MODERN MATHEMATICAL METHODS **2** (2024), No. 1, pp. 1-9 https://modernmathmeth.com/ ISSN 3023 - 5294

Research Article

Inequalities for the normalized determinant of positive operators in Hilbert spaces via Tominaga and Furuichi results

SILVESTRU SEVER DRAGOMIR[*](https://orcid.org/0000-0003-2902-6805)

ABSTRACT. For positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, define the normalized determinant by $\Delta_x(A) := \exp \langle \ln Ax, x \rangle$. In this paper, we prove among others that, if $0 < mI \le A \le$ MI , then

$$
1\leq \exp\left\{\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I-\frac{1}{M-m}\left|A-\frac{1}{2}(m+M)I\right|}\right)x,x\right\}\leq \frac{\Delta_x(A)}{m^{\frac{M-(Ax,x)}{M-m}}\frac{\Lambda^{A}(A)}{M-m}}\leq S\left(\frac{M}{m}\right)
$$

for $x \in H$, $||x|| = 1$, where $S(\cdot)$ is Specht's ratio.

Keywords: Positive operators, normalized determinants, inequalities.

2020 Mathematics Subject Classification: 47A63, 26D15, 46C05.

1. INTRODUCTION

Let $B(H)$ be the space of all bounded linear operators on a Hilbert space H and I stands for the identity operator on H. An operator A in $B(H)$ is said to be positive (in symbol, $A \ge 0$) if $\langle Ax, x \rangle \ge 0$ for all $x \in H$. In particular, $A > 0$ means that A is positive and invertible. For a pair A, B of self-adjoint operators the order relation $A \geq B$ means as usual that $A - B$ is positive.

In 1998, Fujii et al. [\[3,](#page-8-0) [4\]](#page-8-1), introduced the normalized determinant $\Delta_x(A)$ for positive invertible operators A on a Hilbert space H and a fixed unit vector $x \in H$, namely $||x|| = 1$, defined by $\Delta_x(A) := \exp \langle \ln Ax, x \rangle$ and discussed it as a continuous geometric mean and observed some inequalities around the determinant from this point of view. Some of the fundamental properties of normalized determinant are as follows, [\[3\]](#page-8-0).

For each unit vector $x \in H$, see also [\[6\]](#page-8-2) or [\[7\]](#page-8-3), we have:

- (i) *continuity*: the map $A \to \Delta_x(A)$ is norm continuous;
- (ii) *bounds*: $\langle A^{-1}x, x \rangle^{-1} \leq \Delta_x(A) \leq \langle Ax, x \rangle;$

(iii) *continuous mean*: $\langle A^p x, x \rangle^{1/p} \downarrow \Delta_x(A)$ for $p \downarrow 0$ and $\langle A^p x, x \rangle^{1/p} \uparrow \Delta_x(A)$ for $p \uparrow 0$;

- (iv) *power equality:* $\Delta_x(A^t) = \Delta_x(A)^t$ for all $t > 0$;
- (v) *homogeneity*: $\Delta_x(tA) = t\Delta_x(A)$ and $\Delta_x(tI) = t$ for all $t > 0$;
- (vi) *monotonicity*: $0 < A \leq B$ implies $\Delta_x(A) \leq \Delta_x(B)$;
- (vii) *multiplicativity*: $\Delta_x(AB) = \Delta_x(A)\Delta_x(B)$ for commuting A and B;
- (viii) Ky Fan type inequality: $\Delta_x((1-\alpha)A+\alpha B) \geq \Delta_x(A)^{1-\alpha}\Delta_x(B)^\alpha$ for $0 < \alpha < 1$.

Received: 28.09.2023; Accepted: 14.11.2023; Published Online: 01.01.2024

^{*}Corresponding author: Silvestru Sever Dragomir; sever.dragomir@vu.edu.au

We define the logarithmic mean of two positive numbers a, b by

$$
L(a,b) := \begin{cases} \frac{b-a}{\ln b - \ln a}, & b \neq a \\ a, & b = a \end{cases}
$$

.

.

