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Inequalities for the normalized determinant of positive
operators in Hilbert spaces via Tominaga and Furuichi results

SILVESTRU SEVER DRAGOMIR*

ABSTRACT. For positive invertible operators A on a Hilbert space H and a fixed unit vector x ∈ H, define the
normalized determinant by ∆x(A) := exp ⟨lnAx, x⟩. In this paper, we prove among others that, if 0 < mI ≤ A ≤
MI, then

1 ≤ exp

〈
lnS

((
M

m

) 1
2
I− 1

M−m |A− 1
2
(m+M)I|)

x, x

〉
≤

∆x(A)

m
M−⟨Ax,x⟩

M−m M
⟨Ax,x⟩−m

M−m

≤ S

(
M

m

)
for x ∈ H, ∥x∥ = 1, where S (·) is Specht’s ratio.
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1. INTRODUCTION

Let B(H) be the space of all bounded linear operators on a Hilbert space H and I stands for
the identity operator on H . An operator A in B(H) is said to be positive (in symbol, A ≥ 0) if
⟨Ax, x⟩ ≥ 0 for all x ∈ H . In particular, A > 0 means that A is positive and invertible. For a pair
A, B of self-adjoint operators the order relation A ≥ B means as usual that A−B is positive.

In 1998, Fujii et al. [3, 4], introduced the normalized determinant ∆x(A) for positive invert-
ible operators A on a Hilbert space H and a fixed unit vector x ∈ H, namely ∥x∥ = 1, defined
by ∆x(A) := exp ⟨lnAx, x⟩ and discussed it as a continuous geometric mean and observed
some inequalities around the determinant from this point of view. Some of the fundamental
properties of normalized determinant are as follows, [3].

For each unit vector x ∈ H, see also [6] or [7], we have:

(i) continuity: the map A → ∆x(A) is norm continuous;
(ii) bounds:

〈
A−1x, x

〉−1 ≤ ∆x(A) ≤ ⟨Ax, x⟩;
(iii) continuous mean: ⟨Apx, x⟩1/p ↓ ∆x(A) for p ↓ 0 and ⟨Apx, x⟩1/p ↑ ∆x(A) for p ↑ 0;
(iv) power equality: ∆x(A

t) = ∆x(A)t for all t > 0;
(v) homogeneity: ∆x(tA) = t∆x(A) and ∆x(tI) = t for all t > 0;

(vi) monotonicity: 0 < A ≤ B implies ∆x(A) ≤ ∆x(B);
(vii) multiplicativity: ∆x(AB) = ∆x(A)∆x(B) for commuting A and B;

(viii) Ky Fan type inequality: ∆x((1− α)A+ αB) ≥ ∆x(A)1−α∆x(B)α for 0 < α < 1.

Received: 28.09.2023; Accepted: 14.11.2023; Published Online: 01.01.2024
*Corresponding author: Silvestru Sever Dragomir; sever.dragomir@vu.edu.au

1

https://orcid.org/0000-0003-2902-6805


2 Silvestru Sever Dragomir

We define the logarithmic mean of two positive numbers a, b by

L (a, b) :=


b−a

ln b−ln a , b ̸= a

a, b = a
.

In [3] the authors obtained the following additive reverse inequality for the operator A which
satisfy the condition 0 < mI ≤ A ≤ MI, where m and M are positive numbers,

(1.1) 0 ≤ ⟨Ax, x⟩ −∆x(A) ≤ L (m,M)

[
lnL (m,M) +

M lnm−m lnM

M −m
− 1

]
for all x ∈ H, ∥x∥ = 1. The famous Young inequality for scalars says that if a, b > 0 and
ν ∈ [0, 1], then

(1.2) a1−νbν ≤ (1− ν) a+ νb

with equality if and only if a = b. The inequality (1.2) is also called ν-weighted arithmetic-
geometric mean inequality. We recall that Specht’s ratio is defined by [8]

(1.3) S (h) :=


h

1
h−1

e ln

(
h

1
h−1

) , h ∈ (0, 1) ∪ (1,∞)

1, h = 1

.

