≡1 . Similarly, we find that [x, q] ̸≡ ∩ A ⊆ q ̸≡2 . Every point
of A noncollinear to [x, q] is hence noncollinear to both q1 and q2 of T , and, by Corollary 6.2,
noncollinear to q ∈ T , a contradiction. □

Lemma 8.64. Let x be a point, let A be an A2-plane containing a transversal T , and assume that x is
linelike to at least two points of T . For every point p of T for which p̸≡ ∩A ⊆ x ̸≡, the point x is linelike
or symplectic to all points of Tp, with Tp the unique transversal in A through p different from T .

Proof. Let x,A and T be as stated. Let p be any point of T , and denote with Tp the transversal
in A through p different from T . The point x is linelike with at least two points of T ; denote
those with q1 and q2. By Lemma 8.63, the point x is linelike or symplectic to all points of T , and
in particular also to p.

Assume that p̸≡ ∩ A ⊆ x̸≡. Denote πp := πA
Tp

, and let q be any point of πp \ T . Note that
q is special to p and noncollinear to x. First suppose that x is linelike to p. Then we can use
Corollary 7.7 to obtain that x is indeed linelike or symplectic to all points of Tp. Next, suppose
that x is symplectic to p. In particular, we find that p is different from q1 and q2, and hence that
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q1, q2 ∈ πp. We want to apply Lemma 7.58 to x, p and q. To do so, assume that x is special to q,
let Aq be any A2-plane that contains x and q, and denote with Tq the transversal in Aq through
x and [x, q]. We have to prove that p is noncollinear to πq := π

Aq

Tq
.

Denote with Tx the transversal in Aq through x different from Tq , and let y ̸= x be any point
of Tx. We claim that y is noncollinear to Tp. Since every point of T is linelike or symplectic to
x, Lemma 7.44 implies that every point of T is noncollinear to Tx, and in particular, that y is
noncollinear to T . Moreover, for i = 1, 2, the point qi is linelike to x. If qi was noncollinear
to any point of πq \ Tx, Lemma 7.55 implies that qi would be noncollinear to the whole of πq ,
which contains q, a contradiction. We hence obtain that q ̸≡i ∩ πq = Tx, and in particular, that qi
is noncollinear to a unique point of the line qy, namely y. Then Axiom (Im1)(i) implies that y is
noncollinear to a unique point of qqi, namely qi. We use this to determine y ̸≡ ∩ πp. The point y
is hence collinear to q, noncollinear to T in πp, and there are two lines through q in πp for which
y is noncollinear to exactly one point of that line. Lemma 6.30 then implies that y ̸≡ ∩ πp = T .
The set y ̸≡ ∩A is of course a conical hyperplane of A, so this very same lemma implies that y is
noncollinear to TA

πp
= Tp, which proves the claim.

The point [p, q] is linelike to the point q and noncollinear to y, so Lemma 6.40 implies that
[p, q] is noncollinear to the line qy. The point p is noncollinear to y, so Proposition 7.11 on its
turn then implies that p is noncollinear to the whole of qy. The point y was an arbitrary point
on Tx \ {x}, so we indeed obtain that p is noncollinear to the dual affine plane πq .

As desired, we can now apply Lemma 7.54 to x, p and q, and obtain that x is linelike or
symplectic to [p, q] ∈ Tp \ {p}. The point x is hence linelike or symplectic to at least two points
of Tp, namely p and [p, q]. Lemma 8.63 concludes the proof. □

Lemma 8.65. If a point x is linelike to at least two points of a transversal T contained in an A2-plane
A, then the set x ̸≡ ∩A is one of the following:

(1) The set p ̸≡ ∩A for some point p of T . In this case, the points in A that are linelike or symplectic
to x are exactly those points in A that are linelike to p.

(2) The whole of A. In this case, the points in A linelike or symplectic to x are exactly the points of
π̄A
T .