In $[3]$ the authors obtained the following additive reverse inequality for the operator A which satisfy the condition $0 < mI < A < MI$, where m and M are positive numbers,

(1.1)
$$
0 \le \langle Ax, x \rangle - \Delta_x(A) \le L(m, M) \left[\ln L(m, M) + \frac{M \ln m - m \ln M}{M - m} - 1 \right]
$$

for all $x \in H$, $||x|| = 1$. The famous Young inequality for scalars says that if $a, b > 0$ and $\nu \in [0, 1]$, then

(1.2)
$$
a^{1-\nu}b^{\nu} \le (1-\nu)a + \nu b
$$

with equality if and only if $a = b$. The inequality [\(1.2\)](#page-1-0) is also called *v*-weighted arithmeticgeometric mean inequality. We recall that Specht's ratio is defined by [\[8\]](#page-8-4)

(1.3)
$$
S(h) := \begin{cases} \frac{h^{\frac{1}{h-1}}}{e \ln(h^{\frac{1}{h-1}})}, & h \in (0,1) \cup (1,\infty) \\ 1, & h = 1 \end{cases}
$$

It is well known that $\lim_{h\to 1} S(h) = 1$ and $S(h) = S(\frac{1}{h}) > 1$ for $h > 0$, $h \neq 1$. The function is decreasing on $(0, 1)$ and increasing on $(1, \infty)$. In [\[4\]](#page-8-1), the authors obtained the following multiplicative reverse inequality as well

$$
(1.4) \t\t\t 1 \leq \frac{\langle Ax, x \rangle}{\Delta_x(A)} \leq S\left(\frac{M}{m}\right)
$$

for $0 < mI \leq A \leq MI$ and $x \in H$, $||x|| = 1$. Since $0 < M^{-1}I \leq A^{-1} \leq m^{-1}I$, then by [\(1.4\)](#page-1-1) for A^{-1} we get

$$
1 \le \frac{\langle A^{-1}x, x \rangle}{\Delta_x(A^{-1})} \le S\left(\frac{m^{-1}}{M^{-1}}\right) = S\left(\left(\frac{m}{M}\right)^{-1}\right) = S\left(\frac{M}{m}\right),
$$

which is equivalent to

$$
(1.5) \t\t\t 1 \le \frac{\Delta_x(A)}{\left(A^{-1}x, x\right)^{-1}} \le S\left(\frac{M}{m}\right)
$$

for $x \in H$, $||x|| = 1$. The following inequality provides a refinement and a multiplicative reverse for Young's inequality

(1.6)
$$
\left(a^{1-\nu}b^{\nu} \leq\right)S\left(\left(\frac{a}{b}\right)^{r}\right)a^{1-\nu}b^{\nu} \leq \left(1-\nu\right)a+\nu b \leq S\left(\frac{a}{b}\right)a^{1-\nu}b^{\nu},
$$

where $a, b > 0, \nu \in [0, 1]$ and $r = \min\{1 - \nu, \nu\}$. The second inequality in [\(1.6\)](#page-1-2) is due to Tominaga [\[9\]](#page-8-5) while the first one is due to Furuichi [\[5\]](#page-8-6).

2. MAIN RESULTS

Our first main result is as follows:

Theorem 2.1. *If* $0 < mI \le A \le MI$ *for positive numbers m and M*, *then*

$$
\begin{aligned} \text{(2.7)}\\ \text{(2.7)}\\ \leq \exp\left\{\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I-\frac{1}{M-m}\left[A-\frac{1}{2}(m+M)I\right]}\right)x, x\right\} \\ \leq \frac{\Delta_x(A)}{m^{\frac{M-(Ax,x)}{M-m}}M^{\frac{(Ax,x)-m}{M-m}}} \\ \leq S\left(\frac{M}{m}\right) \end{aligned}
$$

for $x \in H$, $||x|| = 1$.