It is well known that limh→1 S (h) = 1 and S (h) = S
(
1
h

)
> 1 for h > 0, h ̸= 1. The function

is decreasing on (0, 1) and increasing on (1,∞) . In [4], the authors obtained the following
multiplicative reverse inequality as well

(1.4) 1 ≤ ⟨Ax, x⟩
∆x(A)

≤ S

(
M

m

)
for 0 < mI ≤ A ≤ MI and x ∈ H, ∥x∥ = 1. Since 0 < M−1I ≤ A−1 ≤ m−1I, then by (1.4) for
A−1 we get

1 ≤
〈
A−1x, x

〉
∆x(A−1)

≤ S

(
m−1

M−1

)
= S

((m
M

)−1
)

= S

(
M

m

)
,

which is equivalent to

(1.5) 1 ≤ ∆x(A)

⟨A−1x, x⟩−1 ≤ S

(
M

m

)
for x ∈ H, ∥x∥ = 1. The following inequality provides a refinement and a multiplicative reverse
for Young’s inequality

(1.6)
(
a1−νbν ≤

)
S
((a

b

)r)
a1−νbν ≤ (1− ν) a+ νb ≤ S

(a
b

)
a1−νbν ,

where a, b > 0, ν ∈ [0, 1] and r = min {1− ν, ν}. The second inequality in (1.6) is due to
Tominaga [9] while the first one is due to Furuichi [5].
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2. MAIN RESULTS

Our first main result is as follows:

Theorem 2.1. If 0 < mI ≤ A ≤ MI for positive numbers m and M, then

1 ≤ exp

〈
lnS

((
M

m

) 1
2 I−

1
M−m |A− 1

2 (m+M)I|)
x, x

〉
(2.7)

≤ ∆x(A)

m
M−⟨Ax,x⟩

M−m M
⟨Ax,x⟩−m

M−m

≤ S

(
M

m

)
for x ∈ H, ∥x∥ = 1.

Proof. Assume that t ∈ [m,M ] and consider ν = t−m
M−m ∈ [0, 1] . Then

min {1− ν, ν} =
1

2
−
∣∣∣∣ν − 1

2

∣∣∣∣ = 1

2
−
∣∣∣∣ t−m

M −m
− 1

2

∣∣∣∣
=

1

2
− 1

M −m

∣∣∣∣t− 1

2
(m+M)

∣∣∣∣ ,
(1− ν)m+ νM =

M − t

M −m
m+

t−m

M −m
M = t

and

m1−νMν = m
M−t
M−mM

t−m
M−m .

By using the inequality (1.6), we deduce

m
M−t
M−mM

t−m
M−m ≤ S

((
M

m

) 1
2−

1
M−m |t− 1

2 (m+M)|)
m

M−t
M−mM

t−m
M−m(2.8)

≤ t

≤ S

(
M

m

)
m

M−t
M−mM

t−m
M−m

for t ∈ [m,M ] . By taking the log in (2.8), we get

M − t

M −m
lnm+

t−m

M −m
lnM(2.9)

≤ lnS

((
M

m

) 1
2−

1
M−m |t− 1

2 (m+M)|)
+

M − t

M −m
lnm+

t−m

M −m
lnM

≤ ln t

≤ lnS

(
M

m

)
+

M − t

M −m
lnm+

t−m

M −m
lnM
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for t ∈ [m,M ] . If 0 < mI ≤ A ≤ MI, then by using the continuous functional calculus for
self-adjoint operators, we get from (2.9) that