Proof. We can apply Lemma 7.47 to x and A, and find that x ̸≡ ∩ A is either A or p̸≡ ∩ A with p
some point of T . We have to determine which points of A are linelike or symplectic to x. From
Lemma 8.63 it is already clear that x is linelike or symplectic to all points of T .

First assume that x ̸≡ ∩ A = p ̸≡ ∩ A for some point p of T . We can apply Lemma 8.64 and
obtain that x is linelike or symplectic to all points of Tp. The set of points in A that are linelike
to p, is exactly Tp ∪ T , so x is indeed linelike to all points of A that are linelike to p. It follows
from Lemma 7.46 that x is not linelike to any other point of A.

Next, assume that x̸≡ ∩ A = A. Let p be any point of T , and denote with Tp the transversal
in A through p different from Tp. The set p ̸≡ ∩ A is contained in A, and hence also in x ̸≡. We
can then again apply Lemma 8.64 and obtain that x is linelike or symplectic to all points of Tp.
This point p was an arbitrary point of T , so we conclude that x is linelike or symplectic to all
points of π̄A

T . Let y be any point of A not in π̄A
T , then y is collinear to at least one of the points

q1 and q2. Without loss of generality, we may assume that it is collinear to q1. Let l be the line
through q1 and y. The point x is linelike to a point of l and by Lemma 7.45 hence not linelike or
symplectic to y ∈ l. This concludes the proof. □

The next goal is to prove Corollary 8.9, for which we first gather two smaller results.
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Lemma 8.66. Let T be a transversal containing points q, q1 and q2, and let p be a point that is symplectic
to q and special to q1 and q2. Then we have

[p, q2]
̸≡ ∩ p≡ = [p, q1]

̸≡ ∩ p≡.

Proof. The points [p, q1] and [p, q2] clearly play the same role (with q1 and q2 interchanged). It
hence suffices to prove that every point collinear to [p, q1] and p, is also collinear to [p, q2]. Let
l be a line through p containing a point collinear to [p, q1]. Then, by Proposition 7.11, the point
q1 is noncollinear to exactly two points of l. Axiom (Im1) (ii) implies that A := ⟨q1, l⟩ is an
A2-plane. This plane of course contains q1, p ∈ l and [p, q1]. Let T1 be the transversal in A
that contains q1 and [p, q1]. We can apply Lemma 7.49 with q, q2, q1, p in the role of p′, p, q1, q2,
respectively, and find that q ̸≡2 ∩ A = x ̸≡

q2 ∩ A, with xq2 some point of T1 different from [p, q1].
This set intersects l in exactly two points, that is, |q ̸≡2 ∩ l| = 2. Proposition 7.11 then implies that
[p, q2] is collinear to l \ {p}, which concludes the proof. □

Lemma 8.67. Let T be a transversal containing points q, q1 and q2, and let p be a point that is symplectic
to q and special to q1 and q2. Then [p, q1] = [p, q2].

Proof. By Axiom (Im3), it suffices to prove that [p, q1] ̸≡ = [p, q2]
̸≡. The points [p, q1] and [p, q2]

however, play the same role, so it suffices to prove that [p, q2] ̸≡ ⊆ [p, q1 ]̸
≡, or equivalently, that

[p, q1]
≡ ⊆ [p, q2]

≡. To that end, let r be a point collinear to [p, q1]. If r is collinear to p, it follows
from Lemma 8.66 that r is also collinear to [p, q2]. So suppose that r is noncollinear to p.

Let T1 be a transversal through p and [p, q1], and let p′ be a point of T1 \ {p, [p, q1]}. The
point r is collinear to [p, q1] and noncollinear to p, so, by Corollary 6.2, it is collinear to p′ ∈ T1.
We then apply Corollary 7.6 to the point p′ and the line r[p, q1], and obtain an A2-plane A that
contains p′, r and [p, q1]. By Lemma 8.66, we have that [p, q1] ̸≡∩p≡ = [p, q2]

̸≡∩p≡. In particular,
we find that

[p, q1 ]̸
≡ ∩A ∩ p≡ = [p, q2]

̸≡ ∩A ∩ p≡.