Proof. Assume that $t \in [m, M]$ and consider $\nu = \frac{t-m}{M-m} \in [0, 1]$. Then

$$
\min\{1-\nu,\nu\} = \frac{1}{2} - \left|\nu - \frac{1}{2}\right| = \frac{1}{2} - \left|\frac{t-m}{M-m} - \frac{1}{2}\right|
$$

$$
= \frac{1}{2} - \frac{1}{M-m} \left|t - \frac{1}{2}(m+M)\right|,
$$

$$
(1 - \nu) m + \nu M = \frac{M - t}{M - m} m + \frac{t - m}{M - m} M = t
$$

and

$$
m^{1-\nu}M^{\nu}=m^{\frac{M-t}{M-m}}M^{\frac{t-m}{M-m}}.
$$

By using the inequality (1.6) , we deduce

$$
(2.8) \t m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}} \leq S \left(\left(\frac{M}{m} \right)^{\frac{1}{2} - \frac{1}{M-m} |t - \frac{1}{2}(m+M)|} \right) m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}}
$$

$$
\leq t \leq S \left(\frac{M}{m} \right) m^{\frac{M-t}{M-m}} M^{\frac{t-m}{M-m}}
$$

for $t \in [m, M]$. By taking the log in [\(2.8\)](#page-2-0), we get

$$
(2.9) \qquad \frac{M-t}{M-m} \ln m + \frac{t-m}{M-m} \ln M
$$
\n
$$
\leq \ln S \left(\left(\frac{M}{m} \right)^{\frac{1}{2} - \frac{1}{M-m} \left| t - \frac{1}{2} (m+M) \right|} \right) + \frac{M-t}{M-m} \ln m + \frac{t-m}{M-m} \ln M
$$
\n
$$
\leq \ln t
$$
\n
$$
\leq \ln S \left(\frac{M}{m} \right) + \frac{M-t}{M-m} \ln m + \frac{t-m}{M-m} \ln M
$$

for $t \in [m, M]$. If $0 < mI \le A \le MI$, then by using the continuous functional calculus for self-adjoint operators, we get from [\(2.9\)](#page-2-1) that

$$
\ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m}
$$

\n
$$
\leq \ln S \left(\left(\frac{M}{m} \right)^{\frac{1}{2}I - \frac{1}{M - m} |A - \frac{1}{2}(m + M)I|} \right) + \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m}
$$

\n
$$
\leq \ln A
$$

\n
$$
\leq \ln S \left(\frac{M}{m} \right) I + \ln m \frac{MI - A}{M - m} + \ln M \frac{A - mI}{M - m},
$$

which is equivalent to

$$
\ln m \frac{M - \langle Ax, x \rangle}{M - m} + \ln M \frac{\langle Ax, x \rangle - m}{M - m}
$$
\n
$$
\leq \left\langle \ln S \left(\left(\frac{M}{m} \right)^{\frac{1}{2}I - \frac{1}{M - m} |A - \frac{1}{2}(m + M)I|} \right) x, x \right\rangle
$$
\n
$$
+ \ln m \frac{M - \langle Ax, x \rangle}{M - m} + \ln M \frac{\langle Ax, x \rangle - m}{M - m}
$$
\n
$$
\leq \left\langle \ln Ax, x \right\rangle \leq \ln S \left(\frac{M}{m} \right) + \ln m \frac{M - \langle Ax, x \rangle}{M - m} + \frac{\langle Ax, x \rangle - m}{M - m} \ln M
$$

for $x \in H$, $||x|| = 1$. This inequality can also be written as

$$
(2.10) \qquad \ln\left(m\frac{M - \langle Ax, x \rangle}{M - m} M^{\frac{\langle Ax, x \rangle - m}{M - m}}\right)
$$
\n
$$
\leq \ln\left(\exp\left(\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{M - m}\left|A - \frac{1}{2}(m + M)I\right|}\right)x, x\right)\right)
$$
\n
$$
+ \ln\left(m\frac{M - \langle Ax, x \rangle}{M - m} M^{\frac{\langle Ax, x \rangle - m}{M - m}}\right)
$$
\n
$$
\leq \langle \ln Ax, x \rangle \leq \ln S\left(\frac{M}{m}\right) + \ln\left(m\frac{M - \langle Ax, x \rangle}{M - m} M^{\frac{\langle Ax, x \rangle - m}{M - m}}\right)
$$

for $x \in H$, $||x|| = 1$. If we take the exponential in [\(2.10\)](#page-3-0), then we get

$$
m^{\frac{M-(Ax,x)}{M-m}} M^{\frac{(Ax,x)-m}{M-m}}
$$

\n
$$
\leq \left(\exp\left(\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I-\frac{1}{M-m}|A-\frac{1}{2}(m+M)I|}\right)x,x\right)\right) m^{\frac{M-(Ax,x)}{M-m}} M^{\frac{(Ax,x)-m}{M-m}}
$$