lnm
MI −A

M −m
+ lnM

A−mI

M −m

≤ lnS

((
M

m

) 1
2 I−

1
M−m |A− 1

2 (m+M)I|)
+ lnm

MI −A

M −m
+ lnM

A−mI

M −m

≤ lnA

≤ lnS

(
M

m

)
I + lnm

MI −A

M −m
+ lnM

A−mI

M −m
,

which is equivalent to

lnm
M − ⟨Ax, x⟩

M −m
+ lnM

⟨Ax, x⟩ −m

M −m

≤

〈
lnS

((
M

m

) 1
2 I−

1
M−m |A− 1

2 (m+M)I|)
x, x

〉

+ lnm
M − ⟨Ax, x⟩

M −m
+ lnM

⟨Ax, x⟩ −m

M −m

≤⟨lnAx, x⟩ ≤ lnS

(
M

m

)
+ lnm

M − ⟨Ax, x⟩
M −m

+
⟨Ax, x⟩ −m

M −m
lnM

for x ∈ H, ∥x∥ = 1. This inequality can also be written as

ln
(
m

M−⟨Ax,x⟩
M−m M

⟨Ax,x⟩−m
M−m

)
(2.10)

≤ ln

(
exp

〈
lnS

((
M

m

) 1
2 I−

1
M−m |A− 1

2 (m+M)I|)
x, x

〉)
+ ln

(
m

M−⟨Ax,x⟩
M−m M

⟨Ax,x⟩−m
M−m

)
≤⟨lnAx, x⟩ ≤ lnS

(
M

m

)
+ ln

(
m

M−⟨Ax,x⟩
M−m M

⟨Ax,x⟩−m
M−m

)
for x ∈ H, ∥x∥ = 1. If we take the exponential in (2.10), then we get

m
M−⟨Ax,x⟩

M−m M
⟨Ax,x⟩−m

M−m

≤

(
exp

〈
lnS

((
M

m

) 1
2 I−

1
M−m |A− 1

2 (m+M)I|)
x, x

〉)
m

M−⟨Ax,x⟩
M−m M

⟨Ax,x⟩−m
M−m

≤ exp ⟨lnAx, x⟩ ≤ S

(
M

m

)
m

M−⟨Ax,x⟩
M−m M

⟨Ax,x⟩−m
M−m

and the inequality (2.7) is proved. □

Remark 2.1. From (1.4) and (2.7), we derive the following inequalities in terms of Specht’s ratio

(2.11)
m

M−⟨Ax,x⟩
M−m M

⟨Ax,x⟩−m
M−m

S
(
M
m

) ≤ ⟨Ax, x⟩
S
(
M
m

) ≤ ∆x(A) ≤ S

(
M

m

)
m

M−⟨Ax,x⟩
M−m M

⟨Ax,x⟩−m
M−m

for x ∈ H, ∥x∥ = 1.
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Corollary 2.1. With the assumption of Theorem 2.1, we get

1 ≤ exp

〈
lnS

((
M

m

) 1
2 I−

1

m−1−M−1 |A−1− 1
2 (M

−1+m−1)I|)
x, x

〉
(2.12)

≤
M

m−1−⟨A−1x,x⟩
m−1−M−1 m

⟨A−1x,x⟩−M−1

m−1−M−1

∆x(A)

≤ S

(
M

m

)
for x ∈ H, ∥x∥ = 1.

Proof. If we write the inequality for A−1 that satisfies the condition 0 < M−1I ≤ A−1 ≤ m−1I,
then

1 ≤ exp

〈
lnS

(m−1

M−1

) 1
2 I−

1

m−1−M−1 |A−1− 1
2 (M

−1+m−1)I|
x, x

〉

≤ ∆x(A
−1)

M
−m−1−⟨A−1x,x⟩

m−1−M−1 m
−⟨A−1x,x⟩−M−1

m−1−M−1

≤ S

(
m−1

M−1

)
,

namely

1 ≤ exp

〈
lnS

((
M

m

) 1
2 I−

1

m−1−M−1 |A−1− 1
2 (M

−1+m−1)I|)
x, x

〉

≤ ∆x(A
−1)

M
−m−1−⟨A−1x,x⟩

m−1−M−1 m
−⟨A−1x,x⟩−M−1

m−1−M−1

≤ S

(
M

m

)
or

1 ≤ exp

〈
lnS

((
M

m

) 1
2 I−

1

m−1−M−1 |A−1− 1
2 (M

−1+m−1)I|)
x, x

〉

≤ [∆x(A)]
−1(

M
m−1−⟨A−1x,x⟩

m−1−M−1 m
⟨A−1x,x⟩−M−1

m−1−M−1

)−1

≤ S

(
M

m

)
,

which is equivalent to the desired result (2.12). □
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Corollary 2.2. If 0 < mI ≤ A, B ≤ MI for positive numbers m and M, then

m
M−1
M−m M

1−m
M−m

ln(M
m )