Let TA be the transversal in A through p′ and [p, q1]. We apply Lemma 7.61 with p, p′, [p, q1]

in the role of q, q1, q2, respectively, and obtain that p ̸≡ ∩ A = p ̸≡A ∩ A for some point pA of TA.
Hence,

[p, q1]
̸≡ ∩A ∩ p≡A = [p, q2] ∩A ∩ p≡A,

for some point pA of A. Using Lemma 7.57, we obtain that [p, q1 ]̸≡ ∩A = [p, q2 ]̸
≡ ∩A. The point

r is contained in A, and is hence collinear to [p, q2]. This concludes the proof. □

Corollary 8.9. Let T be a transversal containing points q and x. If a point p is linelike or symplectic to
q and special to x, then [p, x] is linelike to all points of T \ {q}.

Proof. Let q′ be any point of T \ {x, q}. By Lemma 8.63, the point p is special to q′. We now use
Lemma 8.67 with p, q, q′, x in the role of p, q1, q2, q, respectively, and obtain [p, q] = [p, q′]. The
point [p, q′] is linelike to q′, so [p, q] is, too. □

Remark 8.19. If in Corollary 8.9, the point p is linelike to q, then q is linelike to both p and x, implying
that q = [p, x].

Next, we consider an A2-plane A containing two special points q1 and q2. We suppose that
a point p is linelike to q1 and symplectic to q2, and try to produce extra points in A to which
p is linelike. To that end, we distinguish between the case where p is collinear to some points
of A (Lemma 8.68) and the case where p is noncollinear to all points of A (Lemma 8.69). We
summarize the results in Corollary 8.10.
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Lemma 8.68. Let q1 and q2 be two special points, let A be an A2-plane containing q1 and q2 and let T1

be the transversal in A that contains q1 and [q1, q2]. If some point p is linelike to q1, symplectic to q2
and if p̸≡ ∩A = [q1, q2 ]̸

≡ ∩A, then p is linelike to all points of T1 \ {[q1, q2]}.

Proof. Let T be a transversal that contains both p and q1, and let x1 be any point of T1 \
{q1, [q1, q2]}. We claim that there exists some point x of T such that x is noncollinear to x ̸≡

1 ∩A,
while being linelike to two points of T . Indeed, let Tx1

be the transversal in A through x1 dif-
ferent from T1, and let y be any point of πA

Tx1
\ T1. Note that y is collinear to q1, [q1, q2] and p.

By Corollary 6.4, the point y is noncollinear to at least one point of T , say x, which of course
is different from p and q1. The point q2 is symplectic to p ∈ T and special to q1 ∈ T , so, by
Corollary 8.9, the point [q1, q2] is linelike to all points of T \ {p}, and in particular to x. The
point x is hence linelike to the two points q1 and [q1, q2] of T1. We can use this to determine
x ̸≡ ∩ A; by Lemma 7.47, it is either equal to A or of the form q ̸≡ ∩ A with q some point of T1.
In the latter case, we can use the fact that x is noncollinear to y to conclude that q = x1. In any
case, the point x is indeed noncollinear to x ̸≡

1 ∩A, which proves the claim.
We can now apply Lemma 8.64 to x, and obtain that x is linelike or symplectic to all points of

Tx1 . Let z be a point of Tx1 , then z is linelike or symplectic to x and special to q1. Corollary 8.9
then implies that [z, q1] = x1 is linelike to p. This concludes the proof. □

Lemma 8.69. Let q1 and q2 be two special points, let A be an A2-plane containing q1 and q2 and let T1

be the transversal in A that contains q1 and [q1, q2]. If a point p is linelike to q1, symplectic to q2 and
noncollinear to A, then p is linelike to each, but at most one, point of T1.