\n
$$
\leq \exp\left\langle \ln Ax,x\right\rangle \leq S\left(\frac{M}{m}\right) m^{\frac{M-(Ax,x)}{M-m}} M^{\frac{(Ax,x)-m}{M-m}}
$$

and the inequality (2.7) is proved. \Box

Remark 2.1. *From [\(1.4\)](#page-1-1) and [\(2.7\)](#page-2-2), we derive the following inequalities in terms of Specht's ratio*

$$
(2.11) \qquad \qquad \frac{m^{\frac{M-(Ax,x)}{M-m}}M^{\frac{(Ax,x)-m}{M-m}}}{S\left(\frac{M}{m}\right)} \le \frac{\langle Ax,x\rangle}{S\left(\frac{M}{m}\right)} \le \Delta_x(A) \le S\left(\frac{M}{m}\right) m^{\frac{M-(Ax,x)}{M-m}}M^{\frac{(Ax,x)-m}{M-m}}
$$

for $x \in H$, $||x|| = 1$.

Corollary 2.1. *With the assumption of Theorem [2.1,](#page-2-3) we get*

$$
\begin{aligned} \text{(2.12)} \qquad & 1 \le \exp\left\{\ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{m-1-M^{-1}}\left|A^{-1} - \frac{1}{2}\left(M^{-1} + m^{-1}\right)I\right|}\right)x, x\right\} \\ & \le \frac{\frac{m^{-1} - \left(A^{-1}x, x\right)}{M - m^{-1} - M^{-1}m} \frac{\left(A^{-1}x, x\right) - M^{-1}}{m^{-1} - M^{-1}}}{\Delta_x(A)} \\ &\le S\left(\frac{M}{m}\right) \end{aligned}
$$

for $x \in H$, $||x|| = 1$.

Proof. If we write the inequality for A^{-1} that satisfies the condition $0 < M^{-1}I \le A^{-1} \le m^{-1}I$, then

$$
1 \le \exp\left\langle \ln S\left(\left(\frac{m^{-1}}{M^{-1}}\right)^{\frac{1}{2}I - \frac{1}{m^{-1}-M^{-1}}\left|A^{-1}-\frac{1}{2}\left(M^{-1}+m^{-1}\right)I\right|}}\right)x, x \right\rangle
$$

$$
\le \frac{\Delta_x(A^{-1})}{M^{-\frac{m^{-1}-(A^{-1}x,x)}{m^{-1}-M^{-1}}m^{-\frac{(A^{-1}x,x)-M^{-1}}{m^{-1}-M^{-1}}}}}
$$

$$
\le S\left(\frac{m^{-1}}{M^{-1}}\right),
$$

namely

$$
1 \le \exp\left\langle \ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{m-1-M^{-1}}|A^{-1} - \frac{1}{2}(M^{-1} + m^{-1})I|}\right)x, x \right\rangle
$$

$$
\le \frac{\Delta_x(A^{-1})}{M^{-\frac{m-1}{m-1-M^{-1}}m}m^{-\frac{(A^{-1}x,x)-M^{-1}}{m^{-1}-M^{-1}}}}
$$

$$
\le S\left(\frac{M}{m}\right)
$$

or

$$
1 \le \exp\left\langle \ln S\left(\left(\frac{M}{m}\right)^{\frac{1}{2}I - \frac{1}{m-1-M-1}\left|A^{-1} - \frac{1}{2}\left(M^{-1} + m^{-1}\right)I\right|}\right)x, x \right\rangle
$$

$$
\le \frac{\left[\Delta_x(A)\right]^{-1}}{\left(M^{\frac{m-1}{m-1-M-1}}M^{-1} \frac{\left(A^{-1}x, x\right) - M^{-1}}{m^{-1} - M^{-1}}\right)^{-1}}
$$

$$
\le S\left(\frac{M}{m}\right),
$$

which is equivalent to the desired result (2.12) . \Box

Corollary 2.2. *If* $0 < mI \le A$, $B \le MI$ *for positive numbers m and M*, *then*