Θ (A,B,m,M, x)

S
(
M
m

) ≤
〈
A+B

2 x, x
〉

S
(
M
m

)(2.13)

≤
∫ 1

0

∆x((1− t)A+ tB)dt

≤S

(
M

m

)
m

M−1
M−mM

1−m
M−m

ln
(
M
m

) Θ(A,B,m,M, x) ,

where

Θ(A,B,m,M, x) :=


(M

m )
⟨(B−A)x,x⟩

M−m −1
⟨(B−A)x,x⟩

M−m

, ⟨(B −A)x, x⟩ ≠ 0

1, ⟨(B −A)x, x⟩ = 0

for x ∈ H, ∥x∥ = 1.

Proof. From (2.11), we get

m
M−⟨[(1−t)A+tB]x,x⟩

M−m M
⟨[(1−t)A+tB]x,x⟩−m

M−m

S
(
M
m

)
≤⟨[(1− t)A+ tB]x, x⟩

S
(
M
m

) ≤ ∆x((1− t)A+ tB)

≤S

(
M

m

)
m

M−⟨[(1−t)A+tB]x,x⟩
M−m M

⟨[(1−t)A+tB]x,x⟩−m
M−m

for t ∈ [0, 1] . If we take the integral over t ∈ [0, 1] , then we get∫ 1

0
m

M−⟨[(1−t)A+tB]x,x⟩
M−m M

⟨[(1−t)A+tB]x,x⟩−m
M−m dt

S
(
M
m

)(2.14)

≤
〈
A+B

2 x, x
〉

S
(
M
m

)
≤
∫ 1

0

∆x((1− t)A+ tB)dt

≤S

(
M

m

)∫ 1

0

m
M−⟨[(1−t)A+tB]x,x⟩

M−m M
⟨[(1−t)A+tB]x,x⟩−m

M−m dt.

Observe that∫ 1

0

m
M−⟨[(1−t)A+tB]x,x⟩

M−m M
⟨[(1−t)A+tB]x,x⟩−m

M−m dt =m
M

M−mM
−m

M−m

∫ 1

0

(
M

m

) ⟨[(1−t)A+tB]x,x⟩
M−m

dt

=m
M

M−mM
−m

M−m

(
M

m

) 1
M−m

∫ 1

0

(
M

m

)t
⟨(B−A)x,x⟩

M−m

dt

=m
M−1
M−mM

1−m
M−m

∫ 1

0

(
M

m

)t
⟨(B−A)x,x⟩

M−m

dt.
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Since for a > 0, a ̸= 1 and b ∈ R, we have∫ 1

0

abxdx =
ab − 1

b ln a

then, for ⟨(B −A)x, x⟩ ≠ 0

∫ 1

0

(
M

m

)t
⟨(B−A)x,x⟩

M−m

dt =

(
M
m

) ⟨(B−A)x,x⟩
M−m − 1

⟨(B−A)x,x⟩
M−m ln

(
M
m

)
and by (2.14), we derive (2.13). □

3. RELATED RESULTS

We also have this theorem.

Theorem 3.2. With the assumption of Theorem 2.1, we have that

1 ≤ S

((
M

m

) 1
2−

1
lnM−lnm |⟨lnAx,x⟩− lnM+lnm

2 |)
(3.15)

≤
lnM−⟨lnAx,x⟩

lnM−lnm m+ ⟨lnAx,x⟩−lnm
lnM−lnm M

∆x(A)

≤ S

(
M

m

)
for x ∈ H, ∥x∥ = 1.

Proof. Assume that m1−νMν = exp s, then s = (1− ν) lnm+ν lnM ∈ [lnm, lnM ] , which gives
that

ν =
s− lnm

lnM − lnm
.