Proof. Let T be a transversal that contains q1 and p, and let x be any point on T \ {q1, p}. The
point q2 is symplectic to p and special to q1 ∈ T , we can hence use Corollary 8.9 to obtain that
[q1, q2] is linelike to all points of T \ {p}, and in particular to x. We claim that x is linelike to all
points of T1. To that end, we first determine x ̸≡ ∩A. By Corollary 6.2, every point noncollinear
to p and q1 is noncollinear to all points of T , and hence to x. This implies that q ̸≡1 ∩A is contained
in x ̸≡. Moreover, any point in x ̸≡∩A is noncollinear to x and p, and again by Corollary 6.2, also
to q1. We conclude that x ̸≡∩A = q ̸≡1 ∩A. Take z in A linelike to q1 but not on T1. By Lemma 8.65,
applied to x, we find that x is linelike or symplectic to z. We can now apply Lemma 8.68 to x,
and find that x is linelike to all points of T1 \ {q1}. The point x is obviously also linelike to q1,
which proves the claim. The point x was an arbitrary point of T \ {p, q1}, so we conclude that
each point of T \ {p} is linelike to each point of T1.

Next, let x1 be any point of T1 \ {q1}. By the previous paragraph, the point x1 is linelike
to all points of T \ {p}, so Lemma 8.63 implies that x1 is linelike or symplectic to p. Let A′ be
an A2-plane that contains T . Assume that x1 is symplectic to p, we aim to prove that x ̸≡

1 ∩ A′

contains p̸≡ ∩ A′. The point x1 is linelike to at least two points of T , so, using Lemma 8.65, we
find that x ̸≡

1 ∩ A′ is either A′ or equals x ̸≡ ∩ A′, for some point x on T . In the latter case, x1

is moreover linelike or symplectic to all points of T ′
x, with T ′

x the transversal in A′ through x

different from T . In the former case, we immediately obtain that p̸≡ ∩ A′ is contained in x ̸≡
1 .

Therefore, suppose that we are in the latter case. Lemma 8.68 implies that x1 is linelike to all
points of T \ {x}. The point x1 is assumed to be symplectic to p ∈ T , so this implies that x = p.
We again obtain that p̸≡ ∩A′ is contained in x ̸≡

1 .
Suppose for a contradiction that p is symplectic to another point x′

1 of T1 \{q1}. Then, by the
previous paragraph, both x1 and x′

1 are noncollinear to the set p̸≡ ∩A′. Using Corollary 6.2, we
find that every point of T is noncollinear to the set p̸≡ ∩ A′, including q1, a contradiction. We
conclude that p is indeed linelike to each, but at most one, point of T1. □
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Corollary 8.10. Let x be a point and T a transversal. If x is linelike to at least two points of T , it is
linelike to all but at most one point of T . If x is moreover not linelike to p ∈ T , then p̸≡ ∩ A ⊆ x ̸≡ for
any A2-plane A that contains T .

Proof. Let A be an A2-plane that contains T . Using Lemma 7.47, we see that x ̸≡ ∩ A is either A
or is of the form p̸≡ ∩ A with p some point of T . In any case, we can pick a point p of T such
that p ̸≡ ∩ A ⊆ x ̸≡. Let q be a point in A linelike to p but not on T . By Lemma 7.58, the point x
is linelike or symplectic to q. If x is linelike to q, we use Proposition 7.13 to see that x coincides
with p, which proves the assertion. Suppose that x is symplectic to q. If x ̸≡ ∩A = p ̸≡ ∩A, then,
by Lemma 8.68, the point x is linelike to T \ {p}. If on the other hand, x ̸≡ ∩A = A, then we use
Lemma 8.69 to conclude that x is linelike to all but at most one point of T . □

We of course want to obtain a stronger version of Corollary 8.10, namely that a point is
linelike to zero, one or all points of a transversal. We will prove this in Proposition 8.14. Once
again Axiom (Im3) will play a crucial role. We first prove an in-between lemma.