(2.13)
$$
\frac{\frac{m^{\frac{M-1}{M-m}} M^{\frac{1-m}{M-m}}}{\ln\left(\frac{M}{m}\right)} \Theta(A, B, m, M, x)}{S\left(\frac{M}{m}\right)} \leq \frac{\left\langle \frac{A+B}{2} x, x \right\rangle}{S\left(\frac{M}{m}\right)}
$$

$$
\leq \int_0^1 \Delta_x ((1-t) A + tB) dt
$$

$$
\leq S\left(\frac{M}{m}\right) \frac{m^{\frac{M-1}{M-m}} M^{\frac{1-m}{M-m}}}{\ln\left(\frac{M}{m}\right)} \Theta(A, B, m, M, x),
$$

where

$$
\Theta(A, B, m, M, x) := \begin{cases} \frac{\left(\frac{M}{m}\right)^{\frac{\left(\left(B-A\right)x, x\right)}{M-m}} - 1}{\frac{\left(\left(B-A\right)x, x\right)}{M-m}} , & \left(\left(B-A\right)x, x\right) \neq 0\\ 1, & \left(\left(B-A\right)x, x\right) = 0 \end{cases}
$$

for $x \in H$, $||x|| = 1$.

Proof. From [\(2.11\)](#page-3-1), we get

$$
\frac{m^{\frac{M-([(1-t)A+tB]x,x)}{M-m}} M^{\frac{\langle [(1-t)A+tB]x,x\rangle-m}{M-m}}}{S\left(\frac{M}{m}\right)}
$$
\n
$$
\leq \frac{\langle [(1-t)A+tB]x,x\rangle}{S\left(\frac{M}{m}\right)} \leq \Delta_x((1-t)A+tB)
$$
\n
$$
\leq S\left(\frac{M}{m}\right) m^{\frac{M-([(1-t)A+tB]x,x)}{M-m}} M^{\frac{\langle [(1-t)A+tB]x,x\rangle-m}{M-m}}
$$

for $t\in[0,1]$. If we take the integral over $t\in[0,1]$, then we get

$$
(2.14) \quad \frac{\int_0^1 m^{\frac{M - \langle [(1-t)A + tB]x, x\rangle}{M-m}} M^{\frac{\langle [(1-t)A + tB]x, x\rangle - m}{M-m}} dt}{S\left(\frac{M}{m}\right)} \quad \leq \frac{\left\langle \frac{A+B}{2}x, x \right\rangle}{S\left(\frac{M}{m}\right)} \quad \leq \int_0^1 \Delta_x ((1-t)A + tB) dt \quad \leq S\left(\frac{M}{m}\right) \int_0^1 m^{\frac{M - \langle [(1-t)A + tB]x, x\rangle}{M-m}} M^{\frac{\langle [(1-t)A + tB]x, x\rangle - m}{M-m}} dt.
$$

Observe that

$$
\int_{0}^{1} m^{\frac{M - \langle [(1-t)A + tB]x, x\rangle}{M-m}} M^{\frac{\langle [(1-t)A + tB]x, x\rangle - m}{M-m}} dt = m^{\frac{M}{M-m}} M^{\frac{-m}{M-m}} \int_{0}^{1} \left(\frac{M}{m}\right)^{\frac{\langle [(1-t)A + tB]x, x\rangle}{M-m}} dt
$$

$$
= m^{\frac{M}{M-m}} M^{\frac{-m}{M-m}} \left(\frac{M}{m}\right)^{\frac{1}{M-m}} \int_{0}^{1} \left(\frac{M}{m}\right)^{t^{\frac{\langle (B-A)x, x\rangle}{M-m}}}
$$

$$
= m^{\frac{M-1}{M-m}} M^{\frac{1-m}{M-m}} \int_{0}^{1} \left(\frac{M}{m}\right)^{t^{\frac{\langle (B-A)x, x\rangle}{M-m}}}
$$
 dt.