Also,

min {1− ν, ν} =
1

2
−
∣∣∣∣ s− lnm

lnM − lnm
− 1

2

∣∣∣∣
=

1

2
− 1

lnM − lnm

∣∣∣∣s− lnM + lnm

2

∣∣∣∣ .
From (2.7), we get

exp s ≤ S

((
M

m

) 1
2−

1
lnM−lnm |s− lnM+lnm

2 |)
exp s

≤ lnM − s

lnM − lnm
m+

s− lnm

lnM − lnm
M

≤ S

(
M

m

)
exp s,



8 Silvestru Sever Dragomir

namely

1 ≤ S

((
M

m

) 1
2−

1
lnM−lnm |s− lnM+lnm

2 |)

≤
lnM−s

lnM−lnmm+ s−lnm
lnM−lnmM

exp s

≤ S

(
M

m

)
for s ∈ [lnm, lnM ] . If 0 < m ≤ A ≤ M and x ∈ H, ∥x∥ = 1, then lnm ≤ ⟨lnAx, x⟩ ≤ lnM and
for s = ⟨lnAx, x⟩, we deduce

1 ≤ S

((
M

m

) 1
2−

1
lnM−lnm |⟨lnAx,x⟩− lnM+lnm

2 |)

≤
lnM−⟨lnAx,x⟩

lnM−lnm m+ ⟨lnAx,x⟩−lnm
lnM−lnm M

exp ⟨lnAx, x⟩

≤ S

(
M

m

)
,

which is equivalent to (3.15). □

Corollary 3.3. With the assumption of Theorem 2.1, we get

1 ≤ S

((
M

m

) 1
2−

1
lnM−lnm |⟨lnAx,x⟩− lnm+lnM

2 |)
(3.16)

≤ ∆x(A)(
⟨lnAx,x⟩−lnm

lnM−lnm M−1 + lnM−⟨lnAx,x⟩
lnM−lnm m−1

)−1

≤ S

(
M

m

)
for x ∈ H, ∥x∥ = 1.

Proof. If we write the inequality (3.15) for A−1 that satisfies the condition 0 < M−1I ≤ A−1 ≤
m−1I, then we obtain

1 ≤ S

(m−1

M−1

) 1
2−

1

lnm−1−lnM−1

∣∣∣⟨lnA−1x,x⟩− lnm−1+lnM−1

2

∣∣∣
≤

lnm−1−⟨lnA−1x,x⟩
lnm−1−lnM−1 M−1 +

⟨lnA−1x,x⟩−lnM−1

lnm−1−lnM−1 m−1

∆x(A−1)

≤ S

(
m−1

M−1

)
,
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namely

1 ≤ S

((
M

m

) 1
2−

1
lnM−lnm |⟨lnAx,x⟩− lnm+lnM

2 |)

≤
⟨lnAx,x⟩−lnm

lnM−lnm M−1 + lnM−⟨lnAx,x⟩
lnM−lnm m−1

∆x(A−1)

≤ S

(
M

m

)
for x ∈ H, ∥x∥ = 1. This proves (3.16). □

As further research, the author plan to investigate the applications of other inequalities like
the ones from [1] and [2].

REFERENCES

[1] S. S. Dragomir: Inequalities for synchronous functions and applications, Constr. Math. Anal., 2 (3) (2019), 109–123.
[2] S. S. Dragomir: Ostrowski’s Type Inequalities for the Complex Integral on Paths, Constr. Math. Anal., 3 (4) (2020),

125–138.
[3] J. I. Fujii, Y. Seo: Determinant for positive operators, Sci. Math., 1 (1998), 153–156.
[4] J. I. Fujii, S. Izumino and Y. Seo: Determinant for positive operators and Specht’s Theorem, Sci. Math., 1 (1998), 307–310.
[5] S. Furuichi: Refined Young inequalities with Specht’s ratio, J. Egyptian Math. Soc., 20 (2012), 46–49.
[6] S. Hiramatsu, Y. Seo: Determinant for positive operators and Oppenheim’s inequality, J. Math. Inequal., 15 (4) (2021),

1637–1645.
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