Lemma 8.70. Let p be a point, and let T1 and T2 be two transversals through p. If some point q1 of T1

is symplectic to some point q2 of T2 but linelike to all other points of T2, then q2 is linelike to all points
of T1 different from q1.

Proof. Let x2 be any point of T2 \ {q2}. By assumption, this point is linelike to both p and q1 of
T1, so Corollary 8.10 implies that there is at most one point on T1 that is not linelike to x2. In
particular, we find some point x1 ∈ T1 \ {p, q1} that is linelike to x2.

We claim that x1 is linelike to q2. Suppose not. Let A be an A2-plane that contains T2. Both
points q1 and x1 are then linelike to p and x2 of T2, but not to q2. Corollary 8.10 then implies
that both q1 and x1 are noncollinear to q ̸≡2 ∩ A. The points q1 and x1 are both contained in the
transversal T1, so Corollary 6.2 then implies that q ̸≡2 ∩ A is noncollinear to all points of T1, in
particular to p ∈ A, a contradiction. The claim follows. The point q2 is linelike to both p and
x1 on T1, and is symplectic to q1 ∈ T1. We can again use Corollary 8.10 and obtain that q2 is
linelike to T1 \ {q1}. □

Proposition 8.14. If a point is linelike to at least two points of a transversal, it is linelike to all points
of that transversal.

Proof. Let q1 be a point and T2 a transversal, and suppose that q1 is linelike to at least two points
of T2. By Corollary 6.2, we have that q1 is linelike or symplectic to all points of T2. Suppose for
a contradiction that there is some point q2 on T2 that is symplectic to q1.

By Corollary 8.10, the point q1 is linelike to T2 \{q2}. Take any point p on T2 \{q2}, and let T1

be a transversal that contains q1 and p. By Lemma 8.70, the point q2 is linelike to T1 \ {q1}. We
will prove that q ̸≡1 = q ̸≡2 . The points q1 and q2 clearly play the same role, so it suffices to show
q ̸≡1 ⊆ q ̸≡2 . Let x be any point noncollinear to q1. We prove that x is also noncollinear to q2.

First assume that x is linelike or symplectic to q1. By Lemma 7.44, the point x is noncollinear
to every point that is linelike to q1. The point q1 is, however, linelike to T2 \ {q2}. So, x is
noncollinear to T2 \ {q2}. By Corollary 6.2, the point x is then noncollinear to all points of T2,
including q2.

Now assume that x is special to q1 and denote x1 := [x, q1]. The point x1 is linelike to q1, and
is, by the reasoning above, hence noncollinear to all points of T2. We claim that x1 is linelike
or symplectic to q2. If x1 is linelike or symplectic to at least two points of T2, Lemma 8.63
implies that it is linelike or symplectic to all points of T2, including q2. If not, then there is
a point x2 ∈ T2 \ {q2} that is special to x1. In this case, both x1 and x2 are linelike to q1, so
Proposition 7.13 yields q1 = [x1, x2]. Let Ax be any A2-plane containing x1 and x2, and let Tx be
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the transversal in Ax through q1 and x2. The point q1 is linelike to T2 \ {q2}, so by Lemma 8.70,
the point q2 is linelike to Tx \{q1}. Then Corollary 8.10 implies that q2 is noncollinear to q ̸≡1 ∩Ax

and Lemma 8.65 then implies that q2 is linelike or symplectic to all points of Ax that are linelike
to q1. The point x1 being such a point, we indeed obtain that q2 is linelike or symplectic to x1.
Using Lemma 7.44, we find that q2 is noncollinear to all points that are linelike to x1. The point
x is of course linelike to x1, so we conclude that x is indeed noncollinear to q2.

We have obtained that q ̸≡1 = q ̸≡2 . Axiom (Im3) implies q1 = q2, a contradiction. This con-
cludes the proof of the proposition. □

We finish this subsection by gathering two corollaries which will be useful later on.