Since for $a > 0$, $a \neq 1$ and $b \in \mathbb{R}$, we have

$$
\int_0^1 a^{bx} dx = \frac{a^b - 1}{b \ln a}
$$

then, for $\langle (B - A)x, x \rangle \neq 0$

$$
\int_0^1 \left(\frac{M}{m}\right)^{t\frac{\langle (B-A)x, x\rangle}{M-m}} dt = \frac{\left(\frac{M}{m}\right)^{\frac{\langle (B-A)x, x\rangle}{M-m}} - 1}{\frac{\langle (B-A)x, x\rangle}{M-m}\ln\left(\frac{M}{m}\right)}
$$

and by (2.14) , we derive (2.13) .

3. RELATED RESULTS

We also have this theorem.

Theorem 3.2. *With the assumption of Theorem [2.1,](#page-2-3) we have that*

$$
\begin{aligned} \text{(3.15)}\\ \text{(3.15)}\\ \leq \frac{\left(\left(\frac{M}{m}\right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \langle \ln Ax, x \rangle - \frac{\ln M + \ln m}{2} \right|}}{\frac{\ln M - \langle \ln Ax, x \rangle}{\ln M - \ln m} m + \frac{\langle \ln Ax, x \rangle - \ln m}{\ln M - \ln m} M} \\ \leq S \left(\frac{M}{m}\right) \end{aligned}
$$

for $x \in H$, $||x|| = 1$.

Proof. Assume that $m^{1-\nu}M^{\nu} = \exp s$, then $s = (1 - \nu) \ln m + \nu \ln M \in [\ln m, \ln M]$, which gives that

$$
\nu = \frac{s - \ln m}{\ln M - \ln m}.
$$

Also,

$$
\min \{ 1 - \nu, \nu \} = \frac{1}{2} - \left| \frac{s - \ln m}{\ln M - \ln m} - \frac{1}{2} \right|
$$

= $\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| s - \frac{\ln M + \ln m}{2} \right|$.

From [\(2.7\)](#page-2-2), we get

$$
\exp s \le S \left(\left(\frac{M}{m} \right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| s - \frac{\ln M + \ln m}{2} \right|} \right) \exp s
$$

$$
\le \frac{\ln M - s}{\ln M - \ln m} m + \frac{s - \ln m}{\ln M - \ln m} M
$$

$$
\le S \left(\frac{M}{m} \right) \exp s,
$$

namely

$$
1 \leq S \left(\left(\frac{M}{m} \right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| s - \frac{\ln M + \ln m}{2} \right|} \right)
$$

$$
\leq \frac{\frac{\ln M - s}{\ln M - \ln m} m + \frac{s - \ln m}{\ln M - \ln m} M}{\exp s}
$$

$$
\leq S \left(\frac{M}{m} \right)
$$

for $s \in [\ln m, \ln M]$. If $0 < m \le A \le M$ and $x \in H$, $||x|| = 1$, then $\ln m \le \langle \ln Ax, x \rangle \le \ln M$ and for $s = \langle \ln Ax, x \rangle$, we deduce

$$
1 \leq S \left(\left(\frac{M}{m} \right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \langle \ln Ax, x \rangle - \frac{\ln M + \ln m}{2} \right|} \right)
$$

$$
\leq \frac{\frac{\ln M - \langle \ln Ax, x \rangle}{\ln M - \ln m} m + \frac{\langle \ln Ax, x \rangle - \ln m}{\ln M - \ln m} M}{\exp \langle \ln Ax, x \rangle}
$$

$$
\leq S \left(\frac{M}{m} \right),
$$

which is equivalent to (3.15) .

Corollary 3.3. *With the assumption of Theorem [2.1,](#page-2-3) we get*

$$
(3.16) \qquad 1 \leq S \left(\left(\frac{M}{m} \right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \langle \ln Ax, x \rangle - \frac{\ln m + \ln M}{2} \right|} \right)
$$
\n
$$
\leq \frac{\Delta_x(A)}{\left(\frac{\langle \ln Ax, x \rangle - \ln m}{\ln M - \ln m} M^{-1} + \frac{\ln M - \langle \ln Ax, x \rangle}{\ln M - \ln m} m^{-1} \right)^{-1}}
$$
\n
$$
\leq S \left(\frac{M}{m} \right)
$$

for $x \in H$, $||x|| = 1$.