Corollary 8.11. Let q1 and q2 be two special points. If a point p is linelike to q1 and symplectic to q2, it
is linelike to [q1, q2].

Proof. Let T be a transversal through p and q1. The point q2 is symplectic to p and special
to q1, so, by Corollary 8.9, the point [q1, q2] is linelike to T \ {p}. Using Proposition 8.14, we
immediately obtain that [q1, q2] is linelike to all points of T , and hence also to p. □

Corollary 8.12. Let q1 and q2 be two special points. If a point p is symplectic to both q1 and q2, it is
linelike or symplectic to [q1, q2].

Proof. Assume for a contradiction that p is special to [q1, q2]. For i = 1, 2, the point qi is linelike
to [q1, q2] and symplectic to p. Using Corollary 8.11, we find that qi is linelike to [p, [q1, q2]].
This point [p, [q1, q2]] is hence linelike to both points q1 and q2, and, by Proposition 7.13, equals
[q1, q2], a contradiction. □

8.2. Translation to the language of root filtration spaces. We define a new line set L on E ,
and define relations on E that will turn out to define the filtration on (E ,L ). One should note
that these relations are actually just a rebranding of those considered in Definition 6.25.

Definition 8.27. We define the following relations on E :

E−2 := {(x, y) |x = y},
E−1 := {(x, y) |x and y are linelike},
E0 := {(x, y) |x and y are symplectic},
E1 := {(x, y) |x and y are special},
E2 := {(x, y) |x and y are collinear}.

Let L denote the set of transversals of Y . We will denote with X the point-line geometry (E ,L ),
equipped this filtration {Ei}−2≤i≤2.

Lemma 8.71. The sets Ei, with −2 ≤ i ≤ 2 provide a partition of E × E into five symmetric relations.
Every element of L contains at least six points.

Proof. It is clear from Definition 6.25 that the relations are symmetric. The fact that the relations
form a partition follows from Lemma 6.37, Proposition 6.9 and Corollary 6.5. An element T of
L is a transversal of Y , and is hence a transversal in some A2-plane of Y , which is defined over
a field with at least five elements, implying that T contains at least six points. □

Axioms (Rf1) and (Rf2) hold by definition in X , we hence start with proving Axiom (Rf3).

Lemma 8.72. Axiom (Rf3) holds in X .
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Proof. Let x and y be special points, then, by Proposition 7.13, there is a unique point [x, y] that
is linelike to both x and y. We check that [x, y] indeed satisfies the Axiom (Rf3). Let z be any
point in Ei(x) ∩ Ej(y), we aim to prove that z is contained in E≤i+j([x, y]). It suffices to check
this for i ≤ j and for i+ j ≤ 1.

• Suppose that i = −2. Then z equals x, which automatically means that y is special to z
(i.e. j = 1), and that [x, y] is indeed linelike to z.

• Suppose that i = −1. If j = −1, then, by Proposition 7.13, the point z equals [x, y]. If j =
0, then it follows from Corollary 8.11 that z is linelike to [x, y]. If j = 1, then it follows
from Corollary 7.7 that z is linelike or symplectic to [x, y]. If j = 2, then it suffices
to prove that z is noncollinear to [x, y]. But z is linelike to x and is by Lemma 7.44
noncollinear to all points linelike to x, in particular indeed to [x, y].

• Suppose that i = 0. If j = 0, then it follows from Corollary 8.12 that z is linelike or
symplectic to [x, y]. If j = 1, we have to prove that z is noncollinear to [x, y]. The point
z is symplectic to x and is by Lemma 7.44 noncollinear to all points linelike to x, in
particular to [x, y].

□

Lemma 8.73. Axioms (Rf4)− (Rf8) hold in X .

Proof. Axiom (Rf4) holds by Lemma 7.45. Axiom (Rf5) holds by Corollary 6.2 for i = 1,
Lemma 8.63 for i = 0 and Proposition 8.14 for i = −1. Axiom (Rf6) holds by Corollary 6.4.
Any two collinear points of Y give rise to an element of E2, which implies that Axiom (Rf7)
holds. The space Y is connected, so in order to prove that X is connected, it suffices to find a
path in X that connects any pair (x, y) of E2. Such a pair however lies on a line of Y , and is, by
Lemma 6.42 contained in an A2-plane. Inside such an A2-plane, we of course find a path in X
connecting x and y. This proves that Axiom (Rf8) holds. □

8.3. A tedious yet unavoidable detail: X forms a partial linear space. In order to be able to
conclude that X is a root filtration space, we still have to verify that X is a partial linear space,
that is, two linelike points of Y are contained in a unique common transversal of Y . This is
what we will do in this section. In order to do so, we will use several results from [4] that hold
for (nondegenerate) root filtration spaces. Whenever we do so, the results do not depend on
this root filtration space being a partial linear space.

Lemma 8.74. For each (p, q) ∈ E0 and each (x, y) ∈ E−1 with x, y ∈ E−1(p)∩E−1(q), there is exactly
one element of L that contains x and y.

Proof. [4, Proposition 11], it is proved that the subspace E−1(p) ∩ E−1(q) satisfies the following
properties:

(1) No point is linelike with all other points.
(2) Every point is linelike with one or all points of every transversal (contained in the sub-

space).

A space with these properties is however always a partial linear space (see for example [24,
Theorem 7.3.6]). There is hence at most one element of L containing x and y that is itself
contained in E−1(p) ∩ E−1(q). Since E−1(p) and E−1(q) are subspaces in X , any element of L
that contains x and y is contained in E−1(p) ∩ E−1(q). □

Lemma 8.75. If there is some (x, y) ∈ E−1, for which there exists some p, q ∈ E−1(x) ∩ E−1(y) for
which (p, q) ∈ E0, then X is a partial linear space.
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Proof. [4, Theorem 13] implies that, if there is some point pair (x, y) ∈ E−1 for which this holds,
this holds for all point pairs in E−1. The result then follows from Lemma 8.74. □

Lemma 8.76. Let (x, y) ∈ E−1 be a pointpair such that Mx,y := E≤−1(x) ∩ E≤−1(y) consists of
mutually linelike points, then for each v with ∅ ≠ E≤−1(v) ∩Mx,y ̸= Mx,y, the set Mx,y ∩ E≤(v) is a
proper hyperplane of Mx,y . In particular, Mx,y ∩ E1(v) ̸= ∅.

Proof. It follows from [4, Lemma 16] that E≤0(v) ∩ Mx,y forms a proper subspace of Mx,y . In
particular, there exists some element w of Mx,y \ E≤0(v). There is some point of Mx,y linelike to
both v and w, implying that w ∈ E1(v). □

We are now ready to prove that X is a partial linear space. The proof is based on the idea in
[4, Lemma 17].

Lemma 8.77. The point-line geometry X is a partial linear space.

Proof. Assume that X is not a partial linear space, then there exists linelike points x and y, with
two different transversals T1 and T2 through x and y. Without loss of generality, we find a point
z2 on T2 \T1. Let A1 be an A2-plane through T1. Lemma 7.61 yields z ̸≡2 ∩A1 = z ̸≡1 ∩A1 for some
point z1 of T1 \{x, y}. Select z in A1 linelike to z1 but not on T1. Then, by Lemma 8.64, the point
z2 is linelike or symplectic to z. If it was linelike to z, then, by Proposition 7.13, z2 = [z, x] = z1,
a contradiction to z2 ̸∈ T2. We hence obtain that z2 is symplectic to z.