Proof. If we write the inequality [\(3.15\)](#page-6-0) for A^{-1} that satisfies the condition $0 < M^{-1}I \leq A^{-1} \leq$ $m^{-1}I$, then we obtain

$$
1 \leq S \left(\left(\frac{m^{-1}}{M^{-1}} \right)^{\frac{1}{2} - \frac{1}{\ln m^{-1} - \ln M^{-1}}} \left| \langle \ln A^{-1} x, x \rangle - \frac{\ln m^{-1} + \ln M^{-1}}{2} \right| \right)
$$

$$
\leq \frac{\frac{\ln m^{-1} - \langle \ln A^{-1} x, x \rangle}{\ln m^{-1} - \ln M^{-1}} M^{-1} + \frac{\langle \ln A^{-1} x, x \rangle - \ln M^{-1}}{\ln m^{-1} - \ln M^{-1}} m^{-1}}{\Delta_x (A^{-1})}
$$

$$
\leq S \left(\frac{m^{-1}}{M^{-1}} \right),
$$

namely

$$
1 \leq S \left(\left(\frac{M}{m} \right)^{\frac{1}{2} - \frac{1}{\ln M - \ln m} \left| \langle \ln Ax, x \rangle - \frac{\ln m + \ln M}{2} \right|} \right)
$$

$$
\leq \frac{\frac{\langle \ln Ax, x \rangle - \ln m}{\ln M - \ln m} M^{-1} + \frac{\ln M - \langle \ln Ax, x \rangle}{\ln M - \ln m} m^{-1}}{\Delta_x (A^{-1})}
$$

$$
\leq S \left(\frac{M}{m} \right)
$$

for $x \in H$, $||x|| = 1$. This proves [\(3.16\)](#page-7-0). □

As further research, the author plan to investigate the applications of other inequalities like the ones from [\[1\]](#page-8-7) and [\[2\]](#page-8-8).

REFERENCES

- [1] S. S. Dragomir: *Inequalities for synchronous functions and applications*, Constr. Math. Anal., **2** (3) (2019), 109–123.
- [2] S. S. Dragomir: *Ostrowski's Type Inequalities for the Complex Integral on Paths*, Constr. Math. Anal., **3** (4) (2020), 125–138.
- [3] J. I. Fujii, Y. Seo: *Determinant for positive operators*, Sci. Math., **1** (1998), 153–156.
- [4] J. I. Fujii, S. Izumino and Y. Seo: *Determinant for positive operators and Specht's Theorem*, Sci. Math., **1** (1998), 307–310.
- [5] S. Furuichi: *Refined Young inequalities with Specht's ratio*, J. Egyptian Math. Soc., **20** (2012), 46–49.
- [6] S. Hiramatsu, Y. Seo: *Determinant for positive operators and Oppenheim's inequality*, J. Math. Inequal., **15** (4) (2021), 1637–1645.
- [7] J. Pečarić, T. Furuta, J. Mičić-Hot and Y. Seo: *Mond-Pečarić Method in Operator Inequalities*, Monographs in Inequalities 1, Element, Zagreb (2005).
- [8] W. Specht: *Zer Theorie der elementaren Mittel*, Math. Z., **74** (1960), 91–98.
- [9] M. Tominaga: *Specht's ratio in the Young inequality*, Sci. Math. Jpn., **55** (2002), 583–588.

SILVESTRU SEVER DRAGOMIR VICTORIA UNIVERSITY COLLEGE OF ENGINEERING & SCIENCE MELBOURNE CITY, MC 8001, AUSTRALIA UNIVERSITY OF THE WITWATERSRAND SCHOOL OF COMPUTER SCIENCE & APPLIED MATHEMATICS PRIVATE BAG 3, JOHANNESBURG 2050, SOUTH AFRICA *Email address*: sever.dragomir@vu.edu.au