The set X is not a partial linear space, so, by Lemma 8.75, the sets

Mx,y := E≤−1(x) ∩ E≤−1(y) and Mz1,z := E≤−1(z) ∩ E≤−1(z1)

both consist of mutually linelike points. Note that z1, z2 ∈ Mx,y . The point z2 is linelike to z1
but not to z, so by Lemma 8.76, there is some point w ∈ Mz1,z that is special to z2. Let T be a
transversal through z and w. The point x is linelike to z1 and special to z, so, by Lemma 8.76, it
is linelike or symplectic to some point w′ of T . Note that w′ ̸= z. This point w′ is contained in
T , which is contained in Mz1,z and is hence linelike to z1. Since w′ is linelike or symplectic to x
and z1 of T1, it follows from Lemma 8.63 that w′ is also linelike or symplectic to y. This point
w′ is hence also linelike or symplectic to z2 ∈ T2. The point z2 is linelike or symplectic to both
z and w′ of T , and hence also to w, a contradiction. □

In particular, we obtain:.

Proposition 8.15. The space X is a nondegenerate root filtration space.

8.4. Last step in the proof of the Main Theorem. In this subsection, we finish the proof of
the Main Theorem. In particular, we prove that X = (E ,L ) is a long root geometry, which is
defined over a field (not F3 and of characteristic not two), and that Y is the imaginary geometry
of X . We first apply the classification theorem of root filtration spaces.

Proposition 8.16 ([4] and [13]). The point-line geometry X is a hexagonal root shadow space (possibly
of infinite rank) which is defined over a field of characteristic not two, different from F3.

We will use the correspondence of X and Y to prove that X is not just a root shadow space,
but also a long root geometry. To that end, we first describe how we can reconstruct the partial
linear space Y from X , cf. Construction 2.

Construction 3. Two points p and q are opposite in X if and only if they are collinear in Y . In this
case, we can reconstruct the line pq in Y as follows. Take any two paths (p, p1, p2, q) and (p, q1, q2, q)
in X such that p1 is special to q1 and p2 is special to q2.

pq = {[x, y] |x ∈ p1p2, y ∈ q1q2 with x special to y}.
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Proof. Follows immediately from the fact that the points p, p1, p2, q, q1 and q2 generate an A2-
plane in Y . Note that this construction is independent of the chosen points pi, qi precisely
because Y is a partial linear space. □

Proposition 8.17. X is a hexagonal long root geometry and Y is the imaginary geometry of X .

Proof. It follows from Proposition 8.16 that X is a hexagonal root shadow space. If X would be
a long root geometry, then it follows immediately from Construction 2 and Construction 3 that
Y is the imaginary geometry of X . It hence suffices to show that X is a long root geometry.

First suppose that X does not have infinite rank. Then X is related to a thick, spherical build-
ing ∆ of rank n ≥ 2. If X is related to a spherical Moufang building ∆, one easily checks that
the fact that Y is a partial linear space which can be obtained from X using Construction 3, im-
plies that X is indeed a long root geometry. We prove that ∆ is Moufang. If n > 2, this follows
immediately. Suppose that n = 2, then X is either of type A2,{1,2} or G2,1. In the former case, the
points of X coincide with the points of an A2-plane of Y , which is assumed to be defined over a
field, implying that ∆ is Moufang. In the latter case, X is a thick generalized hexagon, as noted
in Remark 2.1. In the language of generalized polygons however, Construction 3 translates to
the fact that the lines of X are distance-3-regular (see [20], also [28, Section 1.9.16]). Also, the
existence of an A2-plane through every pair of opposite lines implies readily that in the dual
generalized hexagon, with the terminology of [21], all intersection sets have size 1. The main
result of [21] (see also [28, Theorem 6.3.4]) now implies that ∆ is Moufang, and hence that X is
a long root geometry.

Next, suppose that X has infinite rank. If X is of type E (P,H), it is automatically a long root
geometry. If X is a line Grassmannian of a polar space Γ of infinite rank, one again checks that
the fact that Y is a partial linear space which can be obtained from X using Construction 3,
implies that Γ is an orthogonal polar space, and hence that X is a long root geometry. □

This concludes the proof of the Main Theorem.